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QUANTUM MECHANICS, BRAS AND KETS 
The following summarizes the main relations and definitions from quantum mechanics 
relevant to PH575.  
State of a physical system: 
The state of a physical system is represented by a “state vector” or “ket” and it is 
denoted by a symbol such as ψ .   

Like an ordinary vector, the ket can be expressed as a linear combination of “basis kets” 
iφ  with coefficients ci: 

     i
i

ic φψ ∑= .     

The basis ket iφ is often abbreviated simply by i . 

The corresponding “bra” is  ic
i

i∑= *ψ   where ci* is the complex conjugate of ci. 

The ket is an abstract quantity that represents a quantum state.  Often, we wish to be 
more specific an explicit representation that gives us information about (for example) 
spatial (position) distribution of electron density.  To do this, we “project” the ket onto the 
bras that are the eigenstates of position.  The resulting function is called the wave 
function (in the position representation).  An explicit example of a set of basis wave 
functions is the set of hydrogen ground state orbitals used to develop the states of the 
diatomic molecule, linear chain, etc.: 
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where a0 is the Bohr radius and ri is the radial distance of the electron from the ith 
nucleus. 
(We will rarely use the explicit forms of these basis functions.  Rather we make use of 
their mathematical properties such as orthogonality and normalization – see below.) 
Projections – scalar products: 
The coefficients in the linear combination are the projections of ψ  on the basis states 
i , i.e. ψici =  where the object ψi  is a scalar product analogous to the “dot” 

product of ordinary vectors.  The scalar product of two state vectors (or the projection of 
one on the other) is a sum of products of their respective projections on the basis (again 
just like ordinary vectors: zzyyxx babababa ++=⋅

 ).  Thus, 

     ξψξψ ii
i
∑= . 

If we were using explicit functions of spatial coordinates to represent the states ψ  and 
ξ , we would evaluate the projection with an integral 

    ∫=
spaceall

dVrr )()(* 
ξψξψ . 
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The quantity ψ ξ is often called the "overlap integral".  It represents "how much" of one 
function is "contained" in another.  The overlap integral of orthogonal functions (see 
below) is either zero or one. 
The orthonormal property usually assumed for the basis states can be expressed in 
terms of their scalar products: 

    jiijjiij ≠=== if0;if1 . 

This same statement is often written in terms of the Kronecker delta: 

j i = δ ij  

State vectors ψ are usually normalized: 1=ψψ  .  This leads to the result that 

     1
2* ==∑∑

i
ii

i
i ccc  

The quantity 2
ic is the probability that in a measurement, an electron will be found in the 

particular basis state i .  The normalization condition simply expresses the fact that the 
electron must be found in some basis state, thus the sum of all probabilities equals 1. 
 
Operators 
In quantum mechanics, observable physical quantities are represented by operators. 
There are two cases to consider: 

Case I: An operator L “operates” on a state vector ψ  and yields the same state 
vector simply multiplied by a constant: 

   ψψ LCL = . 

In this case, ψ is an “eigenvector” of the operator L and the constant CL is an 
“eigenvalue.”  The most important example of this is given by the Schrödinger equation 

     ψψ EH =  

where the Hamiltonian (energy operator) is, in Cartesian spatial coordinates, 
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A state vector that satisfies the Schrödinger equation is an energy eigenfunction or 
eigenvector with eigenvalue equal to the energy of the state E.  An important part of the 
determination of the electronic structure of solids is to determine the energy eigenvalues 
for particular assemblies of atoms. 

Case II: The state vector ψ is NOT an eigenvector of the operator L.  In this case 
the operation of L on ψ  produces a different state vector or linear combination of state 
vectors, denoted here by ξ : 
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     L ψ = constant × ξ . 

The matrix elements of an operator L are expressed in terms of a particular basis set 
i . They are scalar products of a basis bra j and the ket produced by the action of L 

on i , i.e. jiLiLj = . 

When i = j, the “diagonal” matrix element  iiLiLi =  is the “expectation value” of the 
physical quantity represented by L in the particular basis state i . If, in addition, i  is an 
eigenvector of L, then Lii is just the eigenvalue CL. For example, if L is the energy 
operator H and our basis states are the atomic ground states, then Hii is the energy of 
an electron in the ground state of atom i.  
 

Specific examples of the above with reference to the hydrogen atom 
atomic orbitals. 
State of a physical system: 
Suppose the state of an electron in a H-atom is an unequal superposition of the 1s and 
2pz states. We denote this “state vector” or “ket” by ψ .   

ψ can be expressed as a linear combination of “basis kets” iφ , which is this case are 
the eigenstates of the H-atom Hamiltonian.  In this case the basis kets iφ are 1s  and 
2pz . The coefficients ci in this case are not equal, and for illustration are set in a 1:2 

ratio. Proper normalization requires that the squares of the coefficients sum to 1: 

ψ = ci
i
∑ ϕi =

1
5
1s + 2

5
2pz . 

The basis kets iφ could also be labeled by the quantum numbers, n, l, ml, of the state: 
100  and 210 . 

The corresponding “bra” is  ic
i

i∑= *ψ   where ci* is the complex conjugate of ci. 

For an explicit representation that gives information about spatial (position) distribution 
of electron density, we “project” the ket onto the bras that are the eigenstates of 
position.  The resulting functions are called the wave functions (in the position 
representation).  Here, the basis wave functions are the hydrogen orbitals: 

ϕ1s (r,θ,φ) =
2
a0
3
e−r/a0 ⋅ 1
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where a0 is the Bohr radius and r is the radial distance of the electron from the nucleus. 
 
 
 



PH575           SPRING 2019 

Page 4 of 6 

Projections – scalar products: 
Project the state ψ  onto the 1s basis state: The notation is: 1s ψ  
Project the state ψ  onto the 2pz basis state: The notation is: 2pz ψ  
Projections are really integrals.  The notation  means integrate over all space, in 

this case in 3 spatial dimensions: ......dx
z=−∞

∞

∫ dy
y=−v

∞

∫ dz
x=−∞

∞

∫  or ..... r2 sinθ dr
r=0

∞

∫ dθ
θ=0

π

∫ dφ
φ=0

2π

∫ .  

The notation ψ  means insert the function ψ r,θ,φ( )  into the integral and the notation 

1s means insert the complex conjugate function φ
1s

* r,θ,φ( )  into the integral. Thus: 

1s ψ = φ1s
* r,θ ,φ( )ψ r,θ ,φ( )r2 sinθ dr

r=0

∞

∫ dθ
θ=0

π

∫ dφ
φ=0

2π

∫ .   

Because we can look up the position representation of basis wave functions, we can 
plug in and evaluate.  But because the basis functions of the Hamiltonian are orthogonal 
to one another, the integration is not necessary (but you should check that it actually 
does evaluate to 1 or zero)! 

1s ψ = 1s 1
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The scalar product of two state vectors (or the projection of one on the other) is a sum 
of products of their respective projections on the basis (again just like ordinary vectors: 

zzyyxx babababa ++=⋅
 ).  Suppose another state of the H-atom is represented by 

ξ =
1
2
1s + 1

2
3px .  Then the projection of ξ  onto ψ  is 

ψ ξ =
1
5
1s + 2

5
2pz
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     ξψξψ ii
i
∑= . 

Or we could evaluate the projection with the integral 
    ∫=

spaceall

dVrr )()(* 
ξψξψ . 

The quantity ψ ξ is often called the "overlap integral".  It represents "how much" of one 
function is "contained" in another.  The overlap integral of orthogonal functions (see 
below) is either zero or one. 
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Operators 

Case I: The Hamiltonian operator H =
−2

2m
∇2 −

e2

4πε0r
  “operates” on a state vector 

and yields the same state vector simply multiplied by a constant.  Examples are the 
states 1s , 2pz , 3px .  
 

H 1s = −e2

2 4πε0( )a0
1s ; H 2pz = −e2

2 2( )2 4πε0( )a0
2pz ; H 3px = −e2

2 3( )2 4πε0( )a0
3px  

In this case 1s , 2pz , 3px  are eigenstates of the operator H, which is why we chose 
them as the basis states.  The eigenvalues are the energies of the respective orbitals. 

Case II: The Hamiltonian operator H =
−2

2m
∇2 −

e2

4πε0r
  “operates” on a state vector 

and yields a different state vector (multiplied by some constant).  Examples are ψ  and 

ξ , which are NOT eigenvalues of H.  For example, H ψ =
−e2

52a0
γ  where the ket γ  

is found below: 

 

H ψ = H 1
5
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5
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The matrix elements of the Hamiltonian H are expressed in terms of a particular basis 
set i . They are scalar products of a basis bra j and the ket produced by the action of 
H on i , i.e. j H i = H ji .  If the basis vectors are eigenfunctions, the matrix is diagonal.  
For example: 

 
H1s,1s = 1s H 1s = E1s 1s 1s = E1s
H1s,2s = 1s H 2s = E2s 1s 2s = E1s .0 = 0

 

 
The matrix is (in part … it is actually infinite in dimension): 
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H 1s 2s 2px 2py 2pz 3s

1s

2s

2px
2py
2pz
3s

E1 0 0 0 0 0
0 E2 0 0 0 0
0 0 E2 0 0 0
0 0 0 E2 0 0
0 0 0 0 E2 0
0 0 0 0 0 E3
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The “diagonal” matrix element  iiLiLi =  is called the “expectation value” of the 
physical quantity represented by L in the particular basis state i .  

Using the same basis states to express the Lz operator, we find the matrix is NOT 
diagonal because the px and py states are not eigenfunctions of the Lz operator. The 
matrix is (in part … it is actually infinite in dimension): 

Lz 1s 2s 2px 2py 2pz 3s

1s
2s

2px
2py
2pz
3s

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 ≠ 0 0 0
0 0 ≠ 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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There are many places to look up the H atom wave functions and find more examples of 
bras, kets and operators.  A good resource is the PH425 text book, "Quantum 
Mechanics", David H. McIntyre (Pearson, 2nd printing).  Your text book for PH575, 
Sutton, has some in Eqs 1.21 and 1.22. 


