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Reading:	


McIntyre Ch 6	



FREE PARTICLE GAUSSIAN 
WAVEPACKET	
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•  Time dependent Schrödinger equation	


•  Energy eigenvalue equation (time independent SE)	


•  Eigenstates 	


•  Time dependence	


•  (Connection to separation of variables)	


•  Mathematical representations of the above	



GAUSSIAN WAVE PACKET - REVIEW	
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Build a "wavepacket" from free particle eigenstates	



• Ask 2 important questions:	


• Given a particular superposition, what can we learn 
about the particle's location and momentum?���
���
HEISENBERG UNCERTAINTY PRINCIPLE���
	



• How does the wavepacket evolve in time? ���
���
GROUP VELOCITY	
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We have already discussed the principle of 
superposition & the time evolution of that superposition  
in the context of the discrete quantum mechanical states 
of the infinite potential energy well. 	


	


We now discuss how build a wave packet from harmonic 
waveforms (with a continuous frequency distribution). 	


	


We use the case of superposition of quantum mechanical 
states of the free particle, which are no longer discrete, 
and we choose to weight different frequency components 
more heavily than others.  	
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Free particle eigenstates	



 ! k (x,t) = e
ikxe

" i
Ek
!
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• Oscillating function	


• Definite momentum p = hk/2π	


• Subscript k on ω reminds us that 
ω depends on k 	



•  What are E and ω in terms of 
given quantities?	
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Superposition of eigenstates ���
(Fourier series)	
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Superposition of eigenstates ���
(Fourier integral)	
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Indefinite momentum	



Definite momentum	


Extended position	
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Superposition of eigenstates	


How does it develop in time?	
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Localized particle���
Indefinite momentum	
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Build	


Gaussian wave packet	



Localized particle	



A(k) = !k ! t=0
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What is A(k)?	



 

x →	



We'll ignore overall constants that are not of primary importance 
(there are conventions about factors of 2π that are important to take 
care of to get numerical results, but we're after the physics!)	



Projection of general 
function on eigenstate	
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Gaussian wave packet	



Localized particle	



A(k) = !k ! t=0 = dx!
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We did this integral (by hand).	


using:	
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Gaussian wave packet	



Localized particle	
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Gaussian wave packet	



Localized particle	
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A(k) ! e" k
2 4# 2

 

k →	



If ϕ(x) is wide, A(k) is narrow and vice versa.	



! 

2
2"

! 

2 2"



Wavepacket	

 13	



A(k) is the projection of ϕ(x) on the momentum eigenstates eikx, and 
thus represents the amplitude of each momentum eigenstate in the 
superposition.	


We need the contribution of a wide spread of momentum states to 
localize a particle.  If we have the contribution of just a few, the 
location of the particle is uncertain	
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To define "uncertainty" in position or momentum, we must 
consider probability, not wave function.	
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HEISENBERG UNCERTAINTY PRINCIPLE	
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Next, we’ll ask how a general wave packet propagates,	


And deal with the particular example of the Gaussian 
wavepacket.	


	


In short, we simply attach the exp(-iE(k)t/hbar) factor to 
each eigenstate and let time run.	


	


Difference to non-dispersive equation: not all waves 
propagate with same velocity.  “Packet” does not stay 
intact!  Need to invoke “group velocity” to follow the 
progress of the “bump”.	
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Superposition of eigenstates	


How does it develop in time?	
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Localized particle	
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If ω depends on k, the different eigenstates (waves) making up this 
"packet" travel at different speeds, so the feature at x=0 that exists 
at t=0 may not stay intact at all time.	


It may stay identifiably intact for some reasonable time, and if it 
does, how fast does it travel?	


The answer is "it travels at the group velocity dω/dk"	
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Superposition of eigenstates	


How does it develop in time?	
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Localized particle	
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The quantity dω/dk may (does!) vary depending on the k value at 
which you choose to evaluate it.  So it must be evaluated at a 
particular value k0 that represents the center of the packet.  The next 
few pages spend time deriving the basic result.  The derivation is 
not so important.  The result is important:	



 
vgroup =

d!
dk k0

=
!k0
m



Wavepacket	

 20	



Particular example of the Gaussian wavepacket.	





Wavepacket	

 21	



Use same integral as before	
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Zero-momentum wavepacket:	


Spreads but doesn't travel!	


It has many positive k 
components as it has negative 
k components.	
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Finite-momentum 
wavepacket:	


Spreads and travels!	



0 50 100 150

�1.0

�0.5

0.0

0.5

0 50 100 150

�1.0

�0.5

0.0

0.5



Wavepacket	

 25	



τ is characteristic time for 
wavepacket to spread	



  

! 
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τ  for macroscopic things:  	


m ≈ 10-3kg; 1/α ≈ 10-2 m	


τ  ≈ 1027 s ≈ 1020 yr   !! long	

 	



τ  for nuclear scale:  	


m ≈ 10-?kg; 1/α ≈ 10-? m	


τ  ≈ 10-? s	

 >	



τ  for atomic scale:  	


m ≈ 10-?kg; 1/α ≈ 10-? m	


τ  ≈ 10-? s	

 	
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•  Gaussian superposition of free-particle eigenstates (of energy 
and momentum!)	



•  Localized in space means dispersed in momentum and vice 
versa.	



•  Look at time-dependent probability distribution: packet 
broadens and moves 	



	



FREE PARTICLE QUANTUM 
WAVEPACKET - REVIEW	
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For those of you who want more 
about the group velocity:	
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For those of you who want more 
about the group velocity:	
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Phase factor - goes to 1 in probability	



For those of you who want more 
about the group velocity:	
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Localized particle	
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For those of you who want more 
about the group velocity:	




