ENERGY EIGENFUNCTIONS &
EIGENVALUES OF THE FINITE WELL

Reading:
MclIntyre- ch 5.5
(also review 5 4)

A Quantum Well Structure



Solve the energy eigenvalue equation for different potentials
and for examples where there are many solutions with different

energies.
T
Energy -_.-....._........_........_....  sasssnsasa(sesssssnnadesannsssnnlessnnnnnnnn;
.:2 Region 1 Region 2 Region 3
0 + ; |
-a a —>X
r V, |x|>a
V(x)=- (x) =
0O J|x|l<a

E unbound states
(continuum states)

E  bound states

k(,03 X>d



He(x) = Ep(x)
d’@ 2m

-

2m

V,if region 1,3

%}/w

A’ ?(E V)7
defines k’

d’g

A’ g
k, = \/;—TE k,

0 if region 2

real if E>V,;
imag if E<V,




Focus first on the case E <V, ("bound states")

In regions 1 & 3, k 1s imaginary In region 2, k is real
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Real k means oscillatory
behavior

(classically allowed region)

Imaginary k means

exponential gI‘OWth or It would not be physically reasonable to
6Xp0ﬂ€ﬂti&l decay' allow an infinite probability of finding a

. . . particle in a classically forbidden region.
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4 equations, 5 unknowns (A, B, C, D, E). ( E 1s buried in k, and k,)
Normalization gives fifth condition.

[ ik ok _pthe 0 VA
oikad ik 0 ok |l B
ikze_ik2“ —ikzeikZ“ —ikleikla 0 C =0
\ ikzeikZ“ —ikze_ik2“ 0 ikleikla N\D,

This set of equations has a solution when the determinant of the 4x4
matrix 1s zero. Tedious! See Liboff for details. When the
determinant condition is set up, we get a condition on £/ This
condition can be satisfied 1n 2 sets of ways. One set has A =B
(even solutions) and the other set has A= -B (odd solutions).



Here 1s one condition for the determinant to be zero

(Egn 5.83 in MclIntyre):
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Here is the other condition for the determinant to be zero:
(Egn 5.85 in MclIntyre):
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This set corresponds to the green
curves on the previous graphs - the
value of V, that yields 3 solutions (2
even and 1 odd).

Note the size of the decay length for
the state corresponding to each
energy. Wave function "leaks" into
forbidden region. We call this an
evanescent wave.
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Limiting Case: V,, 2 @
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Qﬂn(x) =0 n=12345...forx<0andx>2a
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n=1,2345...and 0 <x < 2a
(neither symmetric nor

antisymmetric solutions - about
x=0)
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Important features of (symmetric) finite square well:

* Non-trivial solutions to energy eigenvalue equation

= application of boundary conditions

* Quantized energy

* Symmetric (even) and antisymmetric (odd) solutions

* Always one solution regardless of width or depth of well
* Wave function finite in classically forbidden region

= Recover infinite well solutions

" Jots of manipulation to get it exactly right, but in the end
we have sine- and cosine-like oscillations in the allowed
region, decaying exponentially in the forbidden region. The
decay length 1s longer the closer the particle's energy to the
top of the well.



ENERGY EIGENFUNCTIONS &
EIGENVALUES OF THE FINITE WELL
REVIEW

Hamiltonian - set up with piecewise potential

Solve energy eigenvalue equation

Matching boundary conditions - continuity of ¢ and @'
Graphical solutions will suffice for now

Discrete energies for bound states

Limiting case is well-known infinite square well problem

Mathematical representations of the above
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