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Reading: 
Main 9.0, 9.1, 9.3
GEM 9.1.1, 9.1.2
Giancoli ?

BASIC WAVE CONCEPTS
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REVIEW SINGLE OSCILLATOR:
The oscillation functions you’re used to describe how one 
quantity (position, charge, electric field, anything ...) 
changes with a single variable, TIME.  
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� 

ψ(t) = Acos ωt +φ( )

-1

1

-0.25 0.25 0.75 1.25 1.75

time

p
o
si
ti
o
n

-A

A

� 

T = 2π
ω

= 1
f

� 

t = − φ
ω

ψ

period



4

� 

ψ(t) = Acos ωt +φ( )

� 

T = 2π
ω

= 1
f

(Cyclic) frequency, f (or ν), dimension: [time-1]

Oscillations in time

Angular frequency, ω, dimension: [time-1]
Period, T, dimension: [time]
Amplitude A, or ψ0, dimension: [whatever]
Phase, ωt+φ, dimensionless
Phase constant, φ, dimensionless
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Remember the conversions between A, B, C, D 
forms - see Main Ch. 1.

� 

ψ(t) = Acos ωt + φ( )

� 

ψ(t) = Bp cos ωt( ) + Bq sin ωt( )

� 

ψ(t) = Cei ωt( ) + C *e−i ωt( )

� 

ψ(t) = Re Deiωt[ ]

Equivalent representations …….
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If we have SEVERAL oscillators at different positions, we 
can describe the variation of that same quantity (call it ψ) by 
a function of TWO variables: TIME, just like before, and 
another variable, POSITION, which identifies the location of 
the oscillator.

Watch the animation.  What can you say about the amplitude, 
frequency and phase of each oscillator?  Which direction does 
each oscillator travel? Which way does the wave travel?
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� 

ψ(x) = Acos kx +φ( )At a FIXED TIME,
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� 

ψ(x) = Acos kx + φ( )

λ =
2π
k

Periodic variations in space

Wave “vector”, k, dimension: [length-1]
(wave number is 1/λ)
Wavelength, λ, dimension: [length]
Amplitude A, or ψ0, dimension: [whatever]
Phase, kx+φ, dimensionless
Phase constant, φ, dimensionless
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Waves - functions of space AND time

Looking ahead….
We will discuss mostly harmonic waves where 
variations are sinusoidal.
Traveling and standing waves
Damped, (driven) waves
Reflection, transmission, impedance
Classical and quantum systems
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� 

ψ(x, t) = Acos ωt + kx +φ( )

Traveling wave

Standing wave

ψ (x,t) = Acos kx( )cos ωt( )
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ψ (x,t) = Acos ωt ± kx + φ( )
Traveling waves - functions of ωt±kx

Disturbance propagates … what speed?
Look at one particular feature (constant phase)

λ =
2π
k
;T =

2π
ω

  

� 

dx
dt

= ω
k

= λ
T

ωdt ± kdx = 0

d ωt ± kx( ) = 0
v = dx/dt or phase velocity is 
velocity of one particular 
feature. 
If we had ψ = Acos(ωt-kz), it would be v=dz/dt.
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ψ (x,t) = Acos ωt ± kx + φ( )
Traveling waves - functions of vt±x

vt-x�
disturbance travels in direction of increasing x

 (t↑⇒ x↑ for constant phase)
vt+x:   travels in direction of decreasing x

 (t↑⇒ x↓ for constant phase)
Traveling waves are�

superpositions of standing waves

λ =
2π
k
;T =

2π
ω

� 

ψ(x, t) = Acos k vt ± x( ) +φ[ ]
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Focus on the green circle that marks a 
maximum (a particular phase)

phase velocity, vphase= ω/k =λ/T, �
                         dimensions [length. time -1]
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Another velocity - material/field velocity
When a wave or disturbance propagates, the 
particles of the MEDIUM do not propagate, but 
they move a little bit from their equilibrium 
positions

material velocity, vmat=∂ψ/∂t, �
                         dimensions [ψ. time -1]

Material/field velocity is speed of the “waving 
thing” in the medium.  If ψ has dimensions of 
length, this is a velocity as we normally think of 
it.  But waves don’t necessarily need a medium in which to propagate and ψ 
might well represent something more abstract like an electric field.  If you 
think of a better name, let me know!
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Material/field velocity, vmat=∂ψ/∂t, �
                         dimensions [ψ. time -1]

Focus on the red circle that marks a 
particular x 
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Material/field velocity vmat=∂ψ/∂t 
dimensions [ψ. time -1]

If the material/field velocity is perpendicular to 
the phase velocity, the wave is “transverse”. 
Examples?

If the material/field velocity is parallel to the 
phase velocity, the wave is “longitudinal”. 
Examples?
Combinations of the above are possible. 
Examples?
Show wave machine
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Another velocity – group velocity
There is another way to make something that has 
the dimensions of a velocity:

Group velocity, vgroup=∂ω/∂k, �
                         dimensions [length. time -1]

This describes the propagation of a feature in a 
“wave packet” or superposition of waves of 
different frequencies.  We will come back to this 
concept later.  
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Standing waves - functions of x (only) 
multiplied by functions of t (only)

Standing waves are�
 superpositions of traveling waves� 

ψ(x, t) = Acos kx( )sin ωt( )

Also find mixtures of standing waves 
and traveling waves
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Other waveforms (e.g.) sawtooth, pulses etc., can 
be written as superpositions of harmonic waves of 

different wavelengths and/or frequencies …
Fourier series and Fourier integrals (transforms)

� 

ψ(x, t) = Acos ωt − kx +φ( )

� 

ψ(x, t) = Bp cos ωt − kx( ) + Bq sin ωt − kx( )

� 

ψ(x, t) = Cei ωt−kx( ) +C *e−i ωt−kx( )

� 

ψ(x, t) = Re Dei ωt−kx+φ( )[ ]
Same conversions between A, B, C, D forms as for 

oscillations - see Main Ch1, Ch9.
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This DE results when: 
Newton’s law is applied to a string under tension
Kirchoff’s law is applied to a coaxial cable
Maxwell’s equations are applied to source-free 
media …   and many other cases …

∂ 2

∂x2
ψ (x,t) = 1

v2
∂ 2

∂t 2
ψ (x,t)

How do these functions arise?
PROVIDED ω/k = v, a constant, they are solutions 
to the differential equation:
(non-dispersive wave equation)
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•  Wavelength, wavevector, 
•  frequency - angular and cyclic, period, 
•  phase, phase constant, 
•  phase velocity, group velocity, material/field velocity, direction 

of travel, 
•  transverse & longitudinal wave, 
•  superposition, traveling wave <-> standing wave, 
•  (non-dispersive) wave equation
•  Mathematical representations of the above, including A,B,C,D 

forms of 2-variable function

BASIC WAVE CONCEPTS -REVIEW


