User Tools

Site Tools


start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
start [2016/03/24 11:31] janetstart [2016/03/24 11:33] janet
Line 13: Line 13:
 |[[8]]|W 4/13|Adding scattering|Kittel Ch 18 (Nanostructures)|{{::day7_2013.pdf|}}: Pair of inelastic scattering sites. See hw#3 for many inelastic scattering sites. Many elastic scattering sites. Anderson localization. Review of what we've covered so far. Temperature-dependent conductivity of lightly doped semiconductors. Gate-voltage-dependent conductivity of lightly doped semiconductors.| | |[[8]]|W 4/13|Adding scattering|Kittel Ch 18 (Nanostructures)|{{::day7_2013.pdf|}}: Pair of inelastic scattering sites. See hw#3 for many inelastic scattering sites. Many elastic scattering sites. Anderson localization. Review of what we've covered so far. Temperature-dependent conductivity of lightly doped semiconductors. Gate-voltage-dependent conductivity of lightly doped semiconductors.| |
 |[[9]]|F 4/15|Variable range hopping. Mott Insulators|{{:mott_-_variable_range_hopping.pdf|Mott's txt bk}}, A&M p340 & 542|{{::day8_2013.pdf|}}: Disordered semiconducting materials: conductance vs. temperature predicted by variable range hopping theory. Introduction to Mott insulator state. Calculation of critical lattice constant for metal-insulator transition. Little //a// limit: Thomas-Fermi screening depends on the electron concentration. Big //a// limit: polarizability depends on the distance to neighboring dipoles. |{{::hw3solns.pdf|}}| |[[9]]|F 4/15|Variable range hopping. Mott Insulators|{{:mott_-_variable_range_hopping.pdf|Mott's txt bk}}, A&M p340 & 542|{{::day8_2013.pdf|}}: Disordered semiconducting materials: conductance vs. temperature predicted by variable range hopping theory. Introduction to Mott insulator state. Calculation of critical lattice constant for metal-insulator transition. Little //a// limit: Thomas-Fermi screening depends on the electron concentration. Big //a// limit: polarizability depends on the distance to neighboring dipoles. |{{::hw3solns.pdf|}}|
 +
 ^Week 4^^Topic^Reading^Summary^Assignments| ^Week 4^^Topic^Reading^Summary^Assignments|
 |[[10]]|M 4/18|Electrons in B-field|{{::feynman_abeffect.pdf|Feynman Lecture on AB effect}} |{{::day9_2013.pdf|}}: Topological phenomena in electron transport. Electrons in B-field: Hall effect, Aharanov-Bohm effect.  |[[hw4|HW #4]]| |[[10]]|M 4/18|Electrons in B-field|{{::feynman_abeffect.pdf|Feynman Lecture on AB effect}} |{{::day9_2013.pdf|}}: Topological phenomena in electron transport. Electrons in B-field: Hall effect, Aharanov-Bohm effect.  |[[hw4|HW #4]]|
Line 19: Line 20:
  
 ^Week 5^^Topic^Reading^Summary^Assignments| ^Week 5^^Topic^Reading^Summary^Assignments|
- 
 |[[13]]|M 4/25|Superconductivity|Ibach chapter|{{::day12_2013.pdf|}}: The experimental observations. Note about Type I vs. Type II. Composite bosons. Ionic lattice can be deformed: trail of deformation. Size scale for attractive interaction. The Cooper pair wavefunction. The Cooper pair binding energy at T = 0.  The number density of Cooper pairs. Temperature dependence of Cooper pair binding energy.  |[[hw5|HW #5]]| |[[13]]|M 4/25|Superconductivity|Ibach chapter|{{::day12_2013.pdf|}}: The experimental observations. Note about Type I vs. Type II. Composite bosons. Ionic lattice can be deformed: trail of deformation. Size scale for attractive interaction. The Cooper pair wavefunction. The Cooper pair binding energy at T = 0.  The number density of Cooper pairs. Temperature dependence of Cooper pair binding energy.  |[[hw5|HW #5]]|
  
start.txt · Last modified: 2020/03/06 09:14 by 127.0.0.1