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Reading:	


McIntyre- ch 5.5	


(also review 5.4)	



ENERGY EIGENFUNCTIONS & 
EIGENVALUES OF THE FINITE WELL	
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Solve the energy eigenvalue equation for different potentials 
and for examples where there are many solutions with different 
energies.	
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unbound states	


(continuum states)	



bound states	
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! 

ˆ H "(x) = E"(x)

! 

d2"
dx 2

= #k 2"
0 if region 2	



V0 if region 1,3	



  

! 

d2"
dx 2

= #
2m
!2

E #V( )"

! 

" x( ) = Ce#ikx +C'e+ikx

  

! 

k =
2m
!2

E "V( )

real if E>V0;	


imag if E<V0	



  

! 

k2 =
2m
!2

E
  

! 

k1 = k3 =
2m
!2

E "V0( )

defines k2	
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! 

"1 x( ) = Ce# ik1x + C'e+ik1x

Focus first on the case E < V0 ("bound states")	



In regions 1 & 3, k is imaginary	



!3 x( ) = D 'e" ik3x + De+ ik3x

Imaginary k means 
exponential growth or 
exponential decay!	


(classically forbidden region)	



! 

"2 x( ) = Ae#ik2x + Be+ ik2x

Real k means oscillatory 
behavior	


(classically allowed region)	



In region 2, k is real	



It would not be physically reasonable to 
allow an infinite probability of finding a 
particle in a classically forbidden region.	
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"2 x( ) = Aeik2x + Be#ik2x

! 

" 3 x( ) = D'e#ik1x +Deik1x

! 

"1 x( ) = Ce#ik1x +C'eik1x
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"1 x < #a
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" 3 x > a
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ϕ  is continuous everywhere	


ϕ  has a continuous derivative	


ϕ  goes to zero at ±∞	


ϕ  is normalized	



0	

 0	



 
k1 = i

2m
!2

V0 ! E( )

 
k2 =

2mE
!2
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! 

Ceik1a = Ae"ik2a + Beik2a

! 

"1 #a( ) ="2 #a( )

ϕ  is continuous everywhere	


ϕ  has a continuous derivative	



! 

ik2Ae
ik2a " ik2Be

"ik2a = ik1De
ik1a! 

Aeik2a + Be"ik2a = Deik1a

! 

" 3 a( ) ="2 a( )

! 

"1' #a( ) ="2 ' #a( )

! 

"ik1Ce
ik1a = ik2Ae

"ik2a " ik2Be
ik2a

! 

" 3 ' a( ) ="2 ' a( )
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4 equations, 5 unknowns (A, B, C, D, E).  ( E is buried in k1 and k2)	


Normalization gives fifth condition. 	
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This set of equations has a solution when the determinant of the 4x4 
matrix is zero.  Tedious!  See Liboff for details.  When the 
determinant condition is set up, we get a condition on E!  This 
condition can be satisfied in 2 sets of ways.  One set has A = B 
(even solutions) and the other  set has A= -B (odd solutions).	
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! 

2mEa2

!2

Here is one  condition for the determinant to be zero	


 (Eqn 5.83 in McIntyre): 	



 

tan 2mEa2

!2
=

2m V0 ! E( )a2
!2

2mEa2

!2

one value of E	



3 values of E	
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Here is the other condition for the determinant to be zero:	


 (Eqn 5.85 in McIntyre):  	



 

! cot 2mEa2

!2
=

2m V0 ! E( )a2
!2

2mEa2

!2
 

  

! 

2mEa2

!2
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=
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=
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This set corresponds to the green 
curves on the previous graphs - the 
value of V0 that yields 3 solutions (2 
even and 1 odd).	


	


Note the size of the decay length for 
the state corresponding to each 
energy.  Wave function "leaks" into 
forbidden region.  We call this an 
evanescent wave.	
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tan 2mEa2

!2
= !"

2mEa2

!2
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!2!2

2m 2a( )2
Decay length 	
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Infinite 
square well 
recovered!	



Limiting Case: V0 à ∞	
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n2!2!2

2m 2a( )2
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n =1,3,5 (symmetric or even solutions)	



n =2,4,6 (antisymmetric or odd solutions)	



! 

"n (x) = 0 n =1,2,3,4,5… for x<-a and x>a	



         x=-a           x=a      	



         x=-a           x=a      	
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!n (x) =
2
2a
sin n"x

2a

n =1,2,3,4,5… and 0 < x < 2a	


(neither symmetric nor 
antisymmetric solutions - about 
x=0)	



! 

"n (x) = 0 n =1,2,3,4,5… for x < 0 and x > 2a	



         x=0           x=2a      	



         x=0           x=2a      	
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Important features of (symmetric) finite square well:	


§  Non-trivial solutions to energy eigenvalue equation	


§  application of boundary conditions	


§  Quantized energy	


§  Symmetric (even) and antisymmetric (odd) solutions	


§  Always one solution regardless of width or depth of well	


§  Wave function finite in classically forbidden region 	


§  Recover infinite well solutions	



§  lots of manipulation to get it exactly right, but in the end 
we have sine- and cosine-like oscillations in the allowed 
region, decaying exponentially in the forbidden region.  The 
decay length is longer the closer the particle's energy to the 
top of the well.	
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•  Hamiltonian - set up with piecewise potential	


•  Solve energy eigenvalue equation	


•  Matching boundary conditions - continuity of φ and φ'	


•  Graphical solutions will suffice for now	


•  Discrete energies for bound states	


•  Limiting case is well-known infinite square well problem	



•  Mathematical representations of the above	
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EIGENVALUES OF THE FINITE WELL 

REVIEW	




