PH575 Spring 2019

Lecture #12 3 dimensions: Sutton Ch. 4 pp 78-> 80; Kittel Ch1, 2

Simple cubic lattice

in real space (or direct lattice)

$$\mathbf{t}_1 = (a, 0, 0)$$

 $\mathbf{t}_2 = (0, a, 0)$
 $\mathbf{t}_3 = (0, 0, a)$

- Unit cell generates entire lattice by repetition and covers all space.
- Every atom can be reached by
- **R** = n t_1 + m t_2 + p t_3
- Primitive cell is a unit cell that contains one fundamental unit (in this case 1 atom) or lattice cell.
- Volume is

$$V = \left| \vec{t}_1 \cdot \left(\vec{t}_2 \times \vec{t}_3 \right) \right|$$

Construct reciprocal lattice

The real space (direct) lattice vectors are $\vec{t}_1, \vec{t}_2, \vec{t}_3$ then the reciprocal lattice vectors are $\vec{g}_1, \vec{g}_2, \vec{g}_3$

$$\vec{g}_1 = 2\pi \frac{\vec{t}_2 \times \vec{t}_3}{\vec{t}_1 \cdot (\vec{t}_2 \times \vec{t}_3)}$$
$$\vec{g}_2 = 2\pi \frac{\vec{t}_3 \times \vec{t}_1}{\vec{t}_2 \cdot (\vec{t}_3 \times \vec{t}_1)}$$
$$\vec{g}_3 = 2\pi \frac{\vec{t}_1 \times \vec{t}_2}{\vec{t}_3 \cdot (\vec{t}_1 \times \vec{t}_2)}$$

Also easy to see that

$$\vec{t}_i \cdot \vec{g}_j = 2\pi \delta_{ij}$$
$$e^{i\vec{g}\cdot\vec{t}} = 1$$

Simple cubic lattice

in real space

$$\mathbf{t}_1 = (a, 0, 0)$$

 $\mathbf{t}_2 = (0, a, 0)$
 $\mathbf{t}_3 = (0, 0, a)$

Reciprocal lattice is also simple cubic.

Length of unit cell $i_s^z 2\pi/a$

Primitive unit cell is 1st Brillouin

http://cst-www.nrl.navy.mil/bind/kpts/sc/

Conventional unit cell Has full lattice symmetry 2 atoms/cell

> Primitive unit cell Does not always have full symmetry of lattice 1 atoms/cell

e

Body centered cubic lattice

(Li(@RT), Na, K, V, Cr, Fe, Rb, Nb, Mo, Cs, Ba, Eu, Ta)

Another primitive cell: Wigner-Seitz unit cell 1 atoms/cell & all points as compact as possible (b.t.w = 1st BZ of fcc!)

http://omnis.if.ufrj.br/~rrds/cursos/matcond/cap04/redes-3d.r

The 14 Bravais Lattices

Auguste Bravais (1811-1863)

The real lattice vectors of the BCC lattice

The reciprocal lattice vectors of the BCC lattice

$$\mathbf{t}_1 = (a/2) (-1, 1, 1)$$

$$\mathbf{t}_2 = (a/2) (1, -1, 1)$$

$$\mathbf{t}_3 = (a/2) (1, 1, -1)$$

$$\vec{g}_{1} = 2\pi \frac{(2\hat{y} + 2\hat{z})}{\frac{a}{2}(-\hat{x} + \hat{y} + \hat{z}) \cdot (2\hat{y} + 2\hat{z})} = \frac{2\pi}{a}(\hat{y} + \hat{z})$$
$$\vec{g}_{2} = 2\pi \frac{(2\hat{x} + 2\hat{z})}{\frac{a}{2}(\hat{x} - \hat{y} + \hat{z}) \cdot (2\hat{x} + 2\hat{z})} = \frac{2\pi}{a}(\hat{x} + \hat{z})$$
$$\vec{g}_{3} = 2\pi \frac{(2\hat{x} + 2\hat{y})}{\frac{a}{2}(\hat{x} + \hat{y} - \hat{z}) \cdot (2\hat{x} + 2\hat{y})} = \frac{2\pi}{a}(\hat{x} + \hat{y})$$

The reciprocal lattice vectors of the BCC lattice are also the real space vectors of the FCC lattice!

race centered cubic lattice

Construction of the Wigner-Seitz (WS) unit cell

- ① Choose a zero point of the lattice.
- ② Draw lines from zero point to all nearest-neighbor lattice sites
- ③ Draw lines (planes in 3D), that bisects all lines at a right angle.
- ④ The smallest area (volume) enclosed by the lines (planes) is the WS cell. If the lattice represents k-points, then we call this the first Brillouin zone.
- (5) Draw all the perpendicular bisectors for the 2nd n-n and so on. (solid lines below). The second BZ is found by going from the 1st BZ across one (and only one) of the solid lines.

Brillouin zones for square lattice:

Tutorial at: http://www.doitpoms.ac.uk/tlplib/brillouin_zones/index.php

Lattice with a basis

Square lattice

Add together

Lattice with a basis: Si

FCC lattice with basis

http://cst-www.nrl.navy.mil/lattice/

Lattice Vectors $A_1 = \frac{1}{2} a Y + \frac{1}{2} a Z$ $A_2 = \frac{1}{2} a X + \frac{1}{2} a Z$ $A_3 = \frac{1}{2} a X + \frac{1}{2} a Y$

Basis Vectors $B_1 = -1/8 A1 - 1/8 A2 - 1/8 A3$ $B_2 = 1/8 A1 + 1/8 A2 + 1/8 A3$

X-ray diffraction and the reciprocal lattice

The X-ray diffraction pattern is the Fourier transform (reciprocal lattice) of the real lattice The change in the momentum vector of the X-ray beam is equal to a reciprocal lattice vector (Laue condition. This is equivalent to Bragg's familiar law $n\lambda = 2d \sin\theta$, but is more powerful.

$CuScO_{2+y}$ films unoxidized ($y \approx 0$) oxygen intercalated ($y \approx 0.5$)

Fd-3m

Space group #227 (Si). Herman-Mauguin symbol is Fd-3m (-3 = 3bar) F= fcc; d = glide plane -3 (3bar) = 3-fold roto-inversion axis m = mirror plane

We specify some atoms and the symmetry operations \rightarrow the rest of the atoms positions are then generated. Choice of origin is important!

> Origin 1 ⊗ (1/8,1/8,1/8)

Origin 2 ⓒ (1/8,1/8,1/8)

CIFs Crystallographic Information files

# #\$Date: 2010-06-10 15 #\$Revision: 1210 \$ #	:11:07 +0000 (Thu, 10 Jun 2010) \$			
" data_9007531				
loop_ chemical formula sur	n 'O2 Ti'			
_chemical_name_miner	al Rutile			
_space_group_IT_numl	per 136			
_symmetry_space_grou _symmetry_space_grou	p_name_Hall '-P 4n 2n' p_name_H-M 'P 42/m n m'			
_cell_angle_alpha	90			
_cell_angle_beta	90			
_cell_angle_gamma	90			
_cell_length_a	4.5941			
_cell_length_b	4.5941			
_cell_length_c	2.9589			
loop_				
_symmetry_equiv_pos_	_as_xyz			Carlo Vicio
x,y,z				
-y,-x,z				•
у,Х,-Z				
1/2+y,1/2-x,1/2-z				×
1/2-y,1/2+x,1/2+z			+	
1/2+x,1/2-y,1/2+z	,		Y I	
1/2-x,1/2+y,1/2-z				
х,у,-z				
-x,-y,z				
y,x,z				
-y,-x,-z				
1/2-y,1/2+x,1/2-z				
1/2+y,1/2-x,1/2+z				
1/2-x,1/2+y,1/2+z				
1/2+x,1/2-y,1/2-z				
-x,-y,-z	(
loop_				
_atom_site_label				
_atom_site_fract_x				
_atom_site_tract_y				
_atom_site_tract_z	Z Z			
T1 0.00000 0.00000 0.0				
0 0.305 /0 0.305 /0 0.00				