
PH575 Spring 2019 
Lecture #10 
Electrons, Holes; Effective mass  
Sutton Ch. 4 pp 80 -> 92;  
Kittel Ch 8 pp 194 – 197;  
AM p. <-225-> 
 



Thermal properties of Si (300K) 

•  n-type <100> Si 
•  n = 9.5 ×1017 cm-3 
•  ρ = 0.021 Ωcm 
•  S = - 872 µV K-1 
•  κ  = 148 W/mK 
•  PF = 3 x 10-3 V2/K2Wm 
•  ZT = 0.006 

•  p-type <111> Si 
•  p = 6.25×1018 cm-3 
•  ρ = 0.014 Ωcm 
•  S = + 652 µV K-1 
•  κ = 148 W/mK 
•  PF = 3 x 10-3 V2/K2Wm 
•  ZT = 0.006 
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Dispersion relation for a free electron, where k is 
the electron momentum: 
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Problem on hwk 

These are generalizable to the periodic solid where, now, k 
is NOT the individual electron momentum, but rather the 
quantity that appears in the Bloch relation.  It is called the 
CRYSTAL MOMENTUM 



Change in energy on application of electric field: 

 δE = q

ε ⋅
vδt (


F ⋅

d )

 δE = ∇kE ⋅δ

k

Change in energy with change in k on 
general grounds: 

 
v = 1

∇kE k( )

Get an equation of motion just like F = dp/dt ! 
 hk/2π acts like momentum ….. We call it crystal momentum, 
because it's not the true electron momentum. 

 
qε ⋅ vδt = vk ⋅δ
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Crystal momentum is what is changed by the external force.  
Now define m* by: 
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http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_2/illustr/effective_mass.gif 
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In 3-d: 



1-dimensional chain (& β<0): 

E k( ) = α + 2β cos ka( )

 
v = 1

∇kE k( )

 
m* = −2

2βa2 cos ka( )

 

m* = 
2

d 2E
dk2

v(k) = −2βasin ka( ) -π π ka

2
v(k)

ka

10
mass

-π π ka

0

2
E(k)



ke kh 

VB 

CB 

E 

k 

Holes  
•  If one electron in state k is  missing from an otherwise filled 
band, all the other ≈ 1023 electrons can be described by the 
concept of a single hole.    
What is this hole's momentum, energy, velocity, mass ? 

• Momentum: 
The hole's momentum is -k (in units of h/2π); in 
other words the opposite of the momentum of 
the missing electron.  


kh = −


ke

The completely filled band has 
zero total momentum (as many 
states k as -k).  The loss of 
electron with momentum k 
changes total band momentum 
to -k.  This is the momentum of 
the equivalent hole. 



Holes - Energy 
 • The energy of the hole is 
the negative of the energy 
of the missing electron (E=0 
is top of VB). 
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• In order to excite an electron to create an 
electron-hole pair, energy is added to the system, 
e.g. optically. 

•  Of the added energy, 
Ee' is assigned to the 
electron in the CB, and 
Eh is assigned to hole 
in the VB.  



Holes 
 

•  These properties can be 
described by replacing the entire 
valence band (with many 
electrons and 1 missing one), by 
a band with a single particle of 
momentum kh=-ke and energy E 
= -Ee (where subscript e refers to 
the state of the MISSING 
electron, not the the state in the 
CB the electron has gone to (e'). 
•  This is the green band in the 
picture. 
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Holes - velocity 
 
• The (instantaneous) velocity of 
the hole is equal to the 
(instantaneous) velocity of the 
unoccupied electron state (same 
slope of  E(k). 
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• But note that the the velocity of 
the excited electron in the CB is 
not relevant here! 



Holes 
 

• Effective mass: 
The effective mass of the hole is 
opposite to the effective mass of 
the missing electron.  (Curvature 
of inverted dispersion relation is 
opposite). 
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Holes 
 
• Equation of motion: 
The equation of motion of the 
hole state is same as the 
unoccupied electron state, except 
with a positive charge!  
 
Electron: 
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Positive charge is consistent with electric current 
carried by VB.  Current is carried by the unpaired 
electron (the one whose opposite at ke

 is missing): 



Holes 
 •  Electric field in +x direction.  

F = qε
< 0 for -ve charge
> 0 for +ve charge
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Electrons in VB overall behave as 
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Holes 

•  A hole is the description of a nearly full valence band with the 
absence of an electron: 1 hole ≈ 1023-1 electrons ! 

•  If an electron in state k is missing, all other electrons have total 
momentum -k.  Thus hole has momentum -k. 

•  If electron with negative charge and negative mass in state k is  
missing, the remaining electrons can be described as a hole 
with positive charge and positive mass. 

•  The energy of the hole is the negative of the energy of the 
electron (rel to top of VB) because it takes more energy to 
remove an electron deep in the band. 

•  The velocity of a hole is equal to the velocity of the missing 
electron in the valence band.  

•  Within a particular band, we can describe carriers as electrons 
OR holes, but not both. 

•  Can use electron description for one band and hole description 
for a different band, but don't mix descriptions for one band. 



Holes - how do you make them? 

•  Excite an electron into the conduction band, and then a hole 
remains in the valence band.  In this case, we have 2 mobile 
charge carriers - both contribute to the current (and the 
contributions add) 

•  Add a dopant with one fewer valence electrons than the site 
onto which it substitutes.  This results in a very-low-mobility 
state in the gap.  It is unoccupied at low T, but an electron 
from the VB can occupy it at finite T, and this electron is 
effectively immobilized.  The remaining hole in the VB is 
mobile.  Si:B is the classic example.   

•  If you add a dopant with one more valence electron, then 
what? 



Holes - how do you measure them? 
•  Are holes “real”?  No, not like positrons, but, yes, in a 
sense.  They are a single-particle description of a multi-
electron phenomenon. 
•  Measure the Hall effect in a classic semiconductor - clear 
evidence.   
•  Seebeck effect also. 

Holes & electrons - how 
do you represent them? 
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Substitutional Defects: 
Si:As and Si:B 

http://www.eere.energy.gov/solar/images/illust_boron_atom.gif http://www.astro.virginia.edu/class/oconnell/astr511/im/Si-As-doping-JFA.jpg 
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