PH421 Clicker questions

Series LRC Circuit

Which admittance plot $|Y(\omega)|$ corresponds to which free decay plot I(t)?

(All plots scaled to 1 at maximum value)

(A)
$$i <-> 1$$
, $ii <-> 2$

Series LRC Circuit

If the admittance $|Y(\omega)|$ and the phase ϕ_l response of a series LCR circuit are as given on the left below, then which oscilloscope trace on the right corresponds a circuit driven below resonance? Red is drive voltage, blue is

current, represented by V_R.

← Suppose that, if you apply a (red) sinusoidal voltage across a series LRC circuit, you measure the (blue) voltage response across the resistor.

← Now, if you now apply a (red) square-wave voltage with the same period to the same circuit, and you measure the (blue) voltage response across the resistor, will you get this?

← Or this?

← Or this? Or something else?

← Suppose that, if you apply a (red) sinusoidal voltage across a series LRC circuit, you measure the (blue) voltage response across the resistor.

← Now, if you now apply a (red) square-wave voltage at the same frequency the same circuit, and you measure the (blue) voltage response across the resistor, will you get this

← Or this?

← Or this? Or something else?

Response functions

A mathematical function can be considered a box that receives input (a drive), and produces output (a response). Here the box tells how to treat each component of a 2-d vector.

Response functions

A circuit can be considered a box that receives input (a drive), and produces output (a response). Again the box tells how to treat each component. We have to know what the components are.

Response functions

A circuit can be considered a box that receives input (a drive), and produces output (a response). Again the box tells how to treat each component. We have to know what the components are.

$$\ddot{q} + 2\beta \dot{q} + \omega_0^2 q = V_0 e^{i\omega t}$$

$$\ddot{I} + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2 I = i\omega V_0 e^{i\omega t}$$

$$\downarrow I + 2\beta \dot{I} + \omega_0^2$$