The Harmonic Oscillator Matrix notation

Read McIntyre 9.5 PH451/551

Reading Quiz

1. Write the Hamiltonian *H* of the HO in matrix notation:

2. Write a general quantum state of the HO in matrix notation:

3. Write the form of the ladder operators in matrix notation.

Recap

- 1. Eigenstates: kets & wf $\varphi_n(x) \doteq |n\rangle$
- Expectation values, projections, probabilities, normalization, time dependence

$$|\psi\rangle = ?[|0\rangle + i|1\rangle + e^{i\delta}|3\rangle - |4\rangle]$$

and are easy in HO,
because of ladder operators! (No spatial integrals necessary!)

Classical limit

- Probability density: $P(x) = \psi^*(x)\psi(x)$
- n-> large value:
 How is this classical?
 Other systems?

Matrix representation

$$H_{ij} = \langle i | H | j \rangle$$

$$H \doteq \hbar \omega \begin{pmatrix} \frac{1}{2} & 0 & 0 & \cdots \\ 0 & \frac{3}{2} & 0 & \cdots \\ 0 & 0 & \frac{5}{2} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Matrix representation

$$Q_{ij} = \langle i | Q | j \rangle$$

A, a+, x, p?

$$a \doteq \left(\begin{array}{cccc} 0 & \sqrt{1} & 0 & \cdots \\ 0 & 0 & \sqrt{2} & \cdots \\ 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{array} \right) \qquad a^{\dagger} \doteq \left(\begin{array}{cccc} 0 & 0 & 0 & \cdots \\ \sqrt{1} & 0 & 0 & \cdots \\ 0 & \sqrt{2} & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{array} \right)$$