PH575 Spring 2019

Lecture \#12
3 dimensions: Sutton Ch. 4 pp 78-> 80; Kittel Ch1, 2

The cubic lattices

face centered

diamond

zinc blende

Simple cubic lattice

in real space (or direct lattice)

- Unit cell generates entire lattice by repetition and covers all space.
- Every atom can be reached by
- $R=n t_{1}+m t_{2}+p t_{3}$
- Primitive cell is a unit cell that contains one fundamental unit (in this case 1 atom) or lattice cell.
- Volume is

$$
V=\left|\vec{t}_{1} \cdot\left(\vec{t}_{2} \times \vec{t}_{3}\right)\right|
$$

$$
\begin{aligned}
& \mathbf{t}_{1}=(a, 0,0) \\
& \mathbf{t}_{2}=(0, a, 0) \\
& \mathbf{t}_{3}=(0,0, a)
\end{aligned}
$$

Construct reciprocal lattice

The real space (direct) lattice vectors are $\vec{t}_{1}, \vec{t}_{2}, \vec{t}_{3}$ then the reciprocal lattice vectors are

$$
\vec{g}_{1}, \vec{g}_{2}, \vec{g}_{3}
$$

$$
\begin{aligned}
& \vec{g}_{1}=2 \pi \frac{\vec{t}_{2} \times \vec{t}_{3}}{\vec{t}_{1} \cdot\left(\vec{t}_{2} \times \vec{t}_{3}\right)} \\
& \vec{g}_{2}=2 \pi \frac{\vec{t}_{3} \times \vec{t}_{1}}{\vec{t}_{2} \cdot\left(\vec{t}_{3} \times \vec{t}_{1}\right)} \\
& \vec{g}_{3}=2 \pi \frac{\vec{t}_{1} \times \vec{t}_{2}}{\vec{t}_{3} \cdot\left(\vec{t}_{1} \times \vec{t}_{2}\right)}
\end{aligned}
$$

Also easy to see that $\vec{t}_{i} \cdot \vec{g}_{j}=2 \pi \delta_{i j}$
$e^{i \bar{g} \cdot t}=1$

Simple cubic lattice in real space

$$
\begin{aligned}
& \mathbf{t}_{1}=(a, 0,0) \\
& \mathbf{t}_{2}=(0, a, 0) \\
& \mathbf{t}_{3}=(0,0, a)
\end{aligned}
$$

Reciprocal lattice is also simple cubic.
Length of unit cell is $2 \pi / a$
Primitive unit cell is 1st Brillouin
Zone

$$
\begin{aligned}
& \mathbf{g}_{1}=(2 \pi / a, 0,0) \\
& \mathbf{g}_{2}=(0,2 \pi / a, 0) \\
& \mathbf{g}_{3}=(0,0,2 \pi / a)
\end{aligned}
$$

Conventional unit cell Has full lattice symmetry 2 atoms/cell

Primitive unit cell Does not always have full symmetry of lattice 1 atoms/cell
Body centered cubic lattice
(Li(@RT), Na, K, V, Cr, Fe, Rb, Nb, Mo, Cs, Ba, Eu Ta)
Body centered cubic lattice
$(\mathrm{Li}(@ R \mathrm{~T}), \mathrm{Na}, \mathrm{K}, \mathrm{V}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{Rb}, \mathrm{Nb}, \mathrm{Mo}, \mathrm{Cs}, \mathrm{Ba}, \mathrm{Eu}, \mathrm{Ta})$

$$
\begin{aligned}
\mathbf{t}_{1} & =(a / 2)(-1,1,1) \\
\mathbf{t}_{2} & =(a / 2)(1,-1,1) \\
\mathbf{t}_{3} & =(a / 2)(1,1,-1)
\end{aligned}
$$

Another primitive cell: Wigner-Seitz unit cell 1 atoms/cell \& all points as compact as possible (b.t.w = 1st BZ of fcc!)

http://omnis.if.ufrj.br/~rrds/cursos/matcond/cap04/redes-3d.r

Conventional unit cell 4 atoms/cell

$$
\begin{aligned}
& \mathbf{t}_{1}=(a / 2)(0,1,1) \\
& \mathbf{t}_{2}=(a / 2)(1,0,1) \\
& \mathbf{t}_{3}=(a / 2)(1,1,0)
\end{aligned}
$$

Face centered cubic lattice
(Al, Cu, Ni, Sr, Rh, Pd, Ag, Ce, Tb, Ir, Pt, Au, Pb, Th)

http://omnis.if.ufrj.br/~rrds/cursos/matcond/cap04/redes-3d.r

The 14 Bravais Lattices

Auguste Bravais (1811-1863)

Monoclinic

Triclinic

The real lattice vectors of the BCC lattice

The reciprocal lattice

 vectors of the BCC lattice$$
\begin{aligned}
& \mathbf{t}_{1}=(a / 2)(-1,1,1) \\
& \mathbf{t}_{2}=(a / 2)(1,-1,1) \\
& \mathbf{t}_{3}=(a / 2)(1,1,-1)
\end{aligned}
$$

$$
\begin{aligned}
& \vec{g}_{1}=2 \pi \frac{(2 \hat{y}+2 \hat{z})}{\frac{a}{2}(-\hat{x}+\hat{y}+\hat{z}) \cdot(2 \hat{y}+2 \hat{z})}=\frac{2 \pi}{a}(\hat{y}+\hat{z}) \\
& \vec{g}_{2}=2 \pi \frac{(2 \hat{x}+2 \hat{z})}{\frac{a}{2}(\hat{x}-\hat{y}+\hat{z}) \cdot(2 \hat{x}+2 \hat{z})}=\frac{2 \pi}{a}(\hat{x}+\hat{z}) \\
& \vec{g}_{3}=2 \pi \frac{(2 \hat{x}+2 \hat{y})}{\frac{a}{2}(\hat{x}+\hat{y}-\hat{z}) \cdot(2 \hat{x}+2 \hat{y})}=\frac{2 \pi}{a}(\hat{x}+\hat{y})
\end{aligned}
$$

The reciprocal lattice vectors of the BCC lattice are also the real space vectors of the FCC lattice!

$$
\begin{aligned}
& \mathbf{g}_{1}=(2 \pi / a)(0,1,1) \\
& \mathbf{g}_{2}=(2 \pi / a)(1,0,1) \\
& \mathbf{g}_{3}=(2 \pi / a)(1,1,0)
\end{aligned}
$$

Primitive unit cell Does not always have full symmetry of lattice 1 atoms/cell

Body centered cubic lattice

Wigner-Seitz unit cell (b.t.w = 1st BZ of bcc!)

Primitive cell

1st BZ

Construction of the Wigner-Seitz (WS) unit cell

(1) Choose a zero point of the lattice.
(2) Draw lines from zero point to all nearest-neighbor lattice sites
(3) Draw lines (planes in 3D), that bisects all lines at a right angle.
(4) The smallest area (volume) enclosed by the lines (planes) is the WS cell. If the lattice represents k-points, then we call this the first Brillouin zone.
(5) Draw all the perpendicular bisectors for the $2^{\text {nd }} n-n$ and so on. (solid lines below). The second BZ is found by going from the $1^{\text {st }} \mathrm{BZ}$ across one (and only one) of the solid lines.

Brillouin zones for square lattice:

Tutorial at:

 http://www.doitpoms.ac.uk/tlplib/brillouin_zones/index.php

Lattice with a basis

Square lattice

Add together

Just the atoms

Lattice with a basis: Si

FCC lattice with basis
http://cst-www.nrl.navy.mil/lattice/

Lattice Vectors
$A_{1}=1 / 2 a \mathbf{Y}+1 / 2$ a \mathbf{Z}
$A_{2}=1 / 2 a X+1 / 2 a Z$
$A_{3}=1 / 2 a X+1 / 2 a \mathbf{Y}$
Basis Vectors
$\mathbf{B}_{1}=-1 / 8 \mathbf{A} 1-1 / 8 \mathbf{A} 2-1 / 8 \mathbf{A} 3$
$\mathbf{B}_{2}=1 / 8 \mathbf{A} 1+1 / 8 \mathbf{A} 2+1 / 8 \mathbf{A} 3$

X-ray diffraction and the reciprocal lattice

The change in the momentum vector of the X-ray beam is equal to a reciprocal lattice vector (Laue condition. This is equivalent to Bragg's familiar law $n \lambda=2 d \sin \theta$, but is more powerful.

The X-ray diffraction pattern is the Fourier transform (reciprocal lattice) of the real lattice

CuScO_{2+y} films

unoxidized ($y \approx 0$) oxygen intercalated ($y \approx 0.5$)

Fd-3m

Space group \#227 (Si). Herman-Mauguin symbol is $\mathrm{Fd}-3 \mathrm{~m}$ (-3 = 3bar)
$\mathrm{F}=\mathrm{fcc}$;
$\mathrm{d}=$ glide plane
-3 (3bar) = 3-fold roto-inversion axis

Origin 2 ©
(1/8,1/8,1/8)
$\mathrm{m}=$ mirror plane
We specify some atoms and the symmetry operations $\boldsymbol{\rightarrow}$ the rest of the atoms positions are then generated.
Choice of origin is important!

Origin 1 :
(1/8,1/8,1/8)

CIFs

Crystallographic Information files

\#\$Date: 2010-06-10 15:11:07 +0000 (Thu, 10 Jun 2010) \$
\#\$Revision: 1210 \$

data_9007531

loop_
_chemical_formula_sum
chemical_name mineral
Rutile
_space_group_IT_number 136
_symmetry_space_group_name_Hall '-P 4 n 2 n '
_symmetry_space_group_name_H-M 'P $42 / \mathrm{m} \mathrm{n} \mathrm{m}$ '
_cell_angle_alpha 90
_cell_angle_beta
_cell_angle_gamma
_cell_length_a 4.5941
_cell_length_b $\quad 4.5941$
_cell_length_c 2.9589
loop_
_symmetry_equiv_pos_as_xyz
$\mathrm{x}, \mathrm{y}, \mathrm{z}$
$-y,-x, z$
y,x,-z
$1 / 2+y, 1 / 2-x, 1 / 2-z$
1/2-y,1/2+x,1/2+z
$1 / 2+x, 1 / 2-y, 1 / 2+z$
$1 / 2-x, 1 / 2+y, 1 / 2-z$
x,y,-z
$-x,-y, z$
y, x, z
$-y,-x,-z$
$1 / 2-y, 1 / 2+x, 1 / 2-z$
$1 / 2+y, 1 / 2-x, 1 / 2+z$
1/2-x, 1/2+y,1/2+z
$1 / 2+x, 1 / 2-y, 1 / 2-z$
-x,-y,-z
loop
_atom_site_label
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_Z
Ti 0.000000 .000000 .00000
O 0.305700 .305700 .00000

