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SIMPLE HARMONIC MOTION:���
NEWTON’S LAW	
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Energy approach	
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The simple pendulum	


Energy approach	
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This is NOT a restoring force proportional to displacement 
(Hooke’s law motion) in general, but IF we consider small 
motion, IT IS!  Expand the sin series …	
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The simple pendulum	
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The simple pendulum	


in the limit of small angular displacements	



 
Compare with   !!x + k

m
x = 0

What is θ(t) such that the above equation is obeyed?	


θ is a variable that describes position	


t is a parameter that describes time	


"dot" and "double dot" mean differentiate w.r.t. time	


g, L are known constants, determined by the system.	
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C, p are unknown (for now) constants, 
possibly complex	



!(t) = Cept

Substitute:	

 p2! + g
L
! = 0 p = ±i g

L
= ±i!0

REVIEW PENDULUM	



 
!!! +

g
L
! = 0

 !!!(t) = p
2Cept = p2!(t)

p is now known (but C is not!).  Note that ω0 is NOT a new 
quantity! It is just a rewriting of old ones - partly 
shorthand, but also "ω" means "frequency" to physicists! 	
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TWO possibilities …. general 
solution is the sum of the two and it 
must be real (all angles are real).	



If we force C' = C* (complex conjugate of C), then x
(t) is real, and there are only 2 constants, Re[C], and 
Im[C].  A second order DEQ can determine only 2 
arbitrary constants. 	



!(t) = Cei"0t +C 'e# i"0t

!(t) = Cei"0t +C*e# i"0t Simple harmonic motion	



θ	



mg	



m	



L	



T	



REVIEW PENDULUM	



6	





!(0) =Cei"0 0
1
! +C *e!i"0 0

1
!

0 =C +C*= 2Re[C]
" Re[C]= 0

!(t) = Cei"0t +C*e# i"0tθ

mg	



m	



L	


T

REVIEW PENDULUM	



7	



Re[C], Im[C] chosen to fit initial 
conditions.  Example: ���

θ(0) = 0 rad and dθdt(0) = 0.2 rad/sec	
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!(t) =Cei"0t +C*e!i"0t; C = 0.1
"0

e
i#
2



!(t) = Acos "0t +#( )

!(t) = Bp cos"0t + Bq sin"0t

!(t) = C exp i"0t( ) +C *exp #i"0t( )

!(t) = Re Dexp i"0t( )#$ %&

Remember, all these are equivalent forms.  All of them have a 
known ω0=(g/L)1/2, and all have 2 more undetermined 
constants that we find …  how?	



 Do you remember how the A, B, C, D constants are related? 
If not, go back and review until it becomes second nature!	
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The simple pendulum	


("simple" here means a point mass; your 
lab deals with a plane pendulum)	
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Period does not 
depend on θmax, φ 	



simple harmonic motion	


( potential confusion!! A “simple” 
pendulum does not always execute 
“simple harmonic motion”; it does so 
only in the limit of small amplitude.) 	
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Free, undamped oscillators – other examples	



 m!!x = !kx

No friction	
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Common notation for all	





• The following slides simply repeat the previous 
discussion, but now for a mass on a spring, and for a 
series LC circuit	
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Newton	

 F(x) = m!!x

Particular type of force.	


m, k known	



F(x) = !kx

 

!kx = m!!x

!!x + k
m
x = 0

What is x(t) such that the above equation is obeyed?	


x is a variable that describes position	


t is a parameter that describes time	


"dot" and "double dot" mean differentiate w.r.t. time	


m, k are known constants	
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Linear, 2nd order 
differential equation	



REVIEW MASS ON IDEAL SPRING	
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C, p are unknown (for now) constants, 
possibly complex	



x(t) = Cept

Substitute:	

 p2x + k
m
x = 0 p = ±i k

m
= ±i!0

REVIEW MASS ON IDEAL SPRING	



 
!!x + k

m
x = 0

 !!x(t) = p
2Cept = p2x(t)

p is now known.  Note that ω0 is NOT a new quantity! It is 
just a rewriting of old ones - partly shorthand, but also “ω” 
means “frequency” to physicists! 	
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A, φ chosen to fit initial conditions: ���
x(0) = x0 and v(0) = v0	
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x0 = Acos!
v0 = "#0Asin!

x(t) = Acos !0t +"( )

x0
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2
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2 = A

2 cos2" + sin2"( ) = A2Square and add:	
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= tan#Divide:	
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2 arbitrary constants	


(A, φ) because 2nd 
order linear 
differential equation	
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• A, φ are unknown constants - must be determined from initial 
conditions	


• ω0, in principle, is known and is a characteristic of  the 
physical system	
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dx
dt
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d 2x
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Position:	



Velocity:	



Acceleration:	



This type of pure sinusoidal motion with a single frequency is 
called                   SIMPLE HARMONIC MOTION	
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THE LC CIRCUIT	



 
!!q = ! 1

LC
q

L	



C	

I	


q	



VL +VC = 0 Kirchoff’s law 	


(not Newton this time)	
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