WEEK 1 SUMMARY



Energy approach to equation of motion:
i.e. find trajectory x(t) if U(X) 1s known
o dx

dt =
-I_-\/Z[E — U(x)]
m

e Special case of U(x)=(15)kx?

found period T (indep of A),

found x(7) = A cos(w?+0)
* Found 3 other forms of A cos(wr+0)
e Learned to apply initial conditions to
determine A, ¢, and also the arbitrary
parameters 1n other 3 forms




Energy approach to equation of motion:

e Harder case of U(0)= MgL_, (1-cos 0)

found -> HO for small theta

found 7 numerically

measured T for pendulum
* Learned to argue qualitatively about time to
move certain distances, comparing T for diff U
e Did NOT learn equation of motion 0(z)




Complex numbers:

 rectangular and polar form and Argand diag.
e complex conjugate

* Buler relation

exp(i¢) = cos¢ +ising

* solving one complex equation is actually
solving 2 simultaneous equations



WEEK 2 SUMMARY



Free, undamped oscillators

k
4.\ L
No fricti
k o friction ] C
IRNRNRRRRRNRNRRRE q
. 1
mx = —kx q= _Eq
Common notation for all
§~-20

P +wgy =0



Force approach to equation of motion of
FREE, UNDAMPED HARMONIC
OSCILLATOR:

i.e. find trajectory O(t) if F(0) 1s known

e Special case of F(0)=-sin(0) -> small angle approx:
F(0)=-0 =>2"d order DE,

Found sinusoidal motion

O(t)=Ce™ +C e ™"
O(t)= Acos(a)ot + q))

Applied 1nitial conditions as before.

E=K+U=110>+1mglLh’
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Free, damped oscillators
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Force approach to equation of motion of
FREE, DAMPED OSCILLATOR

e Add damping force to eqn of motion
* Found decaying sinusoid

X( t) — Ce—ﬂtﬂ'wlt + C*e—ﬁt—iwlt

L e—[}t |:C8+ia)1t n C*e—ia)lt:l

| x_(_t)"= AeP [cos(w,t+9)]

I I I I
2 t 4 b 8




FREE, DAMPED OSCILLATOR

e Damping time t=1/[3

» measures number of oscillationsin & =7
decay time

e apply 1nitial conditions, energy decay

I I I
2 t 4 b 8

t_W
T 28

! x-(_t)"= Ae‘ﬁ "[cos(wt +9)]



WEEK 3 SUMMARY



DRIVEN, DAMPED OSCILLATOR
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CHARGE "Resonance"
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CURRENT 1() = dqd(t) _ iwg(1)
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ADMITTANCE
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DRIVEN, DAMPED OSCILLATOR

e can also rewrite diff eq in terms of I and solve
directly (same result of course)

Ve —Lj—L—Rg=0

C

/A
G+2Bg+wq=—"e"

V.
:>'cj+2ﬁq+a)jq=iwfoe’“”
. | V.
[+2B]+—=iw—e"
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FOURIER SERIES - periodic functions are sums of sines and
cosines of integer multiples of a fundamental frequency. These
“basis functions are orthonormal

£(1)=) a,cosnwt +b, sinnwt

f(0),g() f(1),g(0)
OW : N~
—A T4 T2 304 Tome! —A T4 T2 3Ta T lme!
f(g*g(f) f(0)=g(2)

A
O’Q'Q'Qv 0\/\/
—A T4 T2 3ta T me! A Ta T2 3Ta 1 me!

pPq

T
%Jsin(pa)t)sin(qa)t)dt =0
0

pPq

T
%Jcos(pa)t)cos(qa)t)dt =0
0



ODD functions f(#) = —f(—t). Their Fourier representation
must also be in terms of odd functions, namely sines.

Suppose we have an odd periodic function f(¥) like our
sawtooth wave and you have to find its Fourier series

2.b_ sin(nawt)

n=1,2...

Then the unknown coefficients can be evaluated this way

Integrate over the period of the fundamental
Here’ s the coefficient of x —
the sin(®,t) term! — \»
Plot it on your spectrum! b no J f (t ) SN (nwt ) !
0 \ ™~
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mod Y DRIVING AN OCILLATOR WITH A PERIODIC FORCING
FUNCTION THAT IS NOT A PURE SINE

Oscillator response

V) ‘ w (rad/s
PhIEY) 0 an e 9
Important to know where the
fundamental freq of the
forcing function lies in relation
2w; 3a)0w (rad/s) to the oscillator max response
freq!

I

02+ Forcing function

10
freauencv



DRIVING AN OCILLATOR WITH A PERIODIC FORCING
FUNCTION THAT IS NOT A PURE SINE

V. =V +2Ve”"  (given)

app
§+2BG+w q=V,e" +2V,e”"" (Kirchoff)
=qg=4q,+q,, (lineardiffeq - superposition)
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0.5

FT - you

0.5

know this 0.8
0.6

> 0.4

[l

: time

Observe
what (LRC)
black box
does to an
impulse
function

mod Y

phase(Y)

Are these a)o 2&)0
connected

a by FT??
They’ d
better be -
you find
out!

e

30

(rad/s)
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frequency

This was
harmonic
response
expt - you
know what
black box
(LRC) does
to a single
freq




