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Reading:	

McIntyre- ch 5.5	

(also review 5.4)	


ENERGY EIGENFUNCTIONS & 
EIGENVALUES OF THE FINITE WELL	
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Solve the energy eigenvalue equation for different potentials 
and for examples where there are many solutions with different 
energies.	


V x( ) =
V0 x > a

0 x < a
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unbound states	

(continuum states)	


bound states	
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! 

ˆ H "(x) = E"(x)

! 

d2"
dx 2

= #k 2"
0 if region 2	


V0 if region 1,3	


  

! 

d2"
dx 2

= #
2m
!2

E #V( )"

! 

" x( ) = Ce#ikx +C'e+ikx

  

! 

k =
2m
!2

E "V( )

real if E>V0;	

imag if E<V0	


  

! 

k2 =
2m
!2

E
  

! 

k1 = k3 =
2m
!2

E "V0( )

defines k2	
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! 

"1 x( ) = Ce# ik1x + C'e+ik1x

Focus first on the case E < V0 ("bound states")	


In regions 1 & 3, k is imaginary	


!3 x( ) = D 'e" ik3x + De+ ik3x

Imaginary k means 
exponential growth or 
exponential decay!	

(classically forbidden region)	


! 

"2 x( ) = Ae#ik2x + Be+ ik2x

Real k means oscillatory 
behavior	

(classically allowed region)	


In region 2, k is real	


It would not be physically reasonable to 
allow an infinite probability of finding a 
particle in a classically forbidden region.	
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"2 x( ) = Aeik2x + Be#ik2x

! 

" 3 x( ) = D'e#ik1x +Deik1x

! 

"1 x( ) = Ce#ik1x +C'eik1x
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"1 x < #a
"2 #a < x < a
" 3 x > a

$ 

% 
& 

' & 

ϕ  is continuous everywhere	

ϕ  has a continuous derivative	

ϕ  goes to zero at ±∞	

ϕ  is normalized	


0	
 0	


 
k1 = i

2m
!2

V0 ! E( )

 
k2 =

2mE
!2
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! 

Ceik1a = Ae"ik2a + Beik2a

! 

"1 #a( ) ="2 #a( )

ϕ  is continuous everywhere	

ϕ  has a continuous derivative	


! 

ik2Ae
ik2a " ik2Be

"ik2a = ik1De
ik1a! 

Aeik2a + Be"ik2a = Deik1a

! 

" 3 a( ) ="2 a( )

! 

"1' #a( ) ="2 ' #a( )

! 

"ik1Ce
ik1a = ik2Ae

"ik2a " ik2Be
ik2a

! 

" 3 ' a( ) ="2 ' a( )
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4 equations, 5 unknowns (A, B, C, D, E).  ( E is buried in k1 and k2)	

Normalization gives fifth condition. 	
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This set of equations has a solution when the determinant of the 4x4 
matrix is zero.  Tedious!  See Liboff for details.  When the 
determinant condition is set up, we get a condition on E!  This 
condition can be satisfied in 2 sets of ways.  One set has A = B 
(even solutions) and the other  set has A= -B (odd solutions).	
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! 

2mEa2

!2

Here is one  condition for the determinant to be zero	

 (Eqn 5.83 in McIntyre): 	


 

tan 2mEa2

!2
=

2m V0 ! E( )a2
!2

2mEa2

!2

one value of E	


3 values of E	
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Here is the other condition for the determinant to be zero:	

 (Eqn 5.85 in McIntyre):  	


 

! cot 2mEa2

!2
=

2m V0 ! E( )a2
!2

2mEa2

!2
 

  

! 

2mEa2

!2
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tan 2mE1a
2

!2
=

2m V0 ! E1( )a2
!2

2mE1a
2
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tan 2mE3a
2

!2
=

2m V0 ! E3( )a2
!2

2mE3a
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!2
=

2m V0 ! E2( )a2
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2mE2a
2

!2



11	


 

-1

-0.5

0

0.5

1

-0.1 -0.05 0 0.05 0.1

 

-1

-0.5

0

0.5

1

-0.1 -0.05 0 0.05 0.1

 

-1

-0.5

0

0.5

1

-0.1 -0.05 0 0.05 0.1

This set corresponds to the green 
curves on the previous graphs - the 
value of V0 that yields 3 solutions (2 
even and 1 odd).	

	

Note the size of the decay length for 
the state corresponding to each 
energy.  Wave function "leaks" into 
forbidden region.  We call this an 
evanescent wave.	
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tan 2mEa2

!2
= !"

2mEa2

!2
=
#

2

 
E1 =

!2!2

2m 2a( )2
Decay length 	


 

!2

2m V0 ! E( )
" 0
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Infinite 
square well 
recovered!	


Limiting Case: V0 à ∞	
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En =

n2!2!2

2m 2a( )2
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!n (x) =
2
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cos n"x
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!n (x) =
2
2a
sin n"x

2a

n =1,3,5 (symmetric or even solutions)	


n =2,4,6 (antisymmetric or odd solutions)	


! 

"n (x) = 0 n =1,2,3,4,5… for x<-a and x>a	


         x=-a           x=a      	


         x=-a           x=a      	
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En =

n2!2!2

2m 2a( )2
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!n (x) =
2
2a
sin n"x

2a

n =1,2,3,4,5… and 0 < x < 2a	

(neither symmetric nor 
antisymmetric solutions - about 
x=0)	


! 

"n (x) = 0 n =1,2,3,4,5… for x < 0 and x > 2a	


         x=0           x=2a      	


         x=0           x=2a      	
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Important features of (symmetric) finite square well:	

§  Non-trivial solutions to energy eigenvalue equation	

§  application of boundary conditions	

§  Quantized energy	

§  Symmetric (even) and antisymmetric (odd) solutions	

§  Always one solution regardless of width or depth of well	

§  Wave function finite in classically forbidden region 	

§  Recover infinite well solutions	


§  lots of manipulation to get it exactly right, but in the end 
we have sine- and cosine-like oscillations in the allowed 
region, decaying exponentially in the forbidden region.  The 
decay length is longer the closer the particle's energy to the 
top of the well.	
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•  Hamiltonian - set up with piecewise potential	

•  Solve energy eigenvalue equation	

•  Matching boundary conditions - continuity of φ and φ'	

•  Graphical solutions will suffice for now	

•  Discrete energies for bound states	

•  Limiting case is well-known infinite square well problem	


•  Mathematical representations of the above	
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