Review of paradigms QM

Read Mcintyre Ch. 1, 2, 3.1, 5.1-5.7,
6.1-6.5, 7,8
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QM Postulates

The state of a quantum mechanical system, including all the information you
can know about it, is represented mathematically by a normalized ket?llfy :

A physical observable is represented mathematically by a linear, Hermitian
operator A that acts on kets.

The only possible result of a measurement of an observable is one of the
(real) eigenvalues a,, of the corresponding operator A.

The probability of obtaining the eigenvalue g, in a measurement of the
observable A on the system in the state is

0. =[a|v)

where an> is the normalized eigenvector of A corresponding to the
eigenvalue a,.

After a measurement of A that yields the result a,, the quantum system is in
a new state that is the normalized projection of the original system ket onto
the ket (or kets) corresponding to the result of the measurement:

P|y)

A
The time evolution of a quantum system is determined by the Hamiltonian or

total energy operator H(t) through the Schrodinger equation
L d
ih—y (1)) =H (1) (1))
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Systems you have studied:

Spin-1/2 and spin-1

* Infinite square well potential

* Finite square well potential

* H-atom

* Angular momentum (rigid rotor)
* Free particle

(white board or group discussions: bra-ket, wave
function and matrix forms)



Must know ...

Important operators
(abstract, matrix, position representations)

Energy spectrum (or other spectrum), quantum
numbers

States
(ket, matrix, wave function)

General state: coefficients, projections, probability,
expectation value

Time evolution

Other important comments
(degeneracy, commutation, ...)



 Afew slides from PH424 and PH426 that
capture some of the main points (not meant
to be exhaustive).



Finite square-well problem:
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Energy (eV)

Finite well: Energy spectrum (bound states only)
From Colorado PhET site

Total Energy = Potential Energy ‘

Must be at least one bound state, even for infinitely thin well.
States have alternating even and odd parity because well is symmetric.
Continuum states are not quantized.



This set of parameters gives 3
solutions (2 even and 1 odd).

Decay length increases with
increasing energy. Wave function
"leaks" into forbidden region -
evanescent wave.

‘g0n> for bound states,n=1,2,3...
o(x)=(xo,)

—

‘(DE> for continuum states, £/ contin®

o(x)=(x|o,)

complicated; basically eikxmodified near well

-0.1
complicated; basically sine or cosine joined to exponentials
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Energy (eV)
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Finite well: Energy spectrum (bound states only)
From Colorado PhET site

Total Energy = Potential Energy \




Infinite square-well problem (no contigu%m)z:
n‘mh
E = >
2m ( Za)
@, (x)=0 n=12345.. for x<-a and x>a

2 NItXx 05+

a 2a

-05 1

n =1,3,5 (symmetric or even solutions)

x=-a  Xx=da
2 . nux 3T /\
@, (x)=,/—sin—- ) |
2a 2a \/ |
n =2,4,6 (antisymmetric or odd solutions }- - l

X=-d X=d
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Radial wave functlons

Here are more of them.
Know where to look them

z\" Exponential at |
—Zrla . xponential at large r :
R,(r)=2|— | e iy decay length depends on
4, energy.
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Spherical Harmonics
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p- states

 What additional structure does the radial wave
function impose that you can’t see from the YIms?




The real (as apposed to complex)

spherical harmonics

* |n gravitation problems, the complex numbers in
the spherical harmonics are rarely useful, so
other linear combinations are used.

d_(6,¢)~7Y, (9,¢) +e"Y," (9»‘P)

* You’ll recognize these as the p, d, f orbital forms
from chemistry




Abstract bra-ket & position state (wave function) representations

Stat
su?)eerposition ) = Ecn cpn> CI)(x) = Ecn% (x)

Ei tates& A A
cigonvaes 2170 =ale)  09.(x)=4,0,(x
Ei tat S
o;’?heongso?\aelity <€0n ¢m> =0,, f ¢,(x)p, (x)dx=0,,

o (PlP) —1\ f(b(x)CD(x)dx—l
ormaillZation / ~% Probability density

Probablhty

Expectation  (Q) = (CI)‘Q‘(ID fCID
value
<Q> =
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Projections: c, = <q0n (I)>

o0

@,|@) = @[S eal0n) = Dren(ilon)

n=1
= Ecmén,m = Cn
m=1

Coefficients: They are the projection of the general
state onto the eigenstate.
Do specific example on board

Remember Fourier coefficients?
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Schrodinger Wave Equation: N (x.1
Hy(x,t)=1ih UJ; 1)
4

More-or-less "given", just like Newton's law F(x) = dp/dt.
It works, and if we can show that it fails, we'll refine or discard.

You learned in Spins the solution to the (time-dependent) SE
IS, in terms of the eigenstates of the Hamiltonian:

@,)

(1) = Yl )e ™" where Hlg,)=E,

Y(xr) = Yo, (x)e™"" where H,(x) = E,g,(x)

Notice the parallels to the rope problem we solved last week?

Schrodinger Wave Equation 18



\x) s a ket that is the eigenstate of position

(0} <- x

1 <— X

‘xz>i 2
\O) < — Xy

In the spins course notation, this ket represents a
particle that is located precisely at position x..

Reminds you of a delta function, doesn't it?! Well, it should!
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IS a ket that is the eigenstate of position

%)
> IS a number that represents the projection of the

(x|w

state vector onto the ket ‘x1>

<x ‘l// IS a number that represents the projection of the
2 state vector onto the ket ‘ x2>

<xw>‘\'.. B

We've represented the general state vector in a
l//(x) - graphical form by projecting onto position eigenstates.
This the "position representation”. Careful, though ...
y(x) can be complex, so we have to plot both the real
and imaginary parts for a full representation. 2



v (x) = (x|w)
Then what is <l//‘x> ?

(w|x)=(xly) =y (x)

Then we have the following identifications (not equalities)

) =y(x)
(W]|=y (x)
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Commutation Operator
(A,B]=AB-BA

* Commutator is an OPERATOR! Must operate on
something (ket, vector, wave function).

* Order matters! Only if common eigenfunctions
does commutator operation yield zero.




Uncertainty Principle

* Uncertainty relation between observables of
non-commuting operators

[3.5)
= (7)-(4)

h
AxAp > 2
=5

AAAB > 1




