Perturbation theory

Read Mclintyre 10.3-10.4
PH451/551



Recap — matrix representation of

operators

Operators can be represented symbolically
(x, p, H, a)

Operators can be represented as functions and
derviatives

(x, (h/i)d/dx, ....

Operators can be represented as matrices
(basis usually that of the eigenfunctions of H)



Matrix representation of operators
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Reading Quiz

In the expression H = H, +AH'
1. What does H,represent?
2. What does H'represent?

3. What does Arepresent?



Reading Quiz
In the expression H = H, +AH'

1. What does H,represent?

The “original Hamiltonian” of some system whose
solution is known.

2. What does H'represent?
The “perturbation Hamiltonian” —a small term relative

to H, .
3. What does A represent?

It is a bookkeeping device that keeps track of the order
of the small quantities.



Main results (energy)

. The Ot order energy of the nth eigenstate (or
“unperturked energy”) — assumed known

E =E><E'+E”
. The first order correction to the energy of the nth
eigenstate.
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Main results (state)

1. The 0" order nth eigenstate (or “unperturbed
state”) —assumed known

‘n> = ‘ n(0)> +‘n(1)>
2. The first order correction to the nth eigenstate.

‘n> :‘n(0)>+ z <m(0)‘H"n(O)>
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Example HO

1. Add E field to 1-D HO Hamiltonian
2. H'=? Now calculate first order correction to energy

E,gl) _ <n<0>‘ H"n(0)>



Example - HO

1. Add E field to 1-D HO Hamiltonian
2. Now calculate first order correction to state

oy 1)

o~ (E(O) _ E(O))

)



Set up — and power series approach
1. Full eignvalue equation

H|n)=E |n)

2. Hamiltonian = original plus change

(H,+H')|n)=E,|n)

n

3. Assume series approach is valid
— r(0) (D) (2)
E=EY+EV+E®+ ...

‘I/l> =‘n(o)>+‘n(l)>+ n(2)>...




Plugin ....
H|n)=E,|n)

(HO + H')(‘ n(0)>+‘n(1)>+‘n(2)>...)

= (E® + BV + E2.)(|n®)+]n) +n®).)



Plugin ....
H,|n')+H'|n")+ H,|n")
+H'[n")+ H,|n™)..

(0)(..(0) (D ..0) (2)[..(0)

FEO|n®Y) + EO[n®) 4 EOn®)...



Derivation — 1st order energy
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1. First order equation




“Hermitian operator can act
backwards”

0)\ _ (0)]..(0)
Ho|n")=E"|n)
2. Then always true that
<n(0)‘ H(;r _ <n(0)‘E,§O)*

3. And for Hermitian operator

<n(0)‘HO _ <n(0)‘EfZO>



Digression (1)

operator algebra - Hermitian
. Hermitian conjugate is defined as the complex

conjugate of the transpose in matrix language.
T _ % o o .
H', = H ; (Hermitian conyj)

(i 1] j) =il Hi) =il Hi) = (Hil )
(ilH" = (Hi

. This is what is meant by “acting backwards” — act
on the bra with the Hermitian conjugate

(i|H=(H'i




Digression (2)

operator algebra - Hermitian
. Operator is “Hermitian” if it is equal to its

Hermitian conjugate. That means if H is Hermitian

(i|H = (Hi

. Hermitian operators are nice — the same operator
can “act backwards and forwards”!



Derivation — 1st order state

1. First order equation: #n

(Hy=E")}n") = (E" = H)|n”)

/ “”‘(H —E(O))‘ <1>> < (O)‘(E(” )‘ <0>>
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Derivation — 1st order state

‘n(”> _ Ecnp p<0>>

p#=n

This says: | can write the “correction” to the nth state as a
superposition of unperturbed states. Finding the correction

is equivalent to finding the ¢, values (I know the
unperturbed states).



Derivation — 1st order state

1. First order equation
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Derivation — 1st order state

1. First order equation
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2,8, (E)~E")=-H",
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Derivation — 1st order state

1. First order correction is superposition of unpert.

states:
M\ _ (0)
)= | m?)
m#=n
2. Coeffs: '
M\ _ H (0)
)= 0) <0> m

Energy difference in denominator: “close states mix in
more” (unless matrix element is zero!)
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More examples

Perturb the HO to a slightly different frequency at
x>0! (What weird spring is that?!)

dentify H'
~irst order energy

First order state
. Second order energy



Things to note

. When there is an off-diagonal term in the
perturbation Hamiltonian, there are first order
corrections to the wave function.

Nearby (in energy) states "mix in" to a larger degree
than far-away ones

Degeneracy presents problems in this formulation —
denominator blows up (need new strategy)

. "Small" means that off-diagonal matrix element is
small relative to energy separations

First order state is still normalized (see text)

. One can, in principle, solve the eigenvalue equation
numerically (diagonalize huge matrix or solve tricky
diff. equation) to get an "exact" solution. BUT .....



