User Tools

Site Tools


start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
start [2016/03/24 12:41] janetstart [2016/03/24 15:54] janet
Line 4: Line 4:
 |[[3]]|F 4/1|Occupation function|A&M Ch 8 & Ch 12| | |[[3]]|F 4/1|Occupation function|A&M Ch 8 & Ch 12| |
  
-^Week 2^^Topic^Reading^Summary^Assignments|+^Week 2^^Topic^Reading^Assignments|
 |[[4]]|M 4/4|Phonon scattering |A&M Ch 13|[[hw2|HW #2]]| |[[4]]|M 4/4|Phonon scattering |A&M Ch 13|[[hw2|HW #2]]|
-|[[5]]|W 4/6|Phonon scattering|A&M Ch 13|{{::day4_2013.pdf|}}: Temperature dependent resistivity in metals predicted by phonon scattering matrix elements. Highest energy phonon sets important energy scale. Estimation of highest energy phonon. Introduction to electron transport in ballastic systems. | | +|[[5]]|W 4/6|Phonon scattering|A&M Ch 13| | 
-|[[6]]|F 4/8|Ballistic Transport|Kittel Ch 18 (Nanostructures)|{{::day5_2013.pdf|}}: Comparison with diffusive transport. CNT example. Calculating the conductance quantum. Definitions of 1d channels. Systems with multiple 1d channels.|{{::hw2solns.pdf|}} |+|[[6]]|F 4/8|Ballistic Transport|Kittel Ch 18 (Nanostructures)| |
  
-^Week 3^^Topic^Reading^Summary^Assignments| +^Week 3^^Topic^Reading^Assignments| 
-|[[7]]|M 4/11|Adding scattering|Kittel Ch 18 (Nanostructures)|{{::day6_2013.pdf|}}: Add scattering to a ballistic system. One scattering site reduces current by transmission probability. Two scattering sites, transmission depends on wave interference.|[[hw3|HW #3]]| +|[[7]]|M 4/11|Adding scattering|Kittel Ch 18 (Nanostructures)|[[hw3|HW #3]]| 
-|[[8]]|W 4/13|Adding scattering|Kittel Ch 18 (Nanostructures)|{{::day7_2013.pdf|}}: Pair of inelastic scattering sites. See hw#3 for many inelastic scattering sites. Many elastic scattering sites. Anderson localization. Review of what we've covered so far. Temperature-dependent conductivity of lightly doped semiconductors. Gate-voltage-dependent conductivity of lightly doped semiconductors.| | +|[[8]]|W 4/13|Variable range hopping. Mott Insulators|{{:mott_-_variable_range_hopping.pdf|Mott's txt bk}}, A&M p340 & 542| | 
-|[[9]]|F 4/15|Variable range hopping. Mott Insulators|{{:mott_-_variable_range_hopping.pdf|Mott's txt bk}}, A&M p340 & 542|{{::day8_2013.pdf|}}: Disordered semiconducting materials: conductance vs. temperature predicted by variable range hopping theory. Introduction to Mott insulator state. Calculation of critical lattice constant for metal-insulator transition. Little //a// limit: Thomas-Fermi screening depends on the electron concentration. Big //a// limit: polarizability depends on the distance to neighboring dipoles. |{{::hw3solns.pdf|}}|+|[[9]]|F 4/15|Electrons in B-field|Feynman Lecture on AB effect}} |
  
 ^Week 4^^Topic^Reading^Summary^Assignments| ^Week 4^^Topic^Reading^Summary^Assignments|
-|[[10]]|M 4/18|Electrons in B-field|{{::feynman_abeffect.pdf|Feynman Lecture on AB effect}} |{{::day9_2013.pdf|}}: Topological phenomena in electron transport. Electrons in B-field: Hall effect, Aharanov-Bohm effect.  |[[hw4|HW #4]]|+|[[10]]|M 4/18|dd|{{::feynman_abeffect.pdf|dd |{{::day9_2013.pdf|}}: dd  |[[hw4|HW #4]]|
 |[[11]]|W 4/20|Quantum Hall Effect|{{::qhe_article.pdf|Article 1}}, [[http://scitation.aip.org/content/aip/magazine/physicstoday/article/56/8/10.1063/1.1611351|Article 2]] |{{::day10_2013.pdf|}}: Aharanov-Bohm effect. QM description of cyclotron orbits. Landau levels. Fluctuation in electron density (constant chemical potential). The QHE experiment. [[http://en.wikipedia.org/wiki/Quantum_Hall_effect|Animation]]. QHE explanation based on ExB drift velocity. | | |[[11]]|W 4/20|Quantum Hall Effect|{{::qhe_article.pdf|Article 1}}, [[http://scitation.aip.org/content/aip/magazine/physicstoday/article/56/8/10.1063/1.1611351|Article 2]] |{{::day10_2013.pdf|}}: Aharanov-Bohm effect. QM description of cyclotron orbits. Landau levels. Fluctuation in electron density (constant chemical potential). The QHE experiment. [[http://en.wikipedia.org/wiki/Quantum_Hall_effect|Animation]]. QHE explanation based on ExB drift velocity. | |
 |12|F 4/22|Tunneling devices|[[http://en.wikipedia.org/wiki/Quantum_tunnelling#cite_note-21|Tunneling (wikipedia)]]|{{::day11_2013b.pdf|}}: Importance of tunneling device in technology. Calculating I_tunnel. Examples: STM microscopy, STM spectroscopy, tunnel magnetoresistance, tunnel diodes.|{{::hw4solns.pdf|}}| |12|F 4/22|Tunneling devices|[[http://en.wikipedia.org/wiki/Quantum_tunnelling#cite_note-21|Tunneling (wikipedia)]]|{{::day11_2013b.pdf|}}: Importance of tunneling device in technology. Calculating I_tunnel. Examples: STM microscopy, STM spectroscopy, tunnel magnetoresistance, tunnel diodes.|{{::hw4solns.pdf|}}|
  
-^Week 5^^Topic^Reading^Summary^Assignments| +^Week 5^^Topic^Reading^Assignments| 
-|[[13]]|M 4/25|Superconductivity|Ibach chapter|{{::day12_2013.pdf|}}: The experimental observations. Note about Type I vs. Type II. Composite bosons. Ionic lattice can be deformed: trail of deformation. Size scale for attractive interaction. The Cooper pair wavefunction. The Cooper pair binding energy at T = 0.  The number density of Cooper pairs. Temperature dependence of Cooper pair binding energy.  |[[hw5|HW #5]]| +|[[13]]|M 4/25|Superconductivity|Ibach chapter 10|[[hw5|HW #5]]| 
-|[[14]]|W 4/27|Superconductivity|Ibach chapter|{{::day13_2013.pdf|}}: Center of mass motion of Cooper pairs. Critical current density. London equation. London penetration depth. Solenoid field generated by a solid cylinder of superconductor. Critical B field for Type I superconductor. Explaining the difference between Type I and Type II superconductors. | | +|[[14]]|W 4/27|Superconductivity|Ibach chapter 10| | 
-|[[15]]|F 4/29 | | ||+|[[15]]|F 4/29 |Talks | | |
  
  
  
start.txt · Last modified: 2020/03/06 09:14 by 127.0.0.1