

PH575 Spring 2019

Review Lecture #1a

Complex numbers

Complex numbers

$$i = \sqrt{-1}$$

$$z = a + ib$$

$$z = |z|e^{i\phi}$$

$$Re(z) = a
Im(z) = b$$
 real numbers

$$|z| = \sqrt{a^2 + b^2}$$

$$\tan \phi = \frac{b}{a}$$

Euler's relation

$$\exp(i\phi) = \cos\phi + i\sin\phi$$

Consistency argument

$$z = a + ib z = |z|e^{i\phi}$$

If these represent the same thing, then the assumed Euler relationship says:

$$a + ib = |z|\cos\phi + i|z|\sin\phi$$

$$|z| = \sqrt{a^2 + b^2}$$

$$a = |z| \cos \phi$$

$$b = |z| \sin \phi$$

$$\tan \phi = \frac{b}{a}$$

Adding complex numbers is easy in rectangular form

$$z = a + ib$$

$$w = c + id$$

$$z + w = [a + c] + i[b + d]$$

$$Real$$

Multiplication and division of complex numbers is easy in *polar* form

$$z = |z|e^{i\phi}$$

$$w = |w|e^{i\theta}$$

$$zw = |z||w|e^{i[\phi+\theta]}$$

$$\theta+\phi$$

$$\phi$$

$$Real$$

PH575 Spring 2019

Review Lecture #1b

Atomic orbitals, quantum numbers

Atomic states (Hydrogen Atom; wave function form)

$$\hat{\boldsymbol{H}}\boldsymbol{R}_{n,\ell}(r)\boldsymbol{Y}_{\ell,m_{\ell}}(\boldsymbol{\theta},\boldsymbol{\phi}) = \boldsymbol{E}_{n,\ell,m_{\ell},m_{s}}\boldsymbol{R}_{n,\ell}(r)\boldsymbol{Y}_{\ell,m_{\ell}}(\boldsymbol{\theta},\boldsymbol{\phi})$$

$$R_{n,\ell}(r)Y_{\ell,m_{\ell}}(\theta,\phi)\chi_{m_{s}}$$

 $R_{n,\ell}(r)Y_{\ell,m_{\ell}}(\theta,\phi)\chi_{m_{\ell}}$ Eigenfunctions; wave functions

$$\left|R_{n,\ell}(r)Y_{\ell,m_{\ell}}(\theta,\phi)\chi_{m_{s}}\right|^{2} => \text{electron distribution}$$

Visualize electron clouds

https://winter.group.shef.ac.uk/orbitron/

Explore
Compare s (or p, d) orbitals for different n
Compare s,p,d etc within given n
Explore tabs – electron density, equations
Energy
Hybrids (linear combinations)

The Hydrogen Atom

$$\left| arphi_{n,\ell,m_{\ell},m_{s}}
ight
angle \left\langle ec{r} \middle| arphi_{n,\ell,m_{\ell},m_{s}}
ight
angle = R_{n,\ell}(r) Y_{\ell,m_{\ell}}(heta,\phi) \chi_{m_{s}}$$

Quantum numbers	
n	Principal quantum number. Sets avg. distance from nucleus. Sets energy scale. <i>n</i> =1,2,3,4
1	Orbital angular momentum is $I = O(s)$, $I(p)$
m_{l}	Magnetic quantum number gives orb. am projection on z - axis. m_l = 0, ±1, ±2 ± l
S	Spin quantum number is always 1/2 for an electron.
m_s	Spin magnetic quantum number gives spin am projection on z-axis. $m_s = \pm 1/2$

Atomic states - radial (Hydrogen Atom; wave function form)

$$\langle \vec{r} | \varphi_{n,\ell,m_{\ell},m_{s}} \rangle = R_{n,\ell}(r) Y_{\ell,m_{\ell}}(\theta,\phi) \chi_{m_{s}}$$

Radial wavefunction - size of electron cloud

Atomic states – angular; complex (Hydrogen Atom; wave function form)

$$|Y_0^0(\theta,\phi)|^2$$

$$\langle \vec{r} | \varphi_{n,\ell,m_{\ell},m_{s}} \rangle = R_{n,\ell}(r) Y_{\ell,m_{\ell}}(\theta,\phi) \chi_{m_{s}}$$

Spherical harmonics - angular dependence - bonding

Page 239 of Sutton lists these functions

$$|Y^1(\theta,\phi)|^2$$

$$Y_{1,\pm 1}(\theta,\phi) = \mp \frac{3}{\sqrt{8\pi}} \sin\theta \, e^{\pm i\phi}$$

 $|Y_2^2(\theta,\phi)|^2$

$$\left|Y_{\ell}^{m_{\ell}}\left(oldsymbol{ heta},oldsymbol{\phi}
ight)
ight|^{2}$$

$$|Y_3^0(\theta, \phi)|^2$$

April 1, 2019

 $|Y_3^1(\theta,\phi)|^2$

 $|Y_3^2(\theta,\phi)|^2$

$$|Y_3^3(\theta,\phi)|^2$$

$$\langle n\ell m_{\ell} | n\ell m_{\ell} \rangle$$

$$\sum_{i} |i\rangle\langle i| = 1$$

$$\beta = \langle 1|\hat{H}|2\rangle$$

PH575 Spring 2019

Lecture #1 Review of atomic wave functions
Review of bra-ket notation and
quantum mechanics concepts
Sutton Ch. 2 pp 21-25
(McIntyre Ch 1-3)

H atom atomic orbitals form an orthonormal set

Two vectors are orthogonal if

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 + \dots = 0$$

A vector is normalized if

$$\vec{a} \cdot \vec{a} = a_1 b_1 + a_2 a_2 + a_3 a_3 + \dots = 1$$

H atom atomic orbitals form an orthonormal set

A **function** is a giant, dense, vector. e.g.

$$f = (...4,1,0,1,4,9...)$$

Define "dot product" or "projection" of 2 functions:

$$"f(x) \cdot g(x)" = \sum_{x_i} f^*(x_i)g(x_i)$$

$$\to \int_{all\ space} f^*(x)g(x)dx$$

Two **functions** are orthogonal if

$$\int_{all\ space} f^*(x)g(x)dx = 0$$

A function is normalized if April 1, 2019

$$\int_{all \ space} f^*(x) f(x) dx = 1$$

The red function is sin(kx). The blue function is sin(2kx). The black function is sin(kx) * sin(2kx).

- "All of space" is two cycles of the red function.
- The integral of the black function over all space is
- Zero! The projection of sin(kx) onto sin(2kx) is zero

H atom atomic orbitals form an orthonormal set

H atomic **functions**:

$$\iiint_{allspace} R_{n',\ell'}^*(r) Y_{\ell',m_{\ell'}}^*(\theta,\phi) R_{n,\ell}(r) Y_{\ell,m_{\ell}}(\theta,\phi) dV = \delta_{nn'} \delta_{\ell\ell'} \delta_{m_{\ell}m_{\ell'}}$$

Angular and radial parts are also separately orthonormal:

$$\int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} Y_{\ell',m_{\ell'}}^{*}(\theta,\phi) Y_{\ell,m_{\ell}}(\theta,\phi) \sin\theta d\theta d\phi = \delta_{\ell\ell'} \delta_{m_{\ell}m_{\ell'}}$$

Now use "bra-ket" notation for the same thing

H atom atomic orbitals form an orthonormal set

Now use "bra-ket" notation for the same thing

$$egin{aligned} \left\langle \ell', m_{\ell}' \middle| \ell, m_{\ell} \right
angle &\equiv \int_{all} Y_{\ell', m_{\ell'}}^* (oldsymbol{ heta}, \phi) Y_{\ell, m_{\ell}} (oldsymbol{ heta}, \phi) d\Omega \ &= \delta_{\ell \ell'} \delta_{m_{\ell} m_{\ell'}} \end{aligned}$$

Ket:
$$\left|\ell,m_{\ell}\right\rangle \doteq Y_{\ell,m_{\ell}}\left(\theta,\phi\right)$$

Bra = complex conjugate of ket: $\langle \ell, m_{\ell} | \doteq Y_{\ell, m_{\ell}}^* (\theta, \phi) \rangle$

$$\langle | \rangle$$
 = integrate over all space

The Hydrogen Atom s, p, d ... node 1s atomic orbital 2s atomic orbital 2s atomic orbital node not shown node shown X $2p_x$ orbital $2p_y$ orbital $2p_z$ orbital

The Hydrogen Atom s, p, d ...

$$\sqrt{\frac{3}{4\pi}} \frac{y}{r} \qquad \langle \vec{r} | p_x \rangle = \sqrt{\frac{3}{4\pi}} R_{n,1}(r) \frac{x}{r}$$

s, p, d etc. orbitals are linear combinations of spherical harmonics that are real & often more convenient. (Sutton 1.21, 1.22)

$$d_{xy} = \sqrt{\frac{15}{4\pi}} \frac{xy}{r^2}$$

$$d_{x^2 - y^2} = \sqrt{\frac{15}{4\pi}} \frac{x^2 - y^2}{2r^2}$$

p orbitals are linear combinations of Y_{1m}

$$p_{y} = \sqrt{\frac{3}{4\pi}} \frac{y}{r}$$

 p_y is a linear combination of the $Y_{1,1}$ and $Y_{1,-1}$ spherical harmonics.

$$\frac{i}{\sqrt{2}} \left[Y_{1,-1} + Y_{1,1} \right] = \frac{i}{\sqrt{2}} \sqrt{\frac{3}{8\pi}} \sin\theta \left[e^{-i\phi} - e^{i\phi} \right]$$

$$\frac{-2ii}{\sqrt{2}} \sqrt{\frac{3}{8\pi}} \sin\theta \sin\phi = \sqrt{\frac{3}{4\pi}} \sin\theta \sin\phi$$

$$= \sqrt{\frac{3}{4\pi}} \frac{y}{r} = p_y$$
(Substitute of Authority To Continuous of Authority To Continuo

Deconstruct p orbitals into Y_{1m} components by projecting

$$\begin{array}{ccc} \text{Projection} & \text{Projection} & \text{Projection} \\ \text{of } |p_y\rangle_{\text{on}}|Y_{1,-1}\rangle & \text{of } |p_y\rangle_{\text{on}}|Y_{1,+1}\rangle & \text{of } |p_y\rangle_{\text{on}}|Y_{1,0}\rangle \end{array}$$

Project p_y onto Y_{1-1} :

$$\langle Y_{1,-1} | p_y \rangle = ?$$

Deconstruct p orbitals into Y_{1m} components by projecting

$$\begin{split} \left\langle Y_{1,-1} \middle| p_{y} \right\rangle &= \left\langle \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\rangle = \int\limits_{volume} Y_{1,-1}^{*} p_{y} d\Omega \\ \int\limits_{\theta=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \left(\frac{3}{8\pi}\right)^{1/2} \sin\theta e^{i\phi} \left(\frac{3}{4\pi}\right)^{1/2} \frac{y}{r} \sin\theta d\theta d\phi \\ \int\limits_{\theta=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \left(\frac{3}{8\pi}\right)^{1/2} \sin\theta e^{i\phi} \left(\frac{3}{4\pi}\right)^{1/2} \frac{r \sin\theta \sin\phi}{r} \sin\theta d\theta d\phi \\ \frac{1}{\sqrt{2}} \left(\frac{3}{4\pi}\right) \int\limits_{\theta=0}^{\pi} \sin^{3}\theta d\theta \int\limits_{\phi=0}^{2\pi} \sin\phi e^{i\phi} d\phi = \frac{i}{\sqrt{2}} \end{split}$$

Expect this!

Language: The ket $|p_y\rangle$ is a *superposition* of the kets $|Y_{1,m}\rangle$, and the numbers $\langle Y_{1,m_\ell}|p_y\rangle$ are the projections of $|p_y\rangle$ onto the basis kets.

$$\left| p_{y} \right\rangle = \left\langle Y_{1,-1} \left| p_{y} \right\rangle \left| Y_{1,-1} \right\rangle + \left\langle Y_{1,+1} \left| p_{y} \right\rangle \left| Y_{1,+1} \right\rangle + \left\langle Y_{1,0} \left| p_{y} \right\rangle \left| Y_{1,0} \right\rangle \right\rangle$$

$$\langle Y_{1,-1} | p_y \rangle = \frac{i}{\sqrt{2}}; \langle Y_{1,+1} | p_y \rangle = \frac{i}{\sqrt{2}}; \langle Y_{1,0} | p_y \rangle = 0$$

The same thing is stated more generally in Sutton 2.2

$$|\Psi\rangle = \sum_{all \mid \phi\rangle} |\phi\rangle\langle\phi|\Psi\rangle$$

Backup slides on projections of functions

This is a vector, \vec{P} represented in one coordinate system

$$\vec{P} = \vec{P} \cdot \hat{x} \, \hat{x} + \vec{P} \cdot \hat{y} \, \hat{y}$$

Projection Projection of \vec{P} on \hat{x} of \vec{P} on \hat{y}

$$\vec{P} = \frac{1}{\sqrt{2}} \,\hat{x} + \frac{1}{\sqrt{2}} \,\hat{y}$$

(Sutton Eq. 2.1)

This is the SAME vector, Prepresented in another coordinate system

$$\vec{P} = 1 \,\hat{x}' + 0 \,\hat{y}'$$

A ket, $|\varphi\rangle$, is similar to a vector: we represent it by "projecting" it onto "basis kets" (similar to the axes of the coordinate system)

$$\begin{aligned} \left| p_{y} \right\rangle &= \left\langle Y_{1,-1} \middle| p_{y} \right\rangle \middle| Y_{1,-1} \right\rangle + \left\langle Y_{1,+1} \middle| p_{y} \right\rangle \middle| Y_{1,+1} \right\rangle + \left\langle Y_{1,0} \middle| p_{y} \right\rangle \middle| Y_{1,0} \right\rangle \\ &\text{Projection} \quad \text{Projection} \quad \text{Projection} \quad \text{Of} \quad \left| p_{y} \right\rangle \text{on} \middle| Y_{1,-1} \right\rangle \quad \text{of} \quad \left| p_{y} \right\rangle \text{on} \left| Y_{1,0} \right\rangle \end{aligned}$$

A bra, $\langle \varphi |$, is the complex conjugate of a ket. A "bra-ket" is simply a projection of one "state" on another. Also called an *overlap integral*.

$$\langle \psi | \phi \rangle = \int_{volume} \psi(\vec{r}) * \phi(\vec{r}) dV$$

April 1, 2019

We understand what it means to "project" one vector onto another ...

$$\vec{P} = \begin{pmatrix} P_x , P_y \end{pmatrix} \qquad \vec{Q} = \begin{pmatrix} Q_x , Q_y \end{pmatrix}$$
$$\vec{P} \cdot \vec{Q} = P_x Q_x + P_y Q_y$$

Multiply components and add the products.

So what does it mean to "project" one function onto another?

Think of a function as a vector with *many* components - each component is the value of the function at a particular point in space:

- At every point in space, multiply the values of the two functions together.
- Add these products. (But now "adding" means "integrating")
- •The resulting number is the projection of one function onto the other.

$$\langle \phi_i | \phi_j \rangle = \int \phi_i^*(\vec{r}) \phi_j(\vec{r}) dV$$

April 1, 2019 Here are some examples ...

The blue function is sin(kx). The red function is also sin(kx) – it's under the blue one. The black function is $sin^2(kx)$ - the product of the two.

- "All of space" is one cycle of the red or blue function.
- The integral of the black function over all space is

April 1, 2019 onto itself is 1! • Not zero! The projection of sin(kx) onto itself is 1!

The red function is sin(kx). The blue function is sin(2kx). The black function is sin(kx) * sin(2kx).

- "All of space" is two cycles of the red function.
- The integral of the black function over all space is
- Zero! The projection of sin(kx) onto sin(2kx) is zero

If the projection of one function onto another is zero, we say the functions are orthogonal.

The projection of a function onto itself is always a positive definite number, which we can arrange to be unity by appropriate choice of normalizing constant.

If a set of functions f_i form an orthonormal set, then we can say that

$$\langle \phi_i | \phi_j \rangle = \int_{space} \phi_i^*(\vec{r}) \phi_j(\vec{r}) dV = \delta_{ij}$$

where the Kronecker delta
$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

An example with H-atom wave functions

Last time we saw that
$$|p_y\rangle = \frac{i}{\sqrt{2}} [|Y_{1,-1}\rangle + |Y_{1,1}\rangle]$$

$$\langle Y_{1,-1} | p_y \rangle = \frac{i}{\sqrt{2}} \qquad \langle Y_{1,+1} | p_y \rangle = \frac{i}{\sqrt{2}} \qquad \langle Y_{1,0} | p_y \rangle = 0$$

April 1, 2019

EXAMPLE: Projection of p_y orbital onto spherical harmonic with I = 1, $m_I = -1$

$$\frac{1}{\sqrt{2}} \left(\frac{3}{4\pi}\right) \int_{\theta=0}^{\pi} \sin^3\theta d\theta \int_{\phi=0}^{2\pi} \sin\phi e^{i\phi} d\phi = \frac{i}{\sqrt{2}}$$

April 1, 2019

Language: The ket $|p_y\rangle$ is a *superposition* of the kets $|Y_{1,m}\rangle$, and the numbers $\langle Y_{1,m_\ell}|p_y\rangle$ are the projections of $|p_y\rangle$ onto the basis kets.

$$\left| p_{y} \right\rangle = \left\langle Y_{1,-1} \left| p_{y} \right\rangle \left| Y_{1,-1} \right\rangle + \left\langle Y_{1,+1} \left| p_{y} \right\rangle \left| Y_{1,+1} \right\rangle + \left\langle Y_{1,0} \left| p_{y} \right\rangle \left| Y_{1,0} \right\rangle \right\rangle$$

The same thing is stated more generally in Sutton 2.2

$$|\Psi\rangle = \sum_{all \mid \phi\rangle} |\phi\rangle\langle\phi|\Psi\rangle$$

The axes of the coordinate system are *orthonormal*.

$$\hat{x} \cdot \hat{y} = \hat{y} \cdot \hat{z} = \hat{z} \cdot \hat{x} = 0$$

$$\hat{x} \cdot \hat{x} = \hat{y} \cdot \hat{y} = \hat{z} \cdot \hat{z} = 1$$

The basis kets are also *orthonormal*.

$$\langle Y_{\ell,m} | Y_{\ell',m'} \rangle = \begin{cases} 1 & \text{if } \ell = \ell' \text{ and } m_{\ell} = m_{\ell'} \\ 0 & \text{if } \ell \neq \ell' \text{ or } m_{\ell} \neq m_{\ell'} \end{cases}$$

Projections are also called overlap integrals.

- Any basis ket of an orthonormal set has no overlap integral with any other, and unit overlap with itself.
- How do we know which kets are suitable basis kets? Any set of functions that are the eigenfunctions of a particular operator form an appropriate set!
- Example: the $Y_{l,m}$ functions are orthonormal and form suitable basis kets. They are the eigenfunctions of the L² operator (part of the H atom Hamiltonian)
- Let's prove that the $p_x p_y$ and p_z functions (kets) are an orthonormal set, knowing that the $Y_{l,m}$ functions are an orthonormal set.

The following are true. You'll show something similar about d orbitals and $Y_{2,m}$ for homework

$$\begin{vmatrix} p_y \rangle = \frac{i}{\sqrt{2}} \left[|Y_{1,-1}\rangle + |Y_{1,1}\rangle \right]$$
$$|p_x\rangle = \frac{1}{\sqrt{2}} \left[|Y_{1,-1}\rangle - |Y_{1,1}\rangle \right]$$
$$|p_z\rangle = |Y_{1,0}\rangle$$

Now, what is the projection of the p_y ket onto the p_z ? $\langle p_z | p_y \rangle$

$$\langle p_z | p_y \rangle = \frac{i}{\sqrt{2}} \langle p_z | [|Y_{1,-1}\rangle + |Y_{1,1}\rangle]$$

$$\langle p_z | p_y \rangle = \frac{i}{\sqrt{2}} \langle Y_{1,0} | [|Y_{1,-1}\rangle + |Y_{1,1}\rangle]$$

$$\langle p_z | p_y \rangle = \frac{i}{\sqrt{2}} \left[\underbrace{\langle Y_{1,0} | Y_{1,-1}\rangle}_{0} + \underbrace{\langle Y_{1,0} | Y_{1,+1}\rangle}_{0} \right] = 0$$

April 1, 2019

$$\begin{vmatrix} p_z \rangle = |Y_{1,0} \rangle \qquad \qquad \begin{vmatrix} p_y \rangle = \frac{i}{\sqrt{2}} \left[|Y_{1,-1} \rangle + |Y_{1,1} \rangle \right] \\ |p_x \rangle = \frac{1}{\sqrt{2}} \left[|Y_{1,-1} \rangle - |Y_{1,1} \rangle \right]$$

You show
$$\langle p_x | p_y \rangle = 0$$

END OF Backup slides on projections of functions

$$Y_{00} = \frac{1}{\sqrt{4\pi}}$$

Spherical Harmonic functions $Y_{00} = \frac{1}{\sqrt{4\pi}}$ (be careful – sometimes normalization is different in different sources.) different in different sources.)

$$Y_{11} = -\sqrt{\frac{3}{8\pi}} e^{i\phi} \sin\theta$$

$$Y_{10} = \sqrt{\frac{3}{4\pi}} \cos \theta$$

$$Y_{22} = \sqrt{\frac{15}{32\pi}} e^{2i\phi} \sin^2 \theta$$

$$Y_{21} = -\sqrt{\frac{15}{8\pi}} e^{i\phi} \sin\theta \cos\theta$$

$$Y_{20} = \sqrt{\frac{5}{16\pi}} (3\cos^2\theta - 1)$$

TABLE 4.1 Angular Factors of Conventional Atomic Orbitals

Symbol	Polar	Cartesian	Normalizing factor		
s	1	1	$\frac{1}{2}\left(\frac{1}{\pi}\right)^{1/2}$		
p_x	$\sin \theta \cos \phi$	x/r	$\frac{1}{2}\left(\frac{3}{\pi}\right)^{1/2}$		
Рy	$\sin \theta \sin \phi$	y/r	$\frac{1}{2}\left(\frac{3}{\pi}\right)^{1/2}$		
p _z	$\cos \theta$	z/r	$\frac{1}{2}\left(\frac{3}{\pi}\right)^{1/2}$		
d_{z^2}	$(3\cos^2\theta-1)$	$(3z^2 - r^2)/r^2$ $(2z^2 - x^2 - y^2)/r^2$	$\frac{1}{4} \left(\frac{5}{\pi}\right)^{1/2}$		
d_{xz}	$\sin\theta\cos\theta\cos\phi$	xz/r^2	$\frac{1}{2} \left(\frac{15}{\pi} \right)^{1/2}$		
d_{yz}	$\sin\theta\cos\theta\sin\phi$	yz/r^2	$\frac{1}{2} \left(\frac{15}{\pi} \right)^{1/2}$		
			. / 119		

$$\langle n\ell m_\ell \big| n\ell m_\ell \rangle$$

$$\sum_{i} |i\rangle\langle i| = 1$$

$$\beta = \langle 1|\hat{H}|2\rangle$$

$$\beta = \langle 1|\hat{H}|2\rangle$$

PH575 Spring 2019

Lecture #1c - Operators Sutton Ch. 2 pp 21-25 (McIntyre Ch 1-3)

are mathematical instructions that represent physical quantities like energy or momentum. They perform various operations on wave functions or kets, like differentiation, multiplication *etc*. The result of such an operation may be:

•The same function or ket, multiplied by a constant. In this case we say the function is an EIGENFUNCTION of that operator and the constant is the EIGENVALUE associated with that eigenfunction.

$$\hat{H}\varphi(r,\theta,\phi) = E\varphi(r,\theta,\phi) \qquad \hat{H} \left| \varphi_{n,\ell,m_{\ell},m_{s}} \right\rangle = E_{n,\ell,m_{\ell},m_{s}} \left| \varphi_{n,\ell,m_{\ell},m_{s}} \right\rangle$$

$$-\frac{\hbar^{2}}{2m} \frac{d^{2}}{dx^{2}} \sin(kx) = \frac{\hbar^{2}k^{2}}{2m} \sin(kx)$$

are mathematical instructions that represent physical quantities like energy or momentum. They perform various operations on wave functions or kets, like differentiation, multiplication *etc*. The result of such an operation may be:

•A different function or ket (or sum of kets) multiplied by a constant. In this case we say the function is NOT an eigenfunction of that operator.

$$\hat{p}\varphi(r) \neq p\varphi(r)$$

$$\frac{\hbar}{i}\frac{d}{dx}\sin(kx) = \frac{\hbar k}{i}\cos(kx)$$

can also be represented as matrices. In this case, the operator is just a table of projections!

$$H = \begin{pmatrix} \langle 1|H|1 \rangle & \langle 1|H|2 \rangle & \langle 1|H|3 \rangle \\ \langle 2|H|1 \rangle & \langle 2|H|2 \rangle & \langle 2|H|3 \rangle \\ \langle 3|H|1 \rangle & \langle 3|H|2 \rangle & \langle 3|H|3 \rangle \end{pmatrix}$$

Now IF
$$\hat{H}|1\rangle = E_1|1\rangle$$

$$\hat{H}|2\rangle = E_2|2\rangle$$

$$\hat{H}|3\rangle = E_1|3\rangle$$

Then what is the H matrix?

as matrices. What are the eigenvectors?

$$H = \begin{pmatrix} E_1 & 0 & 0 \\ 0 & E_2 & 0 \\ 0 & 0 & E_3 \end{pmatrix}$$

can also be represented as matrices. A square matrix acts on a column vector or ket. The result of such an operation may be:

 The same column vector or ket, multiplied by a constant. In this case we say the function is an EIGENVECTOR of that operator and the constant is the EIGENVALUE associated with that eigenvector.

$$\begin{pmatrix} E_1 & 0 & 0 \\ 0 & E_2 & 0 \\ 0 & 0 & E_3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = E_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} E_1 & 0 & 0 \\ 0 & E_2 & 0 \\ 0 & 0 & E_3 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = E_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

If an OPERATOR acts on a ket, to produce a new ket, we can project the new ket onto some bra. Choose the kets

$$|p_{x}\rangle = \frac{1}{\sqrt{2}} \left[|Y_{1,-1}\rangle - |Y_{1,1}\rangle \right]$$

$$|p_{y}\rangle = \frac{i}{\sqrt{2}} \left[|Y_{1,-1}\rangle + |Y_{1,1}\rangle \right]$$

$$|p_{z}\rangle = |Y_{1,0}\rangle$$

$$\hat{L}^{2} | p_{x} \rangle = 2\hbar^{2} | p_{x} \rangle$$

$$\hat{L}^{2} | p_{y} \rangle = 2\hbar^{2} | p_{y} \rangle$$

$$\hat{L}^{2} | p_{z} \rangle = 2\hbar^{2} | p_{z} \rangle$$

These are (degenerate) eigenfunctions of the "angular-momentum-squared" operator. The states have definite angular momentum.

Now project these new kets onto the three bras. You get 9 numbers Organize them in a matrix

Represent the L^2 OPERATOR in the basis of $|p_x\rangle$, $|p_y\rangle$, $|p_z\rangle$,

$$\langle p_{x} | \hat{L}^{2} | p_{z} \rangle = \langle p_{x} | 2\hbar^{2} | p_{z} \rangle = \langle p_{x} | p_{z} \rangle = 0$$

$$|p_{x}\rangle | p_{y}\rangle | p_{z}\rangle \qquad \langle p_{y} | \hat{L}^{2} | p_{z} \rangle = 0$$

$$\hat{L}^{2} = \langle p_{x} | \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \langle p_{z} | \hat{L}^{2} | p_{z} \rangle = 2\hbar^{2}$$

$$\langle p_{z} | \hat{L}^{2} | p_{z} \rangle = 2\hbar^{2}$$

Sutton 2.13
$$\hat{L}^2 = \begin{pmatrix} L_{11}^2 & L_{12}^2 & L_{13}^2 \\ L_{21}^2 & L_{22}^2 & L_{23}^2 \\ L_{31}^2 & L_{32}^2 & L_{33}^2 \end{pmatrix}$$

Represent the L_z OPERATOR in the basis of $|p_x\rangle$, $|p_y\rangle$, $|p_z\rangle$,

$$\langle p_{x} | \hat{L}_{z} | p_{z} \rangle = \langle p_{x} | 0\hbar | p_{z} \rangle = 0$$

$$\hat{L}_{z} | p_{x} \rangle = \frac{\hbar}{\sqrt{2}} \left[-|Y_{1,-1}\rangle - |Y_{1,1}\rangle \right] = i\hbar | p_{y} \rangle$$

$$\hat{L}_{z} | p_{y} \rangle = \frac{i\hbar}{\sqrt{2}} \left[-|Y_{1,-1}\rangle + |Y_{1,1}\rangle \right] = -i\hbar | p_{x} \rangle$$

$$\langle 0 \qquad i \qquad 0 \rangle$$

$$\hat{L}_z = \hbar \begin{bmatrix} 0 & i & 0 \\ -i & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Much more complicated: *e-p; e-e* interactions change Schrödinger equation.

We don't need to worry too much about all of this.

$$\hat{\boldsymbol{H}}\varphi(\vec{r}_1,\vec{r}_2) = \boldsymbol{E}\varphi(\vec{r}_1,\vec{r}_2)$$

6 coordinates, not 3 (plus spin)

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla_1^2 - \frac{\hbar^2}{2m} \nabla_2^2 - \frac{2e^2}{r_1} - \frac{2e^2}{r_2} + \frac{e^2}{|\vec{r}_1 - \vec{r}_2|}$$

- Much more complicated: e-p; e-e interactions change Schrödinger equation
- Radial wave functions change, but angular character is very similar to H atom wave functions
- Still makes sense to talk about s, p, d, f orbitals
- Energy levels no longer degenerate w.r.t. n
- Leads to consistent picture of elements periodic table with *ns*, *np*, *etc* orbitals filled with 2 electrons each (spin) in accordance with Pauli exclusion

principle and Hund's rules Sutton Table 1.2 for electronic configurati

Multi-electron atoms - some *n*-degeneracy is lifted

TABLE 1.2	The Ground-State Electronic Configurations of the Smallest Atoms									
Atom	Name of element	Atomic number	1 s	2 s	$2p_x$	$2p_y$	$2p_z$	3 s		
Н	Hydrogen	1	\uparrow							
Не	Helium	2	$\uparrow\downarrow$							
Li	Lithium	3	$\uparrow\downarrow$	\uparrow						
Be	Beryllium	4	$\uparrow \downarrow$	$\uparrow\downarrow$						
В	Boron	5	$\uparrow \downarrow$	$\uparrow\downarrow$	\uparrow					
C	Carbon	6	$\uparrow \downarrow$	$\uparrow\downarrow$	\uparrow	\uparrow				
N	Nitrogen	7	$\uparrow \downarrow$	$\uparrow\downarrow$	\uparrow	\uparrow	\uparrow			
О	Oxygen	8	$\uparrow \downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	\uparrow	\uparrow			
F	Fluorine	9	$\uparrow \downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	\uparrow			
Ne	Neon	10	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$			
Na	Sodium	11	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	\uparrow		