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Reading:	

QM Course packet – Ch 5	


BASICS OF QUANTUM MECHANICS	
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Interesting things happen when 
electrons are confined to small 
regions of space (few nm).  For 
one thing, they can behave as if 
they are in an artificial atom.  
They emit light of particular 
frequencies … we can make a 
solid state laser!	


GaInP/AInP Quantum Well Laser Diode	
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Particles exhibit many wave-like 
properties, e.g. electron diffraction.  	
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S- G expt	

(spin)	


Single slit	

(position)	


In a quantum-mechanical system, the measurement we may 
be concerned with is “position”, for which there are 
(infinitely) many options, not just two, as in the spin-1/2 S-
G system! 	


(a)

(b)
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Quantum Mechanics – kets and operators	

	

The state of electron is represented by a quantity called a state vector or a 
ket,         , which in general is a function of many variables, including 
time.  	

	

In PH425, you learned about kets that contained information about a 
particle’s spin state. We’ll be interested in the information contained in 
the ket about the particle position, momentum and energy, and how the 
ket develops in time.	

	

In PH 425, you learned about the spin operators S2, Sz, Sx etc.  We’ll be 
learning about the position, momentum and energy operators.	

	

In PH425, you represented operators as matrices (in different bases), and 
kets as column vectors.  We will learn to represent operators as 
mathematical instructions (for example derivatives), and kets as 
functions (wavefunctions).	


!
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Quantum Mechanics – kets and operators	

	

You will learn to translate all the terms you learned in PH425’s matrix 
formulations into the wave formulation.  These include	

Matrix operators -> mathematical instructions	

Eigenvectors -> eigenfunctions	

Basis states -> basis functions	

Eigenvalues -> Eigenvalues	

Orthogonal basis states -> orthogonal basis functions 	

Projections of kets/vectors ->Projections of kets/functions	

Measurement -> measurement	

Superposition -> superposition of functions	

	

The concepts from the first part of PH424 will be relevant:	

Wave equation -> Schroedinger’s wave equation	

Dispersion relation	

Initial conditions and boundary conditions	

Reflections and transmission	

Fourier analysis	
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Some terminology and definitions	

	

Each of the operators has a complete set of eigenstates, and 
any set can be use to expand the general state.	

	


	
are the position eigenstates (states of definite position)	

	
is the position operator	


	

	
are the momentum eigenstates (definite momentum)	

	
is the momentum operator	


	

	
are the energy eigenstates (definite energy)	

	
is the energy operator	


x

p
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Ĥ

p̂

x̂
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x  is a ket that is the eigenstate of position	


In the spins course notation, this ket represents a particle that 
is located precisely at position x2. 	
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Reminds you of a delta function, doesn't it?!  Well, it should!	
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 is a ket that is the eigenstate of position	


x1 !  is a number that represents the projection of the state 
vector onto the ket	


 is a number that represents the projection of the state 
vector onto the ket 	


x2 !

x

x1

x2

x !

! x( )
x	
x2	


! x( ) :  We've represented the general state vector in a 
graphical form by projecting onto position eigenstates.  
This the "position representation".  Careful, though … 
ψ(x) can be complex, so we have to plot both the real 
and imaginary parts for a full representation.	
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 Then what is                ? 	


! x( ) = x !

! x

! x = x ! * =! * x( )

 Then we have the following identifications (not equalities) 	


 

! !! x( )
! !! * x( )
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 ψ(x) is NOT a physically accessible quantity; we cannot measure 
it in the laboratory.  The physically meaningful quantity is  |ψ(x)|2. 
This is the probability density - the probability per unit volume 
in 3D (or probability per unit length in 1D) of finding the particle 
in an infinitesimally small region located at x.	


The probability of finding this particle somewhere in the universe 
must be 1.  This statement is represented by:	


In bra-ket notation:	


 

! x( ) "# * x( )# x( ) = # x( ) 2

 

! x( )dx
"#

#

$ = % * x( )% x( )dx
"#

#

$ =1

! ! = 1

This suggests that 	
 ! dx
"#

#

$
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Examples ………….	

These 1-D wave functions are NOT properly normalized.  
Normalize them!  	


 

! x( ) =
0 x < 0

sin 3"x
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! x( ) =
0 x < "L /2
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L
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+ 
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We don't know (yet) how to find wave functions for any 
systems – we'll get there! 	
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This the probability density also tells us about the 
probability of finding a particle in a certain region of 
space, say between x = a and x = b.	


Notation alert: Script P with an argument of x is used for 
probability density.  The same script P with no x 
argument is used for probability.  They have different 
dimensions! 	


!a<x<b = ! x( )dx
a

b

" = # * x( )# x( )dx
a

b

"
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We will state two things without proof, and you'll see why they 
are reasonable, later.	

1.  In the "position representation" or "position basis", the 
position operator is represented by the variable x:	


	

2.  In the "position representation" or "position basis", the 
momentum operator is represented by the derivative with 
respect to x:	

	


3.  This follows if you accept (2).  The energy operator is:	


Now think about eigenfunctions of these operators (worksheet)  	


  

 

ˆ p ˙ = !i! d
dx

 

ˆ x ˙ = x

  

 

ˆ H =
ˆ p 2

2m
+ ˆ V ˙ = ! !

2

2m
d2

dx 2 + V x( )
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If the momentum operator operates on a wave function and 
IF AND ONLY IF the result of that operation is a constant 
multiplied by the wave function, then that wave function is 
an eigenfunction or eigenstate of the momentum operator, 
and its eigenvalue is the momentum of the particle. 	


operator	


eigenvalue	


• not all states are eigenstates – and if they are not, they can be 
usually be written as superpositions of eigenstates 	

• if a state is an eigenstate of one operator, (e.g. momentum), 
that state is not necessarily an eigenstate of another operator 
(e.g. energy), though it may be. 	


p̂! x( ) = C! x( )

 
!i!

d" x( )
dx

= C" x( )#" x( ) = AeiCx /!
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Look more closely at the momentum eigenfunction or 
eigenstate:	

	


1.  Why did we change C to p/hbar?  And why the subscript?	

2.  What is the probability distribution for this state?	

3.  Is it normalized? Normalizable?	

4.  It is degenerate (new word, maybe?)	

5.  What sort of particle would be represented by this function?	


Position eigenstates:	

This is a useful (but a bit pathological) representation of a 
position eigenstate:	

	

1.  Normalizable? 	

2.  Otherwise reasonable?	


  

 

! p x( ) = Ae±ipx / !

 

!x' x( ) = " x # x'( )
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•  Review language of PH425	

•  Kets and wave functions	

•  Probability density	

•  Operators – position, momentum, energy	

•  Eigenfunctions	

•  Mathematical representations of the above	


BASICS OF QUANTUM MECHANICS 
REVIEW	



