
PH575 Spring 2019 
 
Lecture #26 & 27 
Phonons:   Kittel Ch. 4 & 5 



PH575 POP QUIZ 
 
Is a phonons a: 
A.  Fermion? 
B.  Boson? 
C.  Lattice vibration? 
D.  Light/matter interaction? 



PH575 POP QUIZ 
 
What does it mean for a phonons to 

be: 
A.  Longitudinal? 
B. Transverse? 
C.  Acoustic? 
D.  Optic? 



PH575 POP QUIZ 
 
The phonon dispersion relation is: 
A.  The same as the electron E(k) 
B.  Different from the electron E(k) 
C.  Undefined because there is no “k” 

for phonons 
D.  A linear E(k) 



PH575 POP QUIZ 
 
Give an example of where phonons 

are relevant to: 
A.  Optical properties of solids 
B.  Electrical properties of solids 
C.  Thermal properties of solids 
D.  (Magnetic properties of solids?) 



PH575 POP QUIZ 
 
What is an “umklapp” process? 
How do phonons determine electrical 

resistivity? 



Until now, we have considered that nuclei 
in the solid are fixed in space - a good 
assumption at T = 0, but not otherwise.  
What extra energy does this motion add 
and what are the consequences? 
The overall nuclear motion can be 
organized into collective normal modes 
called phonons.   
Phonons are partly responsible for heat 
transport. 
Phonons provide the interaction that 
yields a net attractive interaction between 
electrons to give superconductivity. 
Phonons disrupt lattice periodicity and 
cause electrical resistivity. 
And more …. 

Phonon focussing 

Superconductivity 



Phonon dispersion relation (monatomic) 
 
In 3 dimensions, there are 3 branches of the dispersion 
relation, 2 transverse and 1 longitudinal.  Different crystal 
structures have different propagation speeds along different 
directions.  
 
In a monatomic lattice, the phonon modes are called "acoustic" 
modes.  The frequency -> 0 as k -> 0 and the speed of the low 
frequency propagation is the speed of sound. 
 
 Phonon imaging: 



Java Applet that shows the different motions of a linear chain 
http://fermi.la.asu.edu/ccli/applets/phonon/phonon.html 
 
What is the difference between optic and acoustic? 
Explore large and small ka. 
Explore different mass ratios. 

Dispersion relations and some more realistic phonon modes in 
real crystals: https://henriquemiranda.github.io/phononwebsite/phonon.html 
(click on high symmetry points in dispersion relation) 
Graphene: Explore differences between acoustic and optical 
NaF: Explore differences between transverse and longitudinal 



Focus on one example: energy transport - calculate 
specific heat due to phonons.  Start with total energy. 

U T( ) = D E( )phonons
0

∞

∫ E f E,T( )phonons dE

What is this quantity?   
What do we need to know 
to find it? 

What is this quantity?   

What is 
this?   



Phonon occupation number 
 
• Each classical mode of frequency ωk is assumed to be a 

quantum particle or phonon with energy hωk/2π. 
• Phonons are BOSONS – integer or zero spin.   
• fBE : Bose-Einstein function plays the same role as the 

Fermi function for electrons.  

 
fBE ω( ) = 1

e ω−µ( )/kBT −1

• No restriction on the number in the same quantum state 
(the PEP does not apply).  

• In classical regime, E-µ>>kT, identical to Maxwell-
Boltzmann distribution and occupation <<1 

• In quantum regime, occupation can be >>1 
• Phonons are massless, like photons 
 



Phonon dispersion relation: 
 
Use Newton's law to treat 
problem classically, but 
more refined quantum 
treatment yields similar 
results. 
 
Positive ions coupled by 
springs.  Individual spring 
force is characterized by 
vibration frequency, ω0, 
stiffness κ, mass m. 

F = −κ x − x0( ) = −mω0
2 x − x0( )



mass * acceleration = force

m
d 2xp
dt 2 = −mω 0

2 xp − xp−1( )−mω 0
2 xp − xp+1( )

= −mω 0
2 2xp − xp−1 − xp+1( )

Normal modes:  xp = Ake
ikpaeiω kt

Phonon dispersion relation: 1-dimension for illustration. 
Ions' equilibrium positions are pa where integer p labels ion, 
but each ion executes (mostly small) motion from equilibrium.  
Displacement is denoted as xp.  In true 1-D, this motion would 
have to be along the spring direction (longitudinal). 

a 

Discuss normal modes. 



−mω k
2xp = −mω0

2 2xp − xp−1 − xp+1( )

xp = Ake
ikpaeiω kt

a xp+1 = Ake
ik p+1( )aeiω kt

xp−1 = Ake
ik p−1( )aeiω kt

d 2xp
dt 2

= −ω k
2xp Put this into  m

d 2xp
dt 2

= −mω0
2 2xp − xp−1 − xp+1( )

Now plug in expressions for xp, xp-1, xp+1, lots of cancellations.  

ω k
2 =ω0

2 2 − e− ika − e+ ika( ) =ω0
2 2 − 2cos ka( )( ) = 4ω0
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Phonon dispersion relation (1-D, periodic BCs) 
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Group 
velocity is 
zero at BZB 

ω/k is constant at 
small k. This 
velocity is the 
sound velocity! 



http://hyperphysics.phy-astr.gsu.edu/hbase/solids/imgsol/phonon.gif 

Phonons & phonon dispersion relation:  
Phonons are lattice vibrations (vibrations of heavy ions) 
Simplest ("normal mode") cases are depicted below  
Any motion is a superposition of the normal modes 
Boundary conditions set the quantization conditions 

kmax =
π
a
= Nπ

L

kmin =
π
L

kn =
nπ
L

λmin = 2a 
    ->| a|<- 

1-D crystal, length L 



http://edu.ioffe.ru/register/?doc=galperin/l2pdf2.tex 

Phonon dispersion relation (polyatomic) 
 
In a polyatomic lattice, the phonon modes are both "acoustic" 
and "optical".  ωk -> 0 as k -> 0 for acoustic modes as before, 
but for optical modes ωk-> constant as k -> 0.  There can be 
transverse and longitudinal modes of both types. 
 
The origin of this effect is EXACTLY the same as we 
discussed for electron dispersion when we had 2 different 
types of atom, or 2 different coupling constants. 
 



Figure 6.    
Phonon dispersion curves for the longitudinal and the 
transverse  modes in diamond as obtained with X-ray 
scattering by Burkel (1991), by Röll and Burkel (1993) and 
Schwoerer-Böhning et al (1998). The results are shown 
together with a shell-model t from the literature (Warren, 
Yarnell, Dolling and Cowley 1967).  http://www.physik1.uni-rostock.de/user/radtke/Course_I/

Chapter_IV/II_Chap4_2.html 

Acoustic modes 

Optical modes 

The phonon dispersion relation 
can be measured 
experimentally by inelastic X-
ray or neutron scattering 



Density of states: 
We again recall the treatment for electrons. 
Periodic boundary conditions: k = 0, ±2π/L, ±4π/L, …. 
 In 1-D k space, there is 1 allowed mode per (2π/L) "k-volume". 

D ω( ) = D(k) dk
dω

= L
2π

dk
dω

ω k( ) = 2ω0 sin
ka
2

⎛
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dω
dk

=ω0acos
ka
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k→0⎯ →⎯⎯ω0a

D ω( ) = L
2π

1
ω0acos ka / 2( )



Density of states: 
In 3-d k space, there is 1 allowed mode per (2π/L)3 "k-volume". 
Total number of modes S in a sphere of radius k is  
 
 
 
 
for EACH longitudinal and transverse type and for each branch 
The density of states is (for each polarization)  

E0 kx 

ky 

D ω( ) = dS
dω

= dS
dk

dk
dω

= Vk
2

2π 2
dk
dω

ω k( ) = 2ω0 sin
ka
2
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S = Vol k-space
Vol k-space per mode

=
4
3π k 3

2π
L

⎛
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3 =
Vk 3

6π 2



The Debye model assumes the linear relation holds for all k to 
a maximum kD (Debye wave vector) or maximum ωD (Debye 
frequency). Can also define TD or θD (Debye temperature).  

Peter Debye 
(1884 –1966) 
http://en.wikipedia.org/wiki/
Peter_Debye 

http://demonstrations.wolfram.com/HeatCapacityOfSolidsInTheDebyeApproximation/ 
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θDebye ≡

ωD

kB

Debye Model



The Debye model assumes the linear relation holds for all k to 
a maximum kD (Debye wave vector) or maximum ωD (Debye 
frequency).  
(Einstein model uses flat dispersion for optical branch – hwk.) 

Choose kD to get correct 
number of modes (N 
modes per branch if N 
atoms) 

N = D ω( )dω
0

ωD

∫

 
θD = ωD

kB
= hvs
2kB

6N
πV



 
ETOT = EZeroPt +
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3
Debye T3 law at low temperatures



"debye" samples the reciprocal space randomly, calculates the 3 phonon frequencies associated with each 
sampled point, and develops a density of modes histogram. The density of modes (in blue) may be 
displayed either in a linear plot (left) or a log/log plot (right). A density of modes given by the Debye 
model (in red) is shown for comparison. http://www.physics.cornell.edu/sss/debye/debye.html

Debye model is useful, but only an approximation - 
nowadays, computers can crank out numerics very easily. 



Debye model of specific heat: similar to low T limit 
before (same dispersion), but Debye freq cutoff 

C = 9NkB
T
θD

⎛
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⎞
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3

dx x4ex

ex −1( )20

xD

∫

C = dU
dT

C prop. to  T3 at low temp (<< θD),  
C constant at high temp (> θD) 
Na: 158 K,   
Si: 645 K,  
Cdia: 2230 K 
Debye temp measures sound 
speed or bond stiffness. 

The data for silver shown is from Meyers. It 
shows that the specific heat fits the Debye 
model at both low and high temperatures. 

http://hyperphysics.phy-astr.gsu.edu/hbase/solids/phonon.html 



From the density of states, the specific heat is calculated, is displayed, and can be compared 
with experimental data and with a Debye model calculation.  In the log/log plot, the wrong force 
constant was chosen for the numerical calculation (in blue). Should it be increased or decreased, 
and by what factor?  
For the Debye model (in red), the wrong lattice constant was chosen! Should it be larger or 
smaller, and by what factor? 

http://www.physics.cornell.edu/sss/debye/debye.html 



UMKLAPP and NORMAL PROCESSES: 
"Normal" phonon collisions that conserve k-momentum (crystal 
momentum) do not limit thermal conductivity (N-processes), but 
"Umklapp processes" (U-processes) limit thermal conductivity.  This 
is because the medium is discrete, and k-values outside the 1st BZB 
can be mapped back into the 1st BZB with a reciprocal lattice vector.  
Notice that two phonons with kx > 0 collide to produce a phonon with 
kx < 0 ! 

http://en.wikipedia.org/wiki/Umklapp_scattering 



THERMAL CONDUCTIVITY: 

 κ = 1
3Cvℓmfp

Low temp: C ≈ T3, v ≈ vF, mfp ≈ constant (not many 
phonons; impurity scattering dominates) => κ ≈ T3

High T: C ≈ constant, v ≈ vF; mfp ≈ 1/T (# phonons 
scattering ≈ T) => κ ≈ 1/T

 

n T( ) = 1
e!ω /kBT −1 T −>∞⎯ →⎯⎯ 1

!ω / kBT
= kBT
!ω

ρ ∼ n ∼ T

T3
1/T

http://www.ioffe.ru/SVA/NSM/Semicond/Si/Figs/151.gif



http://www.ioffe.ru/SVA/NSM/Semicond/Ge/Figs/251.gif

Temperature dependence of thermal conductivity at different doping 
level. p-Ge.  Na (cm-3): 1. 103; 2. 1015; 3. 2.3·1016; 4. 2·1018; 5. 1019.

1/T



ELECTRON-PHONON SCATTERING: 
(Ashcroft ch. 26) 
Resistivity of metals varies as T at high temperature. 
At high T >> θD, all phonon modes excited.  # of phonons in normal 
mode is  
 
 
 
 
Resistivity of metals varies as T5 at low temperature. 
(1)  Energy of phonons must be ≈ kBT (occupation near Fermi 

surface) 
(2)  Wave vector of phonon must be ≈ θDebye; + small energy ≈ kBT 
(3)  El-Ph coupling constant scales as T 
(4)  Forward scattering predominates ≈ T2 

 

n q( ) = 1
eω /kBT −1 T −>∞⎯ →⎯⎯ 1

ω / kBT
= kBT
ω

ρ  n  T



ELECTRON-PHONON SCATTERING IN METALS: 
(Hook) 
Wiedemann-Franz Law. 
 
 
 
 
 
 
 
 
But scattering can be different! 
(1)  At lowest T, impurity scattering dominates: τ 

same for both – WF OK 
(2)  Low T – more phonon mechanisms for thermal 

relaxation: WF violated 
(3)  High T – same phonon mechanisms again – 

WF OK 
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σ electricalT
= π 2
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e
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2τ
m*

T ; σ electrical =
ne2τ
m*


