

Charles Darwin (1887-1962)

Fine Structure

Willis Lamb (1913-2008)

Read McIntyre 12.1-12.2

PH451/551

Reading Quiz

Numbers for

- 1. Ground state energy of H in eV: $E_{1s}^{(0)}$?
- 2. Mass of the electron in eV: m_e ?
- 3. Fine structure constant: α ?

Reading Quiz

Numbers for

- 1. Ground state energy of H in eV: $E_{1s}^{(0)}$? -13.6 eV
- 2. Mass of the electron in eV: m_e ? 0.511 MeV
- 3. Fine structure constant: α ?

Recap: C-G coefficients

1. See summary sheet for am relations:

$ F,m_F\rangle$	$ m_s m_I\rangle$
$ F,m_F = F\rangle = $	$++\rangle$
$ F,m_F = -F\rangle =$	$ \rangle$

$S=\frac{1}{2}$		F	1	1	1	0
	$I = \frac{1}{2}$	M_F	1	0	-1	0
ms	mı					
$\frac{1}{2}$	$\frac{1}{2}$		1	0	0	0
$\frac{1}{2}$	$-\frac{1}{2}$		0	$\frac{1}{\sqrt{2}}$	0	$\frac{1}{\sqrt{2}}$
$-\frac{1}{2}$	$\frac{1}{2}$		0	$\frac{1}{\sqrt{2}}$	0	$-\frac{1}{\sqrt{2}}$
$-\frac{1}{2}$	$-\frac{1}{2}$		0	0	1	0

$$\begin{split} J_{\pm} | j, m_{j} \rangle &= \hbar \Big[j(j+1) - m_{j}(m_{j} \pm 1) \Big]^{1/2} | j, m_{j} \pm 1 \rangle \\ J_{+} &= (J_{x} + iJ_{y}) \\ J_{+} = (J_{x} - iJ_{y}) \\ J_{-} &= (J_{x} - iJ_{y}) \\ [J_{+}, J_{-}] &= 2\hbar J_{z} \end{split} \qquad \begin{array}{c} J_{-} &= J_{x} \\ J_{-}$$

Fine Structure

forget about proton spin now-that's hyperfine!

1. Scale:

Term	Scale
Bohr energy	$\alpha^2 mc^2$
Fine structure	$\alpha^4 mc^2$
Lamb shift	$\alpha^5 mc^2$
Hyperfine structure	$(m_e/m_p)\alpha^4 mc^2$

- 2. Fine structure:
 - relativistic speed of electron
 - spin-orbit coupling
 - (Lamb shift; s-states only)

Relativistic correction DOWNWARD

- 1. (Almost) Straightforward application of perturbation theory (PT)
- 2. Why can we use "non-degenerate" PT for this part?

3. Results (do for HW):

$$E = mc^{2}\sqrt{1 + \left(\frac{p}{mc}\right)^{2}} \Rightarrow H'_{rel} = -\frac{p^{4}}{8m^{4}c^{2}} \qquad \qquad \left\langle\frac{1}{r}\right\rangle_{n\ell} = \int_{0}^{\infty} \frac{1}{r} R_{n\ell}^{2}(r)r^{2} dr = \frac{1}{n^{2}a_{0}} \\ \left\langle\frac{1}{r^{2}}\right\rangle_{n\ell} = \int_{0}^{\infty} \frac{1}{r^{2}} R_{n\ell}^{2}(r)r^{2} dr = \frac{1}{(\ell + \frac{1}{2})n^{3}a_{0}^{2}}$$

$$E_{rel}^{(1)} = -\frac{1}{2}\alpha^4 mc^2 \left[\frac{1}{n^3\left(\ell + \frac{1}{2}\right)} - \frac{3}{4n^4}\right]$$

Spin-orbit correction:

Simple application of angular momentum addition

1. Electron ORBITAL magnetic moment and SPIN magnetic moment interact!

$$\mathbf{B} = \frac{e}{4\pi\varepsilon_0 mc^2 r^3} \mathbf{L}$$
$$B = \frac{e}{4\pi\varepsilon_0 mc^2 r^2} \underbrace{\frac{l}{L}}_{m\omega r^2}$$
$$B = \frac{\mu_0}{\frac{e}{4\pi\varepsilon_0}} \frac{e}{4\pi\varepsilon_0} \frac{e}{4\pi\varepsilon_0}$$
$$B = \mu_0 \frac{e}{4\pi\varepsilon_0} \frac{1}{4\pi\varepsilon_0}$$
(B-S law)

Spin-orbit correction:

Simple application of angular momentum addition

1. Electron ORBITAL magnetic moment and SPIN magnetic moment interact.

$$H'_{SO} = -\left(-\frac{e}{m}\mathbf{S}\right) \cdot \frac{e}{4\pi\varepsilon_0 mc^2 r^3} \mathbf{L}$$
$$= \frac{e^2}{4\pi\varepsilon_0 m^2 c^2 r^3} \mathbf{L} \cdot \mathbf{S} \qquad H'_{SO} = \frac{e^2}{4\pi\varepsilon_0 m^2 c^2 r^3} \frac{1}{2} \left(\mathbf{J}^2 - \mathbf{L}^2 - \mathbf{S}^2\right)$$
$$\mathbf{J} = \mathbf{L} + \mathbf{S}$$

2. Total am $J^2 = L^2 + S^2 + 2L \cdot S$

$$\mathbf{L} \bullet \mathbf{S} = \frac{1}{2} \left(\mathbf{J}^2 - \mathbf{L}^2 - \mathbf{S}^2 \right)$$

3. Coupled, uncoupled states?

Spin-orbit correction:

Simple application of angular momentum addition

1. Coupled states give diagonal basis for H'_{SO}

$$J^{2} | j, m_{j} \ell s \rangle = ?$$
$$L^{2} | j, m_{j} \ell s \rangle = ?$$
$$S^{2} | j, m_{j} \ell s \rangle = ?$$

2. How do generate coupled states from uncoupled states that we already know? CG coefficients!

Spin-orbit correction: Ground state *n*=1; no correction *L*=0!

2. n=1 coupled states: $|Jm_J \ell s\rangle_c : |\frac{1}{2}, \frac{1}{2}, \emptyset, \frac{1}{2}\rangle_c : |\frac{1}{2}, -\frac{1}{2}, \emptyset, \frac{1}{2}\rangle_c$ $|Jm_J \ell s\rangle : {}^{2S+1}L_J = {}^2S_{1/2}$

Both stretched states, so

$$coupled = \sum uncoupled$$
$$\left|\frac{1}{2}, \frac{1}{2}, 0, \frac{1}{2}\right\rangle_{c} = \left|0, 0, \frac{1}{2}, \frac{1}{2}\right\rangle_{u}$$
$$\left|\frac{1}{2}, -\frac{1}{2}, 0, \frac{1}{2}\right\rangle_{c} = \left|0, 0, \frac{1}{2}, -\frac{1}{2}\right\rangle_{u}$$

Spin-orbit correction: general

1. E_{so} ? Diagonalize the S-O perturbationHamiltonian in the degenerate subspace

$$H'_{SO} = \frac{e^2}{4\pi\varepsilon_0 m^2 c^2 r^3} \frac{1}{2} (\mathbf{J}^2 - \mathbf{L}^2 - \mathbf{S}^2)$$

$$E_{SO} = {}_{c} \left\langle jm_{j} \ell s \middle| H'_{SO} \middle| jm_{j} \ell s \right\rangle_{c}$$
$$= \frac{e^{2}}{4\pi\varepsilon_{0}m^{2}c^{2}} {}_{c} \left\langle jm_{j} \ell s \middle| \frac{1}{r^{3}} \frac{1}{2} \left(\mathbf{J}^{2} - \mathbf{L}^{2} - \mathbf{S}^{2} \right) \middle| jm_{j} \ell s \right\rangle_{c}$$

$$E_{SO}^{(1)} = \frac{e^2}{4\pi\varepsilon_0 m^2 c^2} \underbrace{\left\langle \frac{1}{r^3} \right\rangle}_{\frac{1}{a_0^3 n^3 \ell(\ell+\frac{1}{2})(\ell+1)}} \frac{\frac{1}{2} (j(j+1) - \ell(\ell+1) - s(s+1)) \hbar^2}{\frac{1}{a_0^3 n^3 \ell(\ell+\frac{1}{2})(\ell+1)}}$$

Spin-orbit correction: n=11. E_{so} (n = 1): I = 0 so SOC is $L \cdot S = 0!$ e^2

$$H'_{SO} = \frac{e}{4\pi\varepsilon_0 m^2 c^2 r^3} \frac{1}{2} \left(\mathbf{J}^2 - \mathbf{L}^2 - \mathbf{S}^2 \right)$$
$$E_{SO} = \frac{e^2}{4\pi\varepsilon_0 m^2 c^2} \quad \left\langle \frac{1}{r^3} \right\rangle \quad \frac{1}{2} \left(\left(\frac{1}{2} \cdot \frac{3}{2} \right)^2 - \left(0 \cdot 0 \right)^2 - \left(\frac{1}{2} \cdot \frac{3}{2} \right)^2 \right)$$

 $a_0^3 n^3 \ell \left(\ell + \frac{1}{2} \right) \left(\ell + 1 \right)$

Notice 0/0? The *l* = 0 problem is discussed in the book – it is the so-called Darwin term. Upshot is that it is taken care of when we write states in terms of *J*, not *l* and *s*.

Spin-orbit correction: (*n*=2, *l*=0)

1. *n*=2, *l*=0 uncoupled states

$$\left| \ell m_{\ell} s m_{s} \right\rangle_{u} : \left| 0, 0, \frac{1}{2}, \frac{1}{2} \right\rangle_{u} : \left| 0, 0, \frac{1}{2}, -\frac{1}{2} \right\rangle_{u}$$
$$\left| \ell m_{\ell} s m_{s} \right\rangle_{u} \doteq Y_{00} \left(\theta, \phi \right) \left(\begin{array}{c} 1 \\ 0 \end{array} \right) : Y_{00} \left(\theta, \phi \right) \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$$

2. Coupled states are the same

3.
$$E_{so} = 0$$
 as before for $n=1$, $l=0$

Spin-orbit correction: (n=2, l=1)

1. n=2, I=1 (2p) uncoupled states

 $|\ell m_{\ell} s m_{s} \rangle_{u} :$ $|1,1,\frac{1}{2},\frac{1}{2} \rangle_{u} : |1,1,\frac{1}{2},-\frac{1}{2} \rangle_{u} : |1,0,\frac{1}{2},\frac{1}{2} \rangle_{u} : |1,0,\frac{1}{2},-\frac{1}{2} \rangle_{u} : |1,-1,\frac{1}{2},\frac{1}{2} \rangle_{u} : |1,-1,\frac{1}{2},-\frac{1}{2} \rangle_{u} : |1,-1,\frac{1}{2} \rangle_{u} : |1,-$

Spin-orbit correction: (n=2, l=1)1. n=2, J=3/2 and $J=\frac{1}{2}$ states) coupled states:

 $\left|Jm_{J}\ell s\right\rangle_{c}:\left|\frac{1}{2},\pm\frac{1}{2},1,\frac{1}{2}\right\rangle_{c};\quad {}^{2}P_{1/2}\quad \left({}^{2S+1}L_{J}\right)\right.$

- $\left| Jm_{J} \ell s \right\rangle_{c} : \left| \frac{3}{2}, \pm \frac{3}{2}, 1, \frac{1}{2} \right\rangle_{c} ; \left| \frac{3}{2}, \pm \frac{1}{2}, 1, \frac{1}{2} \right\rangle_{c} \right|^{2} P_{3/2} \left(2S + 1L_{J} \right)$
- 2. TERM SYMBOL (just more notation ...)

$$^{2S+1}L_J$$

Spin-orbit correction (states): (n=2, l=1)3. Use C-G coefficients (HW) to write coupled= \sum uncoupled (a) Stretched ${}^{2}P_{3/2}$ state

$$j = \frac{3}{2}, m_j \frac{3}{2}, \ell = 1, s = \frac{1}{2} \rangle_c = \left| \ell = 1, m_\ell = 1, s = \frac{1}{2}, m_s = \frac{1}{2} \right\rangle_u$$

(b) Rest of ${}^{2}P_{3/2}$ states $\left|\frac{3}{2},\frac{1}{2},1,\frac{1}{2}\right\rangle_{c} = ?\left|\ell=1,m_{\ell}=1,s=\frac{1}{2},m_{s}=\frac{1}{2}\right\rangle_{u}+?\left|1,1,\frac{1}{2},\frac{-1}{2}\right\rangle_{u}+?\left|1,0,\frac{1}{2},\frac{1}{2}\right\rangle_{u}$ $+?\left|1,0,\frac{1}{2},\frac{-1}{2}\right\rangle_{u}+?\left|1,-1,\frac{1}{2},\frac{1}{2}\right\rangle_{u}+?\left|1,-1,\frac{1}{2},\frac{-1}{2}\right\rangle_{u}$ $\left|\frac{3}{2},\frac{-1}{2},1,\frac{1}{2}\right\rangle_{c} = ?\left|1,1,\frac{1}{2},\frac{1}{2}\right\rangle_{u}+?\left|1,1,\frac{1}{2},\frac{-1}{2}\right\rangle_{u}+?\left|1,0,\frac{1}{2},\frac{1}{2}\right\rangle_{u}$ $+?\left|1,0,\frac{1}{2},\frac{-1}{2}\right\rangle_{u}+?\left|1,-1,\frac{1}{2},\frac{1}{2}\right\rangle_{u}+?\left|1,-1,\frac{1}{2},\frac{-1}{2}\right\rangle_{u}$ $\left|\frac{3}{2},\frac{-3}{2},1,\frac{1}{2}\right\rangle_{c} = ?\left|1,1,\frac{1}{2},\frac{1}{2}\right\rangle_{u}+?\left|1,1,\frac{1}{2},\frac{-1}{2}\right\rangle_{u}+?\left|1,0,\frac{1}{2},\frac{1}{2}\right\rangle_{u}$ $+?\left|1,0,\frac{1}{2},\frac{-1}{2}\right\rangle_{u}+?\left|1,-1,\frac{1}{2},\frac{1}{2}\right\rangle_{u}+?\left|1,-1,\frac{1}{2},\frac{-1}{2}\right\rangle_{u}$ (c) ${}^{2}P_{1/2}$ states?

Spin-orbit correction (energy): (*n*=2, *l*=1)

1. E_{SO} (n=2): in the L=1 subspace L•S≠0

$$H'_{SO} = \frac{e^2}{4\pi\varepsilon_0 m^2 c^2 r^3} \frac{1}{2} \left(\mathbf{J}^2 - \mathbf{L}^2 - \mathbf{S}^2 \right)$$

$$E_{SO}^{(1)} = \frac{e^2}{4\pi\varepsilon_0 m^2 c^2} \underbrace{\left\langle \frac{1}{r^3} \right\rangle}_{\frac{1}{a_0^3 n^3 \ell \left(\ell + \frac{1}{2}\right)\left(\ell + 1\right) \neq 0}} \frac{\frac{1}{2} \left(j(j+1) - \ell\left(\ell + 1\right) - \frac{3}{4}\right)}{\frac{1}{2} \left(j(j+1) - \ell\left(\ell + 1\right) - \frac{3}{4}\right)} \hbar^2$$

$$E_{SO}^{(1)} = \frac{1}{4} \alpha^4 mc^2 \frac{j(j+1) - \ell(\ell+1) - \frac{3}{4}}{n^3 \ell(\ell+\frac{1}{2})(\ell+1)}$$

S-O and rel correction (UP or DOWN?)

Fine structure correction

1. Put E_{SO} and E_{rel} together to get:

