Perturbation theory

Read McIntyre 10.3-10.4 PH451/551

Recap – matrix representation of operators

Operators can be represented symbolically (x, p, H, a)

Operators can be represented as functions and derviatives

(x, (h/i)d/dx,

Operators can be represented as matrices (basis usually that of the eigenfunctions of H)

Matrix representation of operators

$$\hat{Q} = \begin{pmatrix} Q_{00} & Q_{01} & Q_{03} & \cdots \\ Q_{10} & Q_{11} & Q_{12} & \cdots \\ Q_{20} & Q_{21} & Q_{22} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} 0 \\ \langle 1 | \\ \langle 2 | \\ \langle 3 | \end{pmatrix} \begin{pmatrix} Q_{00} & Q_{01} & Q_{02} & \cdots \\ Q_{10} & Q_{11} & Q_{12} & \cdots \\ Q_{20} & Q_{21} & Q_{22} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$Q_{mn} = \langle m | \hat{Q} | n \rangle$$

$$= \int_{-\infty}^{\infty} \varphi_m(x) \hat{Q} \varphi_n(x) dx$$

Reading Quiz

In the expression $H = H_0 + \lambda H'$

1. What does H_0 represent?

2. What does *H*' represent?

3. What does λ represent?

Reading Quiz

In the expression $H = H_0 + \lambda H'$

- 1. What does H_0 represent? The "original Hamiltonian" of some system whose solution is known.
- 2. What does H' represent? The "perturbation Hamiltonian" – a small term relative to H_0 .
- 3. What does λ represent? It is a bookkeeping device that keeps track of the order of the small quantities.

Main results (energy)

1. The 0th order energy of the *n*th eigenstate (or "unperturbed energy") – assumed known

$$E_n = E_n^{(0)} + E_n^{(1)} + E_n^{(2)}$$

2. The first order correction to the energy of the *n*th eigenstate.

$$E_n^{(1)} = \left\langle n^{(0)} \middle| H' \middle| n^{(0)} \right\rangle$$
3. 2nd:
$$E_n^{(2)} = \sum_{m \neq n} \frac{\left| \left\langle m^{(0)} \middle| H' \middle| n^{(0)} \right\rangle \right|^2}{\left(E_n^{(0)} - E_m^{(0)} \right)}$$

Main results (state)

1. The 0th order *n*th eigenstate (or "unperturbed state") – assumed known

$$|n\rangle = |n^{(0)}\rangle + |n^{(1)}\rangle$$

2. The first order correction to the *n*th eigenstate.

$$|n\rangle = |n^{(0)}\rangle + \sum_{m \neq n} \frac{\langle m^{(0)} | H' | n^{(0)} \rangle}{\langle E_n^{(0)} - E_m^{(0)} \rangle} |m^{(0)}\rangle$$

Example HO

- 1. Add E field to 1-D HO Hamiltonian
- 2. H'=? Now calculate first order correction to energy

$$E_n^{(1)} = \left\langle n^{(0)} \middle| H' \middle| n^{(0)} \right\rangle$$

Example - HO

- 1. Add E field to 1-D HO Hamiltonian
- 2. Now calculate first order correction to state

$$|n^{(1)}\rangle = \sum_{m \neq n} \frac{\langle m^{(0)} | H' | n^{(0)} \rangle}{\langle E_n^{(0)} - E_m^{(0)} \rangle} | m^{(0)} \rangle$$

Set up – and power series approach

1. Full eignvalue equation

$$H|n\rangle = E_n|n\rangle$$

2. Hamiltonian = original plus change

$$(H_0 + H')|n\rangle = E_n|n\rangle$$

3. Assume series approach is valid

$$E_{n} = E_{n}^{(0)} + E_{n}^{(1)} + E_{n}^{(2)} + \dots$$
$$|n\rangle = |n^{(0)}\rangle + |n^{(1)}\rangle + |n^{(2)}\rangle \dots$$

Plug in

$$H|n\rangle = E_n|n\rangle$$

$$(H_0 + H')(|n^{(0)}\rangle + |n^{(1)}\rangle + |n^{(2)}\rangle...)$$

$$= (E_n^{(0)} + E_n^{(1)} + E_n^{(2)}..)(|n^{(0)}\rangle + |n^{(1)}\rangle + |n^{(2)}\rangle...)$$

Plug in

$$H_0 | n^{(0)} \rangle + H' | n^{(0)} \rangle + H_0 | n^{(1)} \rangle$$

 $+ H' | n^{(1)} \rangle + H_0 | n^{(2)} \rangle ...$

_

$$E_{n}^{(0)} | n^{(0)} \rangle + E_{n}^{(1)} | n^{(0)} \rangle + E_{n}^{(2)} | n^{(0)} \rangle + E_{n}^{(0)} | n^{(1)} \rangle + E_{n}^{(1)} | n^{(1)} \rangle + E_{n}^{(0)} | n^{(2)} \rangle ...$$

Derivation – 1st order energy

1. First order equation

$$\left(H_{0} - E_{n}^{(0)}\right) | n^{(1)} \rangle = \left(E_{n}^{(1)} - H'\right) | n^{(0)} \rangle$$

$$\left(n^{(0)} | \left(H_{0} - E_{n}^{(0)}\right) | n^{(1)} \right) = \left\langle n^{(0)} | \left(E_{n}^{(1)} - H'\right) | n^{(0)} \right\rangle$$

$$\left\langle n^{(0)} | \left(E_{n}^{(0)} - E_{n}^{(0)}\right) | n^{(1)} \right\rangle = E_{n}^{(1)} - \left\langle n^{(0)} | H' | n^{(0)} \right\rangle$$

$$E_{n}^{(1)} = \left\langle n^{(0)} | H' | n^{(0)} \right\rangle$$

$$E_{n}^{(1)} = H'_{nn}$$

"Hermitian operator can act backwards"

1. If

$$H_0 | n^{(0)} \rangle = E_n^{(0)} | n^{(0)} \rangle$$

2. Then always true that

$$\left\langle n^{(0)} \middle| H_0^{\dagger} = \left\langle n^{(0)} \middle| E_n^{(0)*} \right\rangle$$

3. And for Hermitian operator

$$\left\langle n^{(0)} \middle| H_0 = \left\langle n^{(0)} \middle| E_n^{(0)} \right\rangle$$

Digression (1)

operator algebra - Hermitian

1. Hermitian conjugate is defined as the complex conjugate of the transpose in matrix language.

$$H^{\dagger}_{ij} \equiv H_{ji}^{*}(Hermitian\ conj)$$

$$\langle i | H^{\dagger} | j \rangle \equiv \langle j | H | i \rangle^* = \langle j | Hi \rangle^* = \langle Hi | j \rangle$$

$$\langle i | H^{\dagger} \equiv \langle Hi |$$

2. This is what is meant by "acting backwards" – act on the bra with the Hermitian conjugate

$$\langle i | H \equiv \langle H^{\dagger} i |$$

Digression (2)

operator algebra - Hermitian

3. Operator is "Hermitian" if it is equal to its Hermitian conjugate. That means if *H* is Hermitian

$$\langle i | H = \langle Hi |$$

4. Hermitian operators are nice – the same operator can "act backwards and forwards"!

1. First order equation: *≠n*

$$\begin{split} \left(H_{0}-E_{n}^{(0)}\right) & \left|n^{(1)}\right> = \left(E_{n}^{(1)}-H^{\,\prime}\right) & \left|n^{(0)}\right> \\ \left\langle m^{(0)} \middle| \left(H_{0}-E_{n}^{(0)}\right) \middle| n^{(1)}\right> & = \left\langle m^{(0)} \middle| \left(E_{n}^{(1)}-H^{\,\prime}\right) \middle| n^{(0)}\right> \\ & \left\langle m^{(0)} \middle| \left(E_{m}^{(0)}-E_{n}^{(0)}\right) \middle| n^{(1)}\right> & = -\left\langle m^{(0)} \middle| H^{\,\prime} \middle| n^{(0)}\right> \\ & \text{assume} & \left|n^{(1)}\right> & = \sum_{p\neq n} c_{np} \middle| p^{(0)}\right> \end{split}$$

$$\left| n^{(1)} \right\rangle = \sum_{p \neq n} c_{np} \left| p^{(0)} \right\rangle$$

This says: I can write the "correction" to the nth state as a superposition of unperturbed states. Finding the correction is equivalent to finding the c_{np} values (I know the unperturbed states).

1. First order equation

$$\left< m^{(0)} \middle| \left(E_m^{(0)} - E_n^{(0)} \right) \middle| n^{(1)} \right> = - \left< m^{(0)} \middle| H^! \middle| n^{(0)} \right>$$
 assume
$$\left| n^{(1)} \right> = \sum_{p \neq n} c_{np} \middle| p^{(0)} \right>$$

$$\left< m^{(0)} \middle| \left(E_m^{(0)} - E_n^{(0)} \right) \sum_{p \neq n} c_{np} \middle| p^{(0)} \right> = - H^!_{mn}$$

$$\sum_{p \neq n} c_{np} \left\langle m^{(0)} \middle| 1 \middle| p^{(0)} \right\rangle \left(E_m^{(0)} - E_n^{(0)} \right) = -H'_{mn}$$

1. First order equation

$$\sum_{p \neq n} c_{np} \left(E_m^{(0)} - E_n^{(0)} \right) \left\langle m^{(0)} \middle| 1 \middle| p^{(0)} \right\rangle = -H'_{mn}$$

$$\sum_{p\neq n} c_{np} \delta_{mp} \left(E_m^{(0)} - E_n^{(0)} \right) = -H'_{mn}$$

$$c_{nm} = \frac{H'_{mn}}{\left(E_n^{(0)} - E_m^{(0)}\right)}$$

1. First order correction is superposition of unpert. states:

$$\left|n^{(1)}\right\rangle = \sum_{m \neq n} c_{nm} \left|m^{(0)}\right\rangle$$

2. Coeffs:

$$|n^{(1)}\rangle = \sum_{m \neq n} \frac{H'_{mn}}{(E_n^{(0)} - E_m^{(0)})} |m^{(0)}\rangle$$

Energy difference in denominator: "close states mix in more" (unless matrix element is zero!)

More examples

1. Perturb the HO to a slightly different frequency at x>0! (What weird spring is that?!)

- 2. Identify H'
- 3. First order energy
- 4. First order state
- 5. Second order energy

Things to note

- 1. When there is an off-diagonal term in the perturbation Hamiltonian, there are first order corrections to the wave function.
- 2. Nearby (in energy) states "mix in" to a larger degree than far-away ones
- 3. Degeneracy presents problems in this formulation denominator blows up (need new strategy)
- 4. "Small" means that off-diagonal matrix element is small relative to energy separations
- 5. First order state is still normalized (see text)
- 6. One can, in principle, solve the eigenvalue equation numerically (diagonalize huge matrix or solve tricky diff. equation) to get an "exact" solution. BUT