Lecture #4 - Homo- & heteronuclear diatomic molecule: Sutton Ch. 2 pp 25-31

\[
\langle n\ell m_\ell | n\ell m_\ell \rangle \\
\sum_i |i\rangle \langle i| = 1 \\
\beta = \langle 1| \hat{H} |2\rangle
\]
H_2: a homonuclear diatomic molecule
2 H atoms, 1s orbitals only

σ^* antibonding molecular orbital

σ bonding molecular orbital

1s atomic orbital

Energy
Goal: find molecular orbitals, $|\Psi\rangle$ and their energies, E

$$|\Psi\rangle = \langle 1,1s | \Psi \rangle |1,1s\rangle + \langle 2,1s | \Psi \rangle |2,1s\rangle$$

$$|\Psi\rangle = c_1 |1,1s\rangle + c_2 |2,1s\rangle$$

We know these atomic orbitals, and their energies. These are the basis kets.

Assume orthogonal (not quite true, but OK) $\langle 1,1s | 2,1s \rangle = 0$
Overlap of atomic orbitals on different atoms

A large overlap integral requires spatial overlap, but spatially overlapping orbitals can still have zero overlap if the signs are appropriately arranged. e.g. $2s$ is orthogonal to $2p$ on the same atom.
We want to find molecular orbitals, and their energies, E

$$\hat{H} |\Psi\rangle = E |\Psi\rangle$$

$$|\Psi\rangle = c_1 |1,1s\rangle + c_2 |2,1s\rangle$$

$$\hat{H} \left[c_1 |1,1s\rangle + c_2 |2,1s\rangle \right] = E \left[c_1 |1,1s\rangle + c_2 |2,1s\rangle \right]$$

On-site matrix element

$H_{11} = E_0$ (assume known)

Hopping matrix element

$H_{12} = \beta$ (assume known)

Project onto basis ket #1

$$E \left[\begin{array}{c} c_1 \langle 1,1s | \hat{H} |1,1s\rangle + c_2 \langle 1,1s | \hat{H} |2,1s\rangle \\ \end{array} \right] = E \left[\begin{array}{c} c_1 \langle 1,1s | 1,1s\rangle + c_2 \langle 1,1s | 2,1s\rangle \\ \end{array} \right]$$
On-site energy:
\[\langle 1 | \hat{H} | 1 \rangle = \langle 1 | -\frac{\hbar^2}{2m} \nabla^2 + V_1(r) + V_2(r) | 1 \rangle \]

\[E_0 = E_{1,\text{atomic}} + \langle 1 | V_2(r) | 1 \rangle \]

On-site energy is approximately the atomic energy, but small correction due to other potential. WF 1 is small where \(V_2 \) is large and vice versa (note: e-e interactions neglected).

\[\langle x | 1 \rangle | 1 \rangle, \quad 2 \rangle \langle x | 2 \rangle \]

\[\begin{array}{c}
 0 \\
 V_1 \\
 V_2 \\
 V_0 \\
\end{array} \]

\[\begin{array}{c}
 1a \\
 2a \\
 3a \\
\end{array} \]
Hopping energy:

\[\langle 1 | \hat{H} | 2 \rangle = \langle 1 | -\frac{\hbar^2}{2m} \nabla^2 + V_1(r) + V_2(r) | 2 \rangle \]

\[\beta = E_{1,atomic} \langle 1 | 2 \rangle + \langle 1 | V_2(r) | 2 \rangle \]

\[\beta = \langle 1 | V_2(r) | 2 \rangle \]

Hopping energy is integral of individual potential and both atomic wave functions. Could have additional contribution if there is n-n overlap.

\[\langle x | 1 \rangle \quad | 1 \rangle \quad \begin{array}{c} \text{peak} \\ \text{at \ } 1a \end{array} \quad 2a \quad \begin{array}{c} \text{peak} \\ \text{at \ } 2a \end{array} \quad \langle x | 2 \rangle \]

\[V_0 \quad V_1 \quad 1a \quad 2a \quad 3a \quad V_2 \]
We want to find molecular orbitals, and their energies, E

\[c_1 E_0 + c_2 \beta = E c_1 \]
\[c_1 \beta + c_2 E_0 = E c_2 \]

Project onto basis kets

\[
\begin{vmatrix}
E_0 - E & \beta \\
\beta & E_0 - E
\end{vmatrix} = 0
\]

Linear algebra \Rightarrow quadratic eqn

\[E_a = E_0 - \beta \]
\[E_b = E_0 + \beta \]

\[\beta = \langle 1s|V_2(r)|2s \rangle < 0 \]

For overlapping s orbitals, β is negative. This is because s orbitals are +ve everywhere and $V_2 < 0$ (attractive potential)
We want to find molecular orbitals, and their energies, E

\[
\begin{align*}
 c_1 E_0 + c_2 \beta &= E c_1 \\
 c_1 \beta + c_2 E_0 &= E c_2
\end{align*}
\]

Now we can find the c's for each of E_b and E_a, and hence the corresponding Ψ_b and Ψ_a.

\[
\begin{align*}
 \Psi_a &= \frac{1}{\sqrt{2}} \left(|1,1s\rangle - |2,1s\rangle \right) \\
 \Psi_b &= \frac{1}{\sqrt{2}} \left(|1,1s\rangle + |2,1s\rangle \right)
\end{align*}
\]
H$_2$ molecule

constructive combination

electron density between nuclei

destructive combination

electron density outside of nuclei

nucleus of the hydrogen atom

phase of the orbital

node

http://wps.prenhall.com
H$_2$ molecule

Bonding is a quantum mechanical phenomenon that results from the interference of quantum waves!

To view bonding as the "sharing" of electrons, we can show (Sutton p33-31) that an electron oscillates from atom #1 to atom #2 at a frequency $2\beta/h$. How does it overcome the large ionization potential? It tunnels! Again a quantum mechanical phenomenon.
\[\Psi_a = \frac{1}{\sqrt{2}} \left(|1, p\rangle + |2, p\rangle \right) \]

\[\Psi_b = \frac{1}{\sqrt{2}} \left(|1, p\rangle - |2, p\rangle \right) \]

Why is the –ve sign associated with the bonding orbital in this example?
π bonding with \(p \)-orbitals

\(\pi \) bonding molecular orbital

\(\pi^* \) antibonding molecular orbital

2\(p \) atomic orbital

Energy
MO diagram for p-orbitals
• H₂ molecule has 2 atoms and the 2 molecular orbitals are (relatively) close in energy, one higher and one lower than the energy of the atomic orbital.

• The hopping term represents tunneling of electrons across the potential barrier between atoms (see Sutton). The faster the tunneling, the stronger the interaction, and the bigger the splitting.

• The orbitals are bonding (electron density between nuclei tending to draw nuclei together), or antibonding (electron density on opposite sides of nuclei, causing nuclear repulsion).
Heteronuclear diatomic molecule

\[|B, sp\rangle \quad |A, s\rangle \]

\[\langle B | \hat{H} | B \rangle = E_B \quad \langle A | \hat{H} | A \rangle = E_A \]

On-site integrals

\[\langle A | \hat{H} | B \rangle = \langle B | \hat{H} | A \rangle = \beta \]

Off-site integral

\[\hat{H} |\Psi\rangle = E |\Psi\rangle \]

General form of MO

\[|\Psi\rangle = c_A |A\rangle + c_B |B\rangle \]

Schrödinger eigenvalue equation
Want to find these molecular orbitals and their energies, E

$$c_A E_A + c_B \beta = E c_A$$

$$c_A \beta + c_B E_B = E c_B$$

Project onto basis kets

$$\begin{vmatrix}
E_A - E & \beta \\
\beta & E_B - E
\end{vmatrix} = 0$$

Linear algebra \Rightarrow quadratic eqn

$$E_a = \varepsilon + \left(\Delta^2 + \beta^2\right)^{1/2}$$

$$E_b = \varepsilon - \left(\Delta^2 + \beta^2\right)^{1/2}$$
Want to find these molecular orbitals, and their energies, E

\[
c_A E_A + c_B \beta = E c_A
\]
\[
c_A \beta + c_B E_B = E c_B
\]

Now we can find the c's for each of E_b and E_a, and hence the corresponding Ψ_b and Ψ_a.

\[
\frac{C_{A,a}^2}{C_{B,a}^2} = \frac{1}{1 + 2(\Delta / \beta)^2 - 2(\Delta / \beta)(1 + (\Delta / \beta)^2)^{1/2}}
\]
\[
\frac{C_{A,b}^2}{C_{B,b}^2} = \frac{1}{1 + 2(\Delta / \beta)^2 + 2(\Delta / \beta)(1 + (\Delta / \beta)^2)^{1/2}}
\]
\[
\frac{c_{A,a}^2}{c_{B,a}^2} = \frac{1}{1 + 2(\Delta / \beta)^2 - 2(\Delta / \beta)(1+(\Delta / \beta)^2)^{1/2}}
\]

\[
\frac{c_{A,b}^2}{c_{B,b}^2} = \frac{1}{1 + 2(\Delta / \beta)^2 + 2(\Delta / \beta)(1+(\Delta / \beta)^2)^{1/2}}
\]
Electronegativity

<table>
<thead>
<tr>
<th></th>
<th>IA</th>
<th>IIA</th>
<th>IB</th>
<th>IIB</th>
<th>IIIA</th>
<th>IVA</th>
<th>VA</th>
<th>VIA</th>
<th>VIIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>1.0</td>
<td>Be</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>0.9</td>
<td>Mg</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0.8</td>
<td>Ca</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>1.8</td>
<td>2.1</td>
<td>2.5</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Br</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.8</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electronegativity values are relative, not absolute. As a result, there are several scales of electronegativities. The electronegativities listed here are from the scale devised by Linus Pauling.
This commonly shown picture is actually inaccurate. It shows 1s-2p hybridization. One always sees 2s-2p hybridization. 2s electron distribution is different from 1s!
HF and HCl

Overlap of the bonding sp^3 hybrid orbital of F and Cl with H in HF and HCl.
Overlap of the 1s orbital of hydrogen is better with the smaller $2sp^3$ hybrid orbital of fluorine than with the larger $3sp^3$ hybrid orbital of chlorine, resulting in a shorter, stronger bond in HF than in HCl.