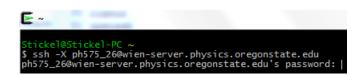
This is a walk-through for windows machines.

1 Initialize

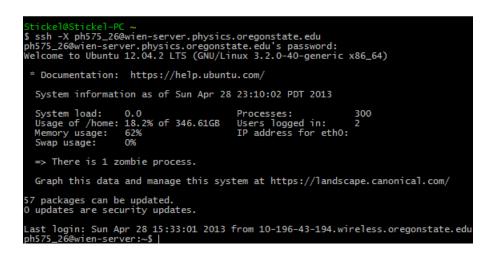
The first thing you need to do is to download crygwin at http://cygwin.com/install.html. Download setup.exe. Once you run the setup.exe file hit next and then choose install from internet, next. Select install for all users and choose a root directory for Cygwin (i.e. where you want it installed). Next choose a download location for storing temporary files related to the setup (just go with default folder if you have no other preference). Select next Choose Direct Connection next. Choose a website to download more needed files (specifically outlined below) from. The ftp ones seemed to be quicker than the http. Select next and it should connect to the site and a select packages screen will appear.

Select Pac Select pa	kages ackages to ins	tall						0	
<u>S</u> earch		<u>C</u> lear		© <u>К</u> еер) <u>C</u> urr	🔘 Ехр	View	Category	,
Category	Current		New			B	S Size	•	^
🗆 Al 🚯 De	efault								
E Acces	ssibility 📀 Defa	ault							=
🕀 Admin	🛈 Default								=
∃ Archiv	ve 📀 Default								
E Audio	Default								
⊞ Base	🕄 Default								
🕀 Datab	ase 📀 Defaul	lt							
E Debug	g 😯 Default								
⊞ Devel	😯 Default								
E Doc 4	🕽 Default								
Editor	s 📀 Default								
⊡ Game	s 😯 Default								
GNOM	ME 😯 Default								Ŧ
•								•	
<mark>▼ H</mark> ide obso	olete packages	3							
				ſ	(De els			C	
				l	< <u>B</u> ack	<u>N</u> e	ext >	Cano	e

There are a number of packages that need to be installed. The four that are absolutely required are


cygwin, openssh, xterm, xinit

Enter each package into the highlighted search bar, as seen above. You will most likely have to run the installer for each package. The above four are required but the packages below are recommended.


bash, bc, coreutils, gawk, grep, gzip, ImageMagick, less, mesa, more, opengl, tcltk, X-start-menu-icons

With crygwin set up you can initialize your Wien account. In the start menu you should see two new folders, one is crygwin and the other is crygwin-X. For now we only need to open the crygwin folder. Open up the crygwin terminal program. type the command "ssh -X ph575_ nn@wien-server.physics.oregonstate.edu" without the quote

marks. nn is the number given to you, 26 in the example, as your personal wien id. You should see a screen like below.

Enter your password. The unix terminal will not show your password, even as ******, though you are still typing it you should see the below.

enter w2web and you should be told to direct your browser to

http://wien-server.physics.oregonstate.edu:100nn

(http://wien-server.physics.oregonstate.edu:10026 for this example). You can now log into Wien via the web.

2 starting your calculations

When you first log in you will get a screen asking for your user name and password. Your screen name is ph575_ nn (ph575_ 26) and the password you used to initialize wien.

	vien-server.physics.oregonstate.edu:10026 ne and password. The server says: w2web.
User Name:	ph575_26
Password:	*****
	Log In Cancel

You should see the main page for Wien. We are going to create a new session that we will title Si_ tutorial.

-	Welcome to w2web the fully web-enabled interface to WIEN2k						
S	Sele	c1	t stored :	session:	Create new s	session:	
				show only selection	Si_tutorial	Create	
	Si_2 Si_real Si est	*			edit hosts		
L		Ŧ	Select				

Click the create button to create the new session. You'll see the below.

Please change into or create a new directory and "select" it This must not be your home directory!					
Current directory: /home/ph575_26/WIEN2k					
Select current directory					
New directory: Si_tutorial create/change					
Quick cd: /home/ph575_26/WIEN2k/					
r 1					

Click the create/change button to create a new folder. Do not leave the folder as your home folder. After this, select current directory. Then click to restart session. You'll see the home page for calculations, which is pictured below.

Session: [<u>Si_tutorial]</u> /home/ph575_26/WIEN2k/Si_tutorial				
w2web, the fully web-enabled interface to WIEN2				
Session Name: Si_tutorial Session ID: 551719 Directory: /home/ph575 26/WIEN2k/Si tutorial				
Directory: /home/ph575_26/WIEN2k/Si_tutorial Last changed: Sun Apr 28 23:26:27 2013 Comments:				
 spin polarized calculation AFM calculation complex calculation (no inversion) 				
parallel calculation				
Change session information				

The left hand menu is where all of your calculations will take place. Start with the StructGen link. you will be asked for the number of unique atoms. For silicon this is just one; For something like NaCl, this is two. After this you will see the below screen

Title: Ti	itle						
Lattice: Type: P F B CXY CYZ CXZ R H 1_P1			oups from /st Server]				
Lattice p	parameters	in A	•			_	
a= 0		b= 0		C= 0			
α = 90	0.000000	β= 90.	000000	γ= 90	000000		
Inequiv	alent Atoms	a• 1					
Atom 1:		a. 1	Z= 0.0	R	MT= 2.0000		[remove atom]
	1: x= 0.00000	000					
		000	y= 0.00000	000	Z= 0.00000	000	[remove][split]
[add an							
Number	of symmetry	opera	tions: gene	erate			
You hav Save Str	ve to click "S ructure	ave St	ructure" fo	r chan	ges to take	e effect	!

Enter the information for silicon including the space group and lattice spacing. When you are done, click save. Make sure to click "set automatically RMT and continue editing" at least once. You may leave the percent at 0%. After you do the optimization once save file and clean up.

After you finish with that click initialize calc. on the left hand menu. You'll see the below.

Si_tutorial.inst needs to be generated by instgen_lapw	check Si_tutorial.in1_st	view Si_tutorial.outputd and cp Si_tutorial.in0_std Si_tutorial.in0
view outputnn	check RKmax (usually 5.0-9.0)	check if gmax>gmin Perform spin-polarized calc.?
x sgroup	set LM's, GMAX and Fermi-Energy method	No
view outputsgroup	Prepare input files	Yes
x symmetry copy struct_st	x kgen view klist	
and view outputs	x dstart I interactively	
view outputst		

click though high lighted box. If the option to save a file ever comes up, make sure you click to save

initlapw	Save] Download th	nis file: 🖵		
Si					
F		1			
	RELA				:
10.25577	5 10.255775 10	.255775 90.00	00000 90.000000 90	.000000	1
-1	0.12500000	0.12500000	0.12500000		
	2				
-1	0.87500000	0.87500000	0.87500000		
5i	NPT= 781 R	0=0.00010000	RMT= 2.0000	Z: 14.0	
	1.	0000000 0.000	00000 0.0000000		
	0.	0000000 1.000	00000 0.0000000		
	0.	0000000 0.000	00000 1.0000000		
Bravais	Matrix:				
0	.00000	0.50000	0.50000		
0	.50000	0.00000	0.50000		
0	.50000	0.50000	0.00000		

Click through all the the boxes. The one thing to take note of is when you get to x kgen in phase 16 you'll need to enter the number of k points you want to calculate. Around 100 for a semiconductor or a few thousand for metals. After you have clicked though all the steps you will be given the option to "continue with run scf" do this. There are many options here. Ignore all of them and just click the "start scf cycle" button at the bottom. The screen might go white for a while, just let it load. With this done you can now start doing actual calculations.

3 DOS and partial DOS

Click the tasks menu on the left. Then click DOS.

x lapw2 -qtl Calculate partial charges So I interactively
Optional alternative to "x lapw2 -qtl" (f-states, SO-DOS, rotations) !
edit Si_tutorial.ing Edit input-file for QTL
x qtl Calculate partial charges with QTL program So I interactively
The required input file Si_tutorial.int can be generated by:
configure Si_tutorial.int configure input-file for TETRA edit Si_tutorial.int Edit input-file for TETRA
x tetra Calculate partial DOS
edit Si_tutorial.outputt Check output of TETRA
dosplot Plot DOS or download DOS ASCII-data files for plotting with your own plotting program

Click through this like you did with the initialize calc. above. You do not need to click on the buttons in the dark gray boxes however. When you click configure Si₋ tutorial make sure it says "total 1 tot,d,d-eg,d-t2g 2 tot,s,p" as below.

The next step is were we can calculate the partial density of states. If you only want the total you can skip this. Click the edit Si₋ tutorial and you will see the below.

File: /home/ph575 26/WIEN2k/Si tutorial/Si tutorial.int continue with DOS Save Download this file: 🖃 Header from Si_tutorial.qtl: ATOM COLUMN Title -0.50 0.002 1.500 0.003 # EMIN, DE, EMAX, Gauss-broadening(>;de) # NUMBER OF DOS-CASES specified below, G/L/B bro N 0.000 1 # atom, case=column in gtl-header, label 0 1 total Atom1 tot 1 1 1 2 Atom1 s 1 3 Atom1 p 2 1 Atom2 tot

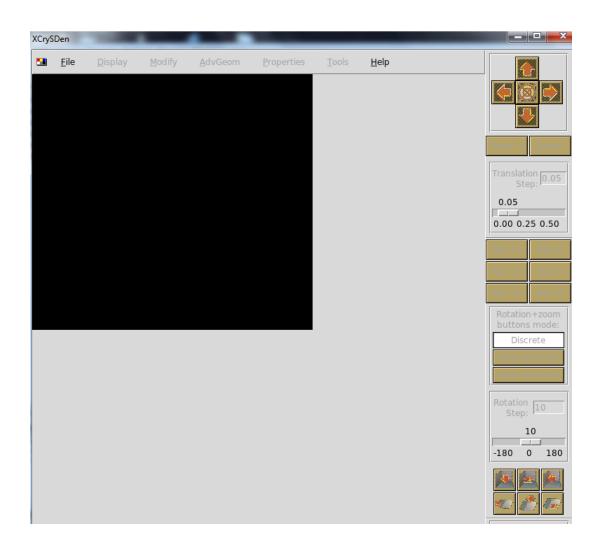
You see three columns. The first starts with 1, the second with N, and the third 0.0000. The first row sets the number of partial density of states that are to be calculated. Set the 1 that is to the left of the N to how ever many PDOS that you want to calculate. Below the first row are the most important rows. Each is its own PDOS. The first column in each row is the atom in the crystal. For Si, there is only one atom, but for something like NaCl 0 is both put together, 1 would be the first atom you put into structGen, and 2 is the second and so forth. The second column tells Wien which orbital you want to calculate by setting the number in the first column to 1 higher than total number of atoms in the unit cell, i.e. 2 for Si and 3 for NaCl. The third column is just a title for you to put to remember what each row is for. You can see above the edited file there is something that says "ATOM Si: 1 tot". This is must be present for the partial density of states to work. If it is missing go back to the start of the DOS page and click through all the buttons again. When you click plot you'll see something that looks like the image below

Set ranges (optional): xmin= xmax=	vmin-	PLOT
You can select from 7 DOS in	ymin= ymax= Si tutorial.int.	PLOT
Please select up to 4 lines to p	-	
no line line:1 (total DOS) of Si_tutorial line:2 (tot) of atom Si line:3 (s) of atom Si line:4 (p) of atom Si line:5 (d) of atom Si line:6 (d-eg) of atom Si line:7 (d-t2g) of atom Si	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Define for first line: Label=	Linetype(0-9)= 1	Linewidth= 1
Define for second line: Label=	Linetype(0-9)= 2	Linewidth= 2
Define for third line: Label=	Linetype(0-9)= 3	Linewidth= 2
Define for fourth line: Label=	Linetype(0-9)= 4	Linewidth= 2
Plot DOS in eV ▼ Color ▼ L	abelsize= 24 pt	

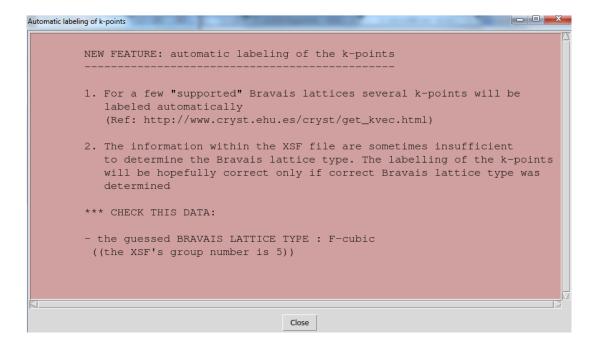
Select the PDOS that you want to plot. You can chose your limits as well, though if they are left blank the program fits the plots. Click plot and you should see a DOS plot.

4 band structure and/or spaghetti plot

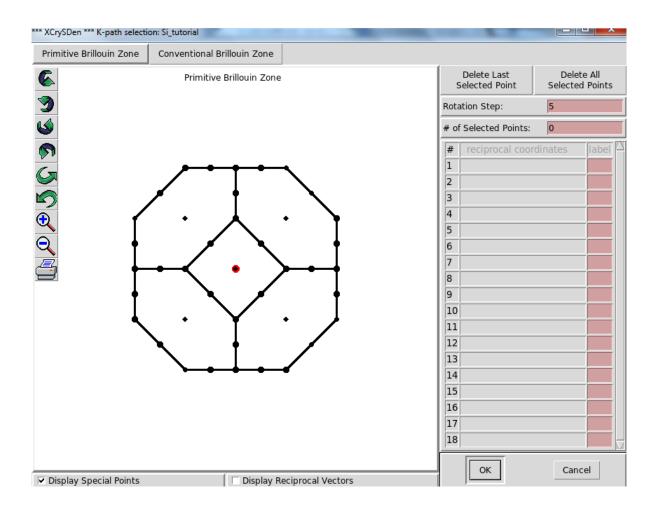
Now that the PDOS is plotted the band structure can be plotted. Click on bandstructure on the left menu. The band structurer window looks like


Band structure

Generate k-mesh using XCrysden (save klist as xcrysden.klist)
fcc create Si_tutorial.klist_band [Brillouinzones from Bilbao Cryst Server]
x lapw1 -band Calculate Eigenvalues C orb I interactively
needed only for continuous lines in the plot (not for non-symmorphic spacegroups)!
x irrep Calculate irreducible representations so interactively
for band character plots only!
x lapw2 -band -qtl Calculate partial charges ("qtl"-file) So I interactively
edit Si_tutorial.insp Insert correct EF
x spaghetti Calculate bandstructure So I interactively
plot bandstructure or download Xmgrace files for plotting with xmgrace

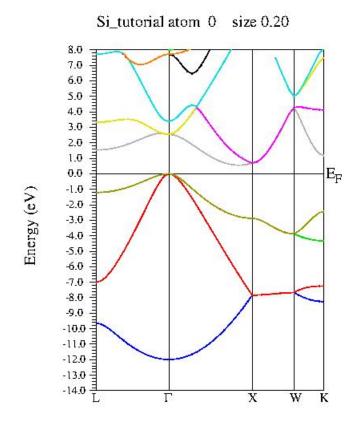

The first option is to create a klist with xcrysden. To run xcrysden you need first open the cygwin-X file in the start menu that was mentioned at the very start of this tutorial. Open XWin server. This can be a bit finicky. I sometimes have to open it a few times. This may or may not open an xterm window. If not, open the xterm from the same cygwin-X file. When the window opens log into your account like you did to initialize using the command ssh -X ph575_ 26@wien-server.physics.oregonstate.edu

~		x
Main Options VT Options VT Fonts		
Stickel@Stickel-PC ~		
\$ ssh -X ph575_26@wien-server.physics.oregonstate.edu ph575_26@wien-server.physics.oregonstate.edu's password:		


enter your password. At this point I like to test to make sure I can open xcrysden. Working with a few people I found out some computers have issues opening xcrysden, even if all the commands are entered right. To open xcrysden just type xcrysden into the xterm window.

If this opens successfully head back to the web interface and your band structurer calculation. Click the generate k-mesh with xcrysden button. If you just get the message "Requires X-Windows system ..." go to the xterm window and enter the command "ps -u ph575_ 26". kill any process that says w2web with the command "kill # # # #" where # # # # # is whatever number is next to the w2web process. Enter the "ps -u ph575_ 26" command again to make sure that all the w2web process are shut off. Run w2web again in the xterm window. After this, try the generate k-meh with xcrysden button again. Two windows should (eventually) open. One is just a pink text document, close it.


You should see an image like the below appear.


Each point corisponds to a high symmetry point in k-space such as the Γ point or the X point. After you have a path click ok.

	1. coord	inates	, calcula	ated as (coordinates looks OK. These k-points have kx*M, ky*M, kz*M), where M is an integer as are then obtained as: 1/M * (kx*M, ky*M, kz*M)
	2. `	You ca	an also s	pecify s	ome new k-points manually.
	3	The k-	path is (obtained	by connecting the k-points together.
M multipl	lier wa	as set	to:		8
Total nun	nber o	of k-po	oints alo	ng the p	ath:
Format:	M*kx	M*ky	M*kz	labe	A
-4 0 -2 -3	4			L GAMMA X W K	ОК
					Cancel

Ignore the line that starts with M multiple.... The second line is important. The total number of K-points along the path are the number of points that wien plots between the k-points you selected in the above step. (too few and the band plot is just straight lines...trust me) Click ok. A third window will pop up and ask for a file name. Enter xcrysden.klist and then save. A final pink text window will appear, close it. Go back to the website and the band plot. In the second line there is a drop down menu that starts with fcc. Open the drop down menu and select 'from xcrysden' and click the create button next to the drop down menu. The menu will revert back to its default fcc, this is fine, don't worry about it. Click the third button x lapw1 -band. skip the two dark gray sections. I found that when you use these, the k-list file from xcrysden does not work, when you get to 'edit Si_ tutorial' you'll see a series of xxxx that I have highlighted below. Replace these xxxx with the number above the text box, on the right that is also highlighted, which is the fermi energy. The highlighted number may change a bit. I've done this a few times and have gotten between .37 and .4 so if its not exactly that number I wouldn't worry.

Click save and click through till you get to the band plot. This is the band plot that I get.

It is also possible to use the standard k-mesh that wien provides. Go back to the band plot menu and instead of using the 'from xcrysden' option in the drop down menu leave it as fcc and click the generate button to the right. You'll be asked to copy the file

```
Create Si_tutorial.klist_band from fcc template
Si_tutorial.klist_band already exists !! Do you want to overwrite it and copy k-list template for fcc to Si_tutorial.klist_band ?
Copy it
```

click 'copy it' and then go through all of the buttons like you did for the xcrysden option, again double checking the fermi energy when you get to 'edit Si_ tutorial'. You'll get a new band plot (most likely, unless you picked the exact same path as wien).

5 electron density

Now that xcrysden is working we can look at electron density. Choose "El Dens" from the right menu. You should see the fallowing screen

Select E-range for lapw2 for a density without semicore or within an E-window. For proper values check energy-parameters and eigenvalues or band-ranges in the corresponding scf-files edit Si_2.scf1 edit Si_2.scf2
x lapw2 Calculate clmval with Emin -1.0 and Emax So
For difference densities only !
default valence states: non-default valence states:
edit Si_2.inst put P for all your states
x Istart -sigma Calculate atomic valence densities x Istart Calculate atomic valence densities as defined above
Calculate density with XCrysden (or create Si_2.in5" / execute lapw5 below)
edit Si_2.in5 Edit input-file
x lapw5 Calculate density
Preview density with XCrysden
Image: rhoplot Plot Density or download [Si_2.rho] for plotting with your own plotting program

Click though the first two button. The third button had an E_{min} that you can set. This is used to make sure that the core electrons are removed. The two buttons above x lapw2 are supposed to tell you where to set E_{min} but I have yet to figure that out.

Once you have run x lapw2 skip the dark gray sections again. Click "Calculate density with xcrysden". It will open up 2 windows. One xcrysden that looks familiar. The other looks like below (again, if you get the "Requires X-Windows system ... Calc" error fallow the same steps as here.)

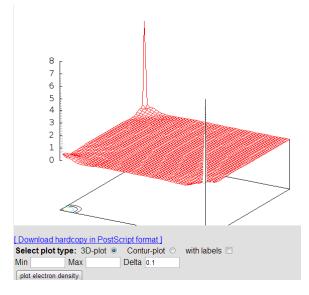
Choose the 2D plot. I haven't played too much at this point, but you'll see a screen that looks like

	Specify G	Grid Resolution		
O Number of poi	nts along one grid-segm	ent:		
Resolution in A	Angstroms/Bohrs:			Angstroms 🛁
Degree of biCubi	c Spline Interpolation:			
1	e opine meerpolacioni			
	2	3		4
1	2	3		4
Select F	Plane for Property Evalua	tion		
Three-atoms sp	anning parallelogram se	lection		
AB margin:				
CD margin:				
AD margin:				
BC margin:	0.0			
🗆 Rectangu	lar parallelogram			
③ Atom centered	selection			
radius:	1.0			
rotate:		rotate		
	Update Display			
	Cancel		Submit	1

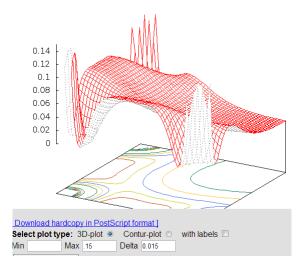
In the top section choose to "set number of points along one grid-segment" and enter a number. The important part is the second section. This is where you pick the three atoms that form what area you look at for your electron density. How wien works is it makes, or is given, three coordinates which it uses to define a plane. This plane is the cross section of the electron density that you will be looking at. What you are doing here are picking 3 atoms that will define this plane.

In the "select plane for property evolution" section select "three atoms spanning parallelogram selection" It looks like it has already been selected but is grayed out, it hasn't. Click it and it will open up a new window

Selec	Select a three-atoms spanning parallelogram. Please click on three atoms					
	ID S	ym Atm.Num	X/Angstrom	Y/Angstrom	Z/Angs	strom
Selected Atom Selected Atom Selected Atom	No.2:					
Display coordina	ates in units:— © Bohr	Crystal	-Convetional	Crystal-Pri	imitive) Alat
Next			Close		Selected	


At this point click over to the xcrysden window with the crystal. One atom you pick will be the center of your electron density plot. The other two will define the plane that you will be looking at. Pick any three atoms you want. After you pick three atoms the above will change to

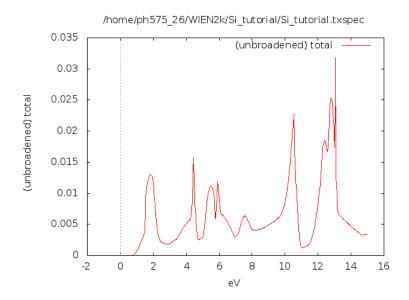
			ID	Sym	Atm.Num	N X/Angstrom	Y/Angstrom	Z/Angstrom
Selected A	Atom	No.1:	5	Si	14	+2.035170093	+2.035170093	+4.748730216
Selected A	Atom	No.2:	2	Si	14	+0.678390031	+3.391950154	+3.391950154
Selected A	Atom	No.3:	6	Si	14	+2.035170093	+4.748730216	+2.035170093
Display	andin	atas in	ita					
Display co	orain	ates in	units					
 Angstr 	om	0	Bohr		Crysta	al-Convetional	Crystal-Pri	mitive 🔿 Alat
	Next					Close		Selected


hit the selected button. NOT NEXT, if you hit next you have to reselect the atoms. Not really a problem, just annoying if you forget and do it a few times.....again, trust me. After you hit submit you'll go back to first window where you set the number of points along a grid segment. Select submit again. A new window will pop up, just hit ok, and then ok once again. A new window will open up, click submit and close. You can go back to your browser and wien at this point. The next button is edit case.in5. This is where you can manually set the which atoms define the plane instead of clicking on them in xcrysden. It should look like

continue with electro	on density	Sav	e Download this file: 🖬	
1250000 3750000 3750000 3 2 3 50 50 RHO ADD ATU VAL NODEBUG NONORTHO	6250000 8750000 3750000	6250000 3750000 8750000	1000000 1000000 1000000	

It will probably not be those exact numbers as they are specific to the atoms I choose and to what the system is but will have that pattern of three rows and four columns with the 4th column being something like just 2 or 3 or something. Click save and continue. Click x lapw5, continue, and then click phoplot. You can preview it with xcrysden, but all this does it overlay the electron density plot with the atoms. After you hit rhoplot just click plot. You should see something that looks like

This doesn't look like much. After some playing (an exorcise I'll leave to the reader) you should be able to get a plot that looks something like


Now, you can go back to xcrysden and select a different set of three atoms for a new plane and a new perspective on your electron density.

6 XSPEC

This section will deal with XSPEC. XSPEC is a means of calculating the xray xpectrum for your materials. Before you can run XSPEC you must have partial density of states plotted. See section 3. Click XSPEC on the left and you will see

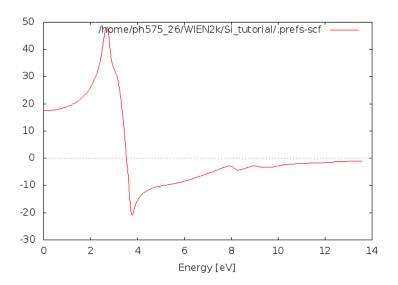
If you want to include states with higher energy
edit Si_tutorial.in1 Edit in1
x lapw1 Calculate eigenvalues I interactively
x lapw2 -qtl Calculate partial charges I interactively
edit Si_tutorial.inxs Edit input-file for XSPEC
x xspec Calculate X-ray spectra
plot Plot XSPEC or download XSPEC ASCII files for plotting with your own plotting program [Si_tutorial.m1][Si_tutorial.m2][Si_tutorial.xspec]

Skip the dark gray entries and start with xlapw2 -qtl. Click the edit next and then save and continue. Click x xspec, and then plot. In the plot you have various options for plots, such as broadened or unbroadened. You must also choose a column. The spectrum I get is

7 Optical properties

The last of the utilities I will look at is the OPTIC which lets us looks at the optical properties of the material. You must also have partial DOS plotted for this (see section 3). Select OPTIC on the left menu and you should get

x lapw2 -fermi Calculate weights C so V interactively
edit Si_tutorial.inop Edit Si_tutorial.inop
x optic Calculate optics matrixelements 🗉 so 🗹 interactively
edit Si_tutorial.injoint Edit Si_tutorial.injoint
x joint Calculate epsilon-2 🗹 interactively
edit Si_tutorial.inkram edit Si_tutorial.inkram
x kram Calculate optical constants by Kramers-Kronig 🗹 interactively
anticolot. Plot optical properties or download ASCII files for plotting with your own plotting program


Click through the first button. The second opens up the window

99999 1 -5.0 3.0 9999 2 1 3	number of k-points, first k-point Emin, Emax for matrix elements, NBvalMAX number of choices (columns in *outmat): 2: hex or tetrag. ca Re xx Re zz
OFF	ON/OFF writes MME to unit 4
Choices: 1Re <;x 2Re <;y 3Re <;z 4Re <;x 5Re <;x 6Re <;x 7Im <;x 9Im <;y	>;<;y>; >;<;z>; >;<;y>; >;<;z>; >;<;z>; >;<;y>; >;<;z>;

This lets you pick what components you want to look at. I.e. do you want to look at xx part or the yz. It also lets your select the real or imaginary part for complex components. The number of points you can chose is the number in the third column. It is currently set to 2. The two rows below it are which components are being selected. they are currently 1 the xx and 3 the zz. This is made clear in the table below this labeled choices. Make your choices and save and continue. Do x optic. Next is edit case.injoint You will see

СО	ntinue with optics Save Download this file:	
eV ONI SWI	1 9999 9999 : LOWER, UPPER and (optional) UPPER-VAL B. 0.0000 0.00100 1.0000 : EMIN DE EMAX FOR ENERGYGRID IN ryd : output units eV / ryd / cm-1 4 : SNITCH 2 : NUMBER OF COLUMNS 0.1 0.3 : BROADENING (FOR DRUDE MODEL - switch 6 LY) ITCH:	
	<pre>0JOINTDOS FOR EACH BAND COMBINATION 1JOINTDOS AS SUM OVER ALL BAND COMBINATIONS 2DOS FOR EACH BAND 3DOS AS SUM OVER ALL BANDS 4Im(EPSILON) 5Im(EPSILON) for each band combination 6INTRABAND contributions 7INTRABAND contributions</pre>	
4	"	κ.

This is where you select what optical property to look at, though, at the end, it seems all are plotable. For now you can just click save and continue. Click through the rest of the buttons. When you get to plot you can see a list off optical properties to plot. I have selected epsilon and got the fallowing plot

