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Chapter 1

Introduction

Just as prime numbers can be thought of as the building blocks of the natural numbers,
in a similar fashion, simple groups may be considered the building blocks of finite groups.
More precisely, every group G has a composition series, which is a series of subgroups

1 = G0 EG1 E · · ·EGk = G,

such that Gi+1/Gi is simple for all 0 ≤ i ≤ k − 1, and the Jordan-Hölder Theorem states
that any two composition series of a group G are equivalent. Therefore, the following goals
naturally emerged in finite group theory:

1. Classify all finite simple groups.

2. Find all ways to construct other groups out of simple groups.

Toward the end of the 19th century, much of the research in finite group theory was related
to the search for simple groups. Following the work of German mathematician Otto Hölder
[15] and American mathematician Frank Nelson Cole [7], in 1895 English mathematician
William Burnside found all simple groups of order less than or equal to 1092 [3]. However, it
was Hölder’s result, stating that a group whose order is the product of two or three primes
is solvable [15], that prompted Burnside to consider the following questions:

1. Do there exist non-abelian simple groups of odd order?

2. Do there exist non-abelian simple groups whose orders are divisible by fewer than three
distinct primes?

In 1904, Burnside answered question 2 when he used representation theory to prove that
groups whose orders have exactly two prime divisors are solvable[4]. His proof is a clever
application of representation theory, and while purely group-theoretic proofs do exist, they
are longer and more difficult than Burnside’s original proof. For more information on Burn-
side’s work see [19]. The goal of this paper is to present a representation theoretic proof of
Burnside’s Theorem, providing sufficient background information in group theory and the
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representation theory of finite groups first, and then give a brief outline of a group theoretic
proof.

In this paper we begin by reviewing some definitions and theorems from group theory
in Chapter 2. In particular, we prove Lagrange’s Theorem, the Class Equation, and the
Isomorphism Theorems in Sections 2.2.1 and 2.2.2, which are necessary for the proofs of
the results concerning solvable groups given in Section 2.2.3. In Chapter 3 we give an in-
troduction to the representation theory of finite groups, beginning with a brief discussion
of linear algebra and modules in Sections 3.1 and 3.2. Next, in Section 3.3 we define and
give examples of representations of finite groups and prove that every representation can
be decomposed uniquely into a direct sum of irreducible representations. In Section 3.4 we
introduce characters and prove some results about characters that allow us to determine the
specific irreducible representations of a group and the decomposition of a general represen-
tation into a direct sum of these irreducible representations. Moreover, we prove that the
set of characters of irreducible representations of a finite group G form an orthonormal basis
for the set of class functions on G. We will then present two proofs of Burnside’s Theorem
in Chapter 4. In Section 4.1 we give a proof that relies on results stated in Section 3.4, and
in Section 4.2 we outline a purely group theoretic proof. We finish with some consequences
of Burnside’s Theorem in Chapter 5.
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Chapter 2

Group Theory Background

2.1 Definitions

In this section we begin by reviewing some definitions and results from group theory.
See [8] and [9] for an in-depth introduction to abstract algebra. Recall that a group is a
nonempty set G with a binary operation · : G×G→ G such that

1. (g · h) · k = g · (h · k), for all g, h, k ∈ G.

2. There exists an element 1 ∈ G, called the identity of G, which satisfies g · 1 = 1 · g = g,
for all g ∈ G.

3. For each g ∈ G there exists an element g−1 ∈ G, called the inverse of g, such that
g · g−1 = g−1 · g = 1.

Moreover, a group G is called abelian if g · h = h · g, for all g, h ∈ G. The order of a group
G, denoted |G|, is the cardinality of the set G, and a group is called finite is it has finite
order. Note that when discussing an abstract group G, it is common to use juxtaposition to
indicate the group’s operation. Furthermore, if a group G has the operation +, we use the
conventional notation of 0 for the identity element and −g for the inverse of g ∈ G.

You are probably already familiar with several groups. For example, Z, Q,R, and C are
all groups under addition. These sets, however, are not groups under multiplication because
the identity 0 does not have a multiplicative inverse. Yet, all nonzero elements in Q,R, and
C have multiplicative inverses, so we can conclude that Q \ {0},R \ {0}, and C \ {0} are
groups under multiplication. In fact, all of the above examples of groups are abelian.

Example 2.1.1. For an example of a non-abelian group consider the set of all bijections
of {1, . . . , n} to itself, where the cycle (a1 . . . am) of length m ≤ n denotes the permutation
that takes ai to ai+1 for all 1 ≤ i ≤ m− 1, takes am to a1, and fixes aj for all m+ 1 ≤ j ≤ n.
This set, denoted Sn, is a group of order n! under function composition and is called the
symmetric group of degree n. To see that Sn is not an abelian group for all n > 2, consider the
permutations (12), (23) ∈ Sn. We see that (12)(13) = (132), but (13)(12) = (123) 6= (132).
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A cycle of length 2 is called a transposition, and it turns out that every element of Sn
can be written as a product of transpositions. Although this product might not be unique,
the parity of the number of transpositions is, and therefore we say that g ∈ Sn is an odd
permutation if g is a product of an odd number of transpositions and an even permutation
if g is a product of an even number of transpositions. Moreover, we define the sign of a
permutation g ∈ Sn to be

sgn(g) =

{
−1 if g is an odd permutation

1 if g is an even permutation.

A subgroup of a group G is a nonempty subset H ⊆ G such that for all h, k ∈ H,
hk ∈ H and h−1 ∈ H, often denoted H ≤ G. In fact, to determine whether a nonempty
subset H ⊆ G is a subgroup of G, it suffices to show that gh−1 ∈ H for all g, h ∈ H. This
is referred to as the Subgroup Criterion and it is an easy exercise to show that these two
definitions of a subgroup are equivalent.

Example 2.1.2. For any n ∈ N, consider the subset

nZ = {nk | k ∈ Z} ⊆ Z.

Take any elements x, y ∈ nZ. There exist a, b ∈ Z such that x = na and y = nb. Therefore,
x− y = na− nb = n(a− b) ∈ nZ. Hence, by the Subgroup Criterion, nZ ≤ Z.

A proper subgroup M of G is called maximal if the only subgroups of G containing M
are M and G. A subgroup N of G is called normal, denoted N EG, if for all n ∈ N , g ∈ G,
we have that gng−1 ∈ N . Equivalently, N EG if

gNg−1 = N,

for all g ∈ G. Note that if G is abelian, then each subgroup of G is normal. However, while
every group G has both itself and {1} as normal subgroups, which are referred to as trivial
subgroups, it is not necessarily true that G has any other normal subgroups. A group which
has no nontrivial normal subgroups is called simple.

Example 2.1.3. The alternating group of degree n, denoted An, is the set of all even per-
mutations in Sn. It turns out that An is a simple group for all n ≥ 5 and A5 is the smallest
non-abelian simple group.

Several important subgroups can be generated given a nonempty subset A of a group G.

1. The normalizer of A in G is the subgroup of G defined by

NG(A) = {g ∈ G | gag−1 ∈ A, for all a ∈ A}.

2. The centralizer of a A in G is the subgroup

CG(A) = {g ∈ G | ga = ag, for all a ∈ A}.
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3. Similarly, the center of G is the subgroup

Z(G) = {g ∈ G | gx = xg, for all x ∈ G}.

Notice that Z(G) = CG(G) and Z(G) EG.

4. Moreover, for every subset A ⊆ G, there exists a unique smallest subgroup of G
containing A, namely the subgroup of G generated by A, defined by

〈A〉 =
⋂
A⊆H
H≤G

H,

or equivalently,
〈A〉 = {aε11 aε22 · · · aεnn | n ∈ N, ai ∈ A, εi = ±1}.

A subgroup H ≤ G which is generated by a single element g ∈ G is called cyclic and is
written

H = 〈g〉 = {gn | n ∈ Z}.
The order of an element g ∈ G, denoted |g|, is the smallest positive integer n such that
gn = 1. If no such integer exists, then we say g has infinite order. As a consequence of the
division algorithm, it is easy to see that if H is a cyclic group generated by g ∈ G, then
|H| = |g|.

A group of order pn, where p ∈ N is a prime and n ∈ N, is called a p-group. Similarly, a
subgroup of a group G which is itself a p-group is called a p-subgroup. Suppose G is a group
of order pam, where p is a prime that does not divide m and a ∈ N. A Sylow p-subgroup
of G is a subgroup of order pa. In fact, there exists at least one Sylow p-subgroup of G for
each prime p ∈ N dividing |G|. A proof of this will be given in the following section.

Example 2.1.4. Consider the group S3, which has order 6. S3 has three Sylow 2-subgroups,
〈(12)〉, 〈(23)〉, and 〈(13)〉, and one Sylow 3-subgroup, 〈(123)〉.

For any subgroup N of G and any element g ∈ G, the set

gN = {gn | n ∈ N}

is called a left coset of N in G. We use G/N to denote the set of all left cosets of N in
G, and the index of N in G, denoted |G : N |, is equal to the cardinality of G/N . We will
see in the next section that the set of left cosets of N in G partition G and two cosets gN,
hN ∈ G/N are equal if and only if h−1g ∈ N .

If N is a normal subgroup of G, then G/N forms a group called the quotient group, with
the operation

gN · hN = (gh)N.

Example 2.1.5. Consider the group (Z,+). Since this is an abelian group, all of its sub-
groups are normal. Therefore, for each n ∈ N,Z/nZ is a group. Let g + nZ and h + nZ be
cosets in Z/nZ such that g + nZ = h+ nZ. Then it must hold that g − h ∈ nZ, or in other
words, g ≡ h (mod n). Hence, Z/nZ is the group of integers modulo n containing n distinct
left cosets. In fact, Z/nZ is cyclic and equal to 〈1 + nZ〉.
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Let G and H be groups. A (group) homomorphism is a map φ : G→ H such that for all
g, h ∈ G,

φ(gh) = φ(g)φ(h).

The kernel of the map φ is the set

ker(φ) = {g ∈ G | φ(g) = 1},

and the image of φ is the set

φ(G) = {h ∈ H | h = φ(g) for some g ∈ G}.

A bijective homomorphism between two groups is called a (group) isomorphism. If the map
φ : G→ H is an isomorphism, then G and H are said to be isomorphic, denoted G ∼= H. In
other words, G and H are the same group, up to relabeling of elements.

Example 2.1.6. Recall the groups Z and nZ under addition. For a fixed n ∈ N, the map
φ : Z → nZ defined by φ(k) = nk is an isomorphism. The map ψ : Z → Z/nZ defined
by ψ(k) = k + nZ is also a homomorphism. However, ψ is not an isomorphism, since it is
clearly not injective. Note that it is not necessary for two isomorphic groups to have the
same operation. For example, the map f : (R,+) → (R+,×) defined by f(x) = ex is an
isomorphism, since for all x, y ∈ R, ex+y = exey.

2.2 Important Results

Here we prove some important results from group theory, which are necessary for the
proofs of Burnside’s Theorem presented in Chapter 4.

2.2.1 Lagrange’s Theorem and Consequences

We begin by proving Lagrange’s Theorem, Cauchy’s Theorem, and the Class Equation,
which give us information about the order of a group and its subgroups. We will then
use these results to prove the existence of Sylow p-subgroups, as mentioned in the previous
section, and show that Z(P ) is nontrivial for all p-groups P . These results are all needed
for the representation theoretic proof of Burnside’s Theorem given in Section 4.1.

Theorem 2.2.1. (Lagrange’s Theorem) Let G be a finite group and H ≤ G. Then |H|
divides |G| and

|G : H| = |G|
|H|

.

Proof. Let G be a finite group and let H ≤ G such that |H| = m and |G : H| = k. For
any g ∈ G, define a map φg : H → gH by φg(h) = gh. This map is clearly surjective.
Furthermore, for any distinct h1 6= h2 ∈ H, we have that gh1 6= gh2. Thus φg is a bijection,
so |gH| = |H| = m.

7



It is easy to see that the set of left cosets of H in G form a partition of G. First note
that for any g ∈ G, g ∈ gH. Thus, G ⊆

⋃
g∈G gH, and clearly

⋃
g∈G gH ⊆ G. Therefore,

G =
⋃
g∈G

gH.

To show that left cosets are disjoint, suppose that for distinct cosets g1H 6= g2H ∈ G/H,
there exists an element x ∈ g1H ∩ g2H. Then there exist elements h1, h2 ∈ H such that
x = g1h1 = g2h2. Therefore, g1 = g2h2h

−1
1 , so for any g1h ∈ g1H,

g1h = (g2h2h
−1
1 )h = g2(h2h

−1
1 h) ∈ g2H.

Hence, g1H ⊆ g2H. But we have seen that |g1H| = |g2H|, so g1H = g2H, which is a
contradiction. Thus, the k left cosets of H in G are in fact disjoint and, hence, partition
G. Since each has cardinality m, it follows that |G| = km. Therefore |H| divides |G| and
|G|
|H| = k.

Corollary 2.2.2. (Cauchy’s Theorem) Let G be a finite abelian group, and let p ∈ N be a
prime dividing |G|. Then G has an element of order p.

Proof. We will perform induction of |G|. Take any nonidentity element g ∈ G. If |G| = p,
then by Lagrange’s Theorem, g has order p. Now assume that |G| > p and that all subgroups
of order less than |G| whose orders are divisible by p have an element of order p.

First consider the case where p divides the order of g. Then we can write |g| = np, for
some n ∈ N. Thus, 1 = gnp = (gn)p, so the order of gn must divide p. But p is prime, so
|gn| = p.

So we now consider the case where p does not divide the order of g. Let H = 〈g〉, which
is a normal subgroup of G, since G is abelian. By Lagrange’s Theorem, |G/H| < |G|, since
H is nontrivial. Moreover, it must hold that p divides |G/H|, because p divides |G|, but does
not divide |H|. Hence, by induction, G/H contains an element of order p, say xH. We have
that xp ∈ H, but x /∈ H, so 〈xp〉 6= 〈x〉, giving that |xp| < |x|. By Lagrange’s Theorem, we
find that |xp| divides |x|, so we have that p divides |x|. This brings us back to the previous
case. So, by induction, G has an element of order p.

Let G be a group and X a set. A group action of G on X is a map · : G×X → X such
that

1. g · (h · x) = (gh) · x, for all g, h ∈ G, x ∈ X,

2. 1 · x = x, for all x ∈ X.

In fact, the action of a group G on a set X induces an equivalence relation ∼ on X, where
we say that x ∼ y if there exists g ∈ G such that x = g · y. For x ∈ X, the orbit of G
containing x is the equivalence class

[x] = {g · x | g ∈ G}.
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We can define a group action of G on itself by conjugation, i.e. for all g, x ∈ G,

g · x = gxg−1.

It is easy to check that this action satisfies the conditions above to be a group action.
Moreover, the orbits of G with respect to this action are called the conjugacy classes of G.

Theorem 2.2.3. (The Class Equation) Let G be a finite group, and let g1, g2, . . . , gn be
representatives of the distinct conjugacy classes of G that are not contained in Z(G). Then,

|G| = |Z(G)|+
n∑
i=1

|G : CG(gi)|.

Proof. Let G be a finite group. By definition, if z ∈ Z(G), then gzg−1 = z for all g ∈ G,
so {z} is a conjugacy class of G containing a single element. Write Z(G) = {1, z2, . . . , zk},
and let K1, . . . , Kn denote the distinct conjugacy classes of G not contained in Z(G) with
respective representatives g1, g2, . . . , gn. Since conjugation is a group action of G on itself,
and thus induces an equivalence relation on G, the conjugacy classes partition G. Hence we
have

|G| =
k∑
i=1

1 +
n∑
i=1

|Ki| = |Z(G)|+
n∑
i=1

|Ki|.

For each 1 ≤ i ≤ n, define a map φi : Ki → G/CG(gi) by

φi(ggig
−1) = gCG(gi).

Suppose that for some g, h ∈ G, ggig
−1 = hgih

−1. Then h−1ggig
−1h = gi, so we have that

h−1g ∈ CG(gi), which implies that gCG(gi) = hCG(gi). Therefore, φi is well-defined. Now
take any distinct elements ggig

−1 6= hgih
−1 ∈ Ki. Then h−1ggi 6= gih

−1g, so h−1g /∈ CG(gi).
Thus, gCG(gi) 6= hCG(gi), so we have that φi is injective. We can easily see that φi is also
surjective, so |Ki| = |G/CG(gi)| = |G : CG(gi)|. Hence,

|G| = |Z(G)|+
n∑
i=1

|G : CG(gi)|.

Corollary 2.2.4. (Sylow’s Theorem) Let G be a group of order pam, where a ∈ N and p ∈ N
is a prime that does not divide m. Then there exists a Sylow p-subgroup of G.

Proof. We will perform induction on |G|. If |G| = 1, the result is trivial. Assume that
Sylow p-subgroups exist for all groups of order less than |G|. First consider the case where
p divides |Z(G)|. Since Z(G) is an abelian group, then by Cauchy’s Theorem, Z(G) has
a cyclic subgroup, N , of order p. So by Lagrange’s Theorem, |G/N | = pa−1m. Therefore,
by induction, G/N has a Sylow p-subgroup, P , of order pa−1. By the Fourth Isomorphism
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Theorem (given in the following section), there exists a subgroup P ≤ G containing N such
that P = P/N . Hence, by Lagrange’s Theorem, |P | = pa, so P is a Sylow p-subgroup of G.

Now consider the case where p does not divide |Z(G)|. By the Class Equation, we have
that

|G| = |Z(G)|+
n∑
i=1

|G : CG(gi)|,

where g1, g2, . . . , gn are representatives of the distinct conjugacy classes of G that are not
contained in Z(G). It must hold that for some 1 ≤ i ≤ n, p - |G : CG(gi)|, so we have that
|CG(gi)| = pak, for some k ∈ N with p - k. Moreover, since gi /∈ Z(G), then CG(gi) 6= G,
so |CG(gi)| < |G|. Therefore, by induction, CG(gi) has a Sylow p-subgroup, P , of order pa,
which is also a subgroup of G. Thus, P is a Sylow p-subgroup of G.

Corollary 2.2.5. Let p ∈ N be prime and a ∈ N. If P is a group of order pa, then Z(P ) 6= 1.

Proof. Let P be a finite group of order pa, where p ∈ N is prime and a ∈ N. Let g1, g2, . . . , gn
be representatives of the distinct conjugacy classes of P that are not contained in Z(P ). By
the Class Equation, we have that

|P | = |Z(P )|+
n∑
i=1

|P : CP (gi)|.

For each 1 ≤ i ≤ n, gi /∈ Z(P ). Thus, CP (gi) 6= P , so |P : CP (gi)| 6= 1. By Lagrange’s
Theorem, p must divide |P : CP (gi)|. Therefore, p divides

∑n
i=1 |P : CP (gi)|, and since p

divides |P |, then it must hold that p divides |Z(P )|. Therefore, Z(P ) 6= 1.

2.2.2 The Isomorphism Theorems

In this section we will prove the Isomorphism Theorems for groups. These are funda-
mental results in group theory, which help us characterize the relationships between quotient
groups and subgroups of a group G.

Theorem 2.2.6. (The First Isomorphism Theorem) Let φ : G → H be a group homomor-
phism, and let K = ker(φ). Then

G/K ∼= φ(G).

Proof. Let φ : G→ H be a group homomorphism, and let K = ker(φ). For any g ∈ G and
k ∈ K, gkg−1 ∈ K, since

φ(gkg−1) = φ(g)φ(k)φ(g−1) = φ(g)φ(g−1) = φ(gg−1) = φ(1) = 1.

Thus, K EG.
Define a map Φ : G/K → φ(G) by Φ(gK) = φ(g). Take any cosets gK, hK ∈ G/K such

that gK = hK. Then h−1g ∈ K, so φ(h−1g) = 1. Since φ is a homomorphism, then

φ(h) = φ(h)φ(h−1g) = φ(h)φ(h−1)φ(g) = φ(hh−1)φ(g) = φ(g).
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Hence, Φ(gK) = Φ(hK), so Φ is well-defined.
Take any cosets gK, hK ∈ G/K. Then, since φ is a homomorphism,

Φ(gK · hK) = Φ(ghK) = φ(gh) = φ(g)φ(h) = Φ(gK)Φ(hK).

Therefore, Φ is a homomorphism.
Now suppose that Φ(gK) = Φ(hK) for some cosets gK, hK ∈ G/K. Then φ(g) = φ(h).

So, by a similar argument as above, h−1g ∈ K, which implies that gK = hK. Thus, Φ is
injective, and it is easy to see that Φ is surjective. Therefore, we can conclude that Φ is an
isomorphism, so

G/K ∼= φ(G).

Theorem 2.2.7. (The Second Isomorphism Theorem) Let A and B be subgroups of a group
G, such that A ≤ NG(B). Then AB ≤ G, B E AB, A ∩B E A, and

AB/B ∼= A/(A ∩B).

Proof. Let A and B be subgroups of a group G, such that A ≤ NG(B). Take any a ∈ A,
b ∈ B. Since A ≤ NG(B), then aba−1 ∈ B, so ab = (aba−1)a ∈ BA. Thus AB ⊆ BA.
Likewise, we see that ba = a(a−1ba) ∈ AB. Hence, AB = BA.

Now take any x, y ∈ AB, where x = a1b1 and y = a2b2, for some a1, a2 ∈ A, b1, b2 ∈ B.
Then xy−1 = a1b1b

−1
2 a−1

2 . Since AB = BA, then we have that (b1b
−1
2 )a−1

2 = a3b3, for some
a3 ∈ A, b3 ∈ B, so xy−1 = a1a3b3 ∈ AB. Therefore, by the Subgroup Criterion, AB ≤ G.
Since A and B are both subgroups of NG(B), this argument can be used to show that
AB ≤ NG(B). Hence, B E AB.

Define a map φ : A→ AB/B by φ(a) = aB. The fact that φ is a homomorphism follows
from the definition of the group operation in AB/B, and it is also easy to see that φ is
surjective. Moreover, we see that ker(φ) = {a ∈ A | aB = B} = A ∩ B. Thus, by the First
Isomorphism Theorem, we have that A ∩B E A and

AB/B ∼= A/(A ∩B).

Theorem 2.2.8. (The Third Isomorphism Theorem) Let H and K be normal subgroups of
a group G such that H ≤ K. Then K/H EG/H and

(G/H)/(K/H) ∼= G/K.

Proof. Let H and K be normal subgroups of a group G such that H ≤ K. Take any cosets
kH ∈ K/H, gH ∈ G/H. Then gH ·kH ·(gH)−1 = gkg−1H ∈ K/H, since KEG. Therefore,
K/H EG/H.
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Define a map φ : G/H → G/K by φ(gH) = gK. Take any cosets g1H, g2H ∈ G/H such
that g1H = g2H. Then g−1

2 g1 ∈ H. Since H ≤ K, then g−1
2 g1 ∈ K. Hence, g1K = g2K, so

φ is well-defined. It is easy to see that φ is a surjective homomorphism. Note that

ker(φ) = {gH ∈ G/H | φ(gH) = K}
= {gH ∈ G/H | gK = K}
= {gH ∈ G/H | g ∈ K}
= K/H.

So, by the First Isomorphism Theorem,

(G/H)/(K/H) ∼= G/K.

Theorem 2.2.9. (The Fourth Isomorphism Theorem) Let N EG. Then there is a bijection
between the set of subgroups A of G containing N and the set of subgroups A/N of G/N .
Moreover, for all subgroups A,B of G containing N ,

1. A ≤ B if and only if A/N ≤ B/N .

2. If A ≤ B, then |B : A| = |B/N : A/N |.

3. 〈A,B〉/N = 〈A/N,B/N〉.

4. (A ∩B)/N = (A/N) ∩ (B/N).

5. AEG if and only if A/N EG/N .

Proof. Let N E G. Define a map φ : G → G/N by φ(g) = gN . Note that φ is clearly a
homomorphism as a consequence of the definition of the group operation in G/N .

Let A/N ≤ G/N . If we take any a ∈ A, then φ(a) = aN ∈ A/N , so A ⊆ φ−1(A/N).
Similarly, if we take any g ∈ φ−1(A/N), then φ(g) ∈ A/N , so g ∈ A. Thus, A = φ−1(A/N).
Take any elements g, h ∈ φ−1(A/N). Then

φ(gh−1) = φ(g)φ(h−1) = φ(g)(φ(h))−1 ∈ A/N,

since φ(g), φ(h) ∈ A/N , so gh−1 ∈ φ−1(A/N). Hence, by the Subgroup Criterion, A ≤ G.
Conversely, let A be a subgroup of G containing N , and take any cosets gN, hN ∈ φ(A).

Then
gN · (hN)−1 = gN · h−1N = gh−1N ∈ φ(A),

since gh−1 ∈ A. Moreover, it is easy to see that φ(A) = A/N . Thus, by the Subgroup
Criterion, A/N ≤ G/N.

Therefore, we can conclude that there is a bijection between the set of subgroups A of G
containing N and the set of subgroups A/N of G/N . The remaining results follow directly
as a consequence of this bijection, so their proofs will be omitted.
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2.2.3 Solvability

Burnside’s Theorem tells us that a group whose order has exactly two prime divisors is
solvable. Hence, in this section we will prove some results concerning solvable groups.

Definition 2.2.10. A group G is solvable if it has a chain of subgroups

1 = G0 EG1 E . . .EGk = G,

such that Gi+1/Gi is abelian for all 0 ≤ i ≤ k − 1.

Proposition 2.2.11. Let G be a group and N EG. If N and G/N are solvable, then G is
solvable.

Proof. Let G be a group and N E G such that N and G/N are solvable. Then there exist
respective series of subgroups

1 = N0 EN1 E · · ·ENk = N

and
1 = G0 EG1 E · · ·EGm = G/N,

such that Nj+1/Nj and Gi+1/Gi are abelian for all 0 ≤ j ≤ k − 1 and 0 ≤ i ≤ m − 1. By
the Fourth Isomorphism Theorem, for each Gi there exists Gi ≤ G such that N E Gi and
Gi = Gi/N . Moreover,

Gi EGi+1 ⇔ Gi EGi+1,

for all 0 ≤ i ≤ m− 1, and by the Third Isomorphism Theorem,

Gi+1/Gi = (Gi+1/N)/(Gi/N) ∼= Gi+1/Gi.

Therefore, G has the following chain of subgroups

1 = N0 EN1 E · · ·ENk = N = G0 EG1 E · · ·EGm = G,

such that each quotient factor is abelian. Therefore, G is solvable.

Corollary 2.2.12. All p-groups are solvable.

Proof. Let P be a p-group. We will induct on n, where |P | = pn. If |P | = p, then P is
cyclic. Therefore, P is abelian and, hence, solvable. Suppose that for all 1 ≤ k < n, groups
of order pk are solvable. Let |P | = pn. By Corollary 2.2.5, Z(P ) 6= 1. Thus, |P/Z(P )| = pk

for some k < n. So, by the inductive hypothesis, P/Z(P ) is solvable. Since Z(P ) is abelian,
then Z(P ) is solvable. Thus, by Lemma 2.2.11, P is solvable. Therefore, by induction, all
p-groups are solvable.
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Chapter 3

Introduction to the Representation
Theory of Finite Groups

Although Burnside’s Theorem is group theoretic in nature, the proof presented in Section
4.1 uses results from representation theory. Over 50 years after this representation theoretic
proof was given, proofs of the theorem that do not use representation theory were discovered,
one of which we will outline in Section 4.2. Yet, as we will see, these group theoretic proofs are
much more difficult, in the sense that they are longer and require a much stronger background
in finite group theory. Thus, we will provide a brief introduction to the representation theory
of finite groups in this chapter. See [8], [12], and [17] for a more complete introduction to
this area.

3.1 Preliminary Definitions

First we will review some definitions. Recall that a ring is an additive abelian group
(R,+) with a multiplicative binary operation (often denoted by juxtaposition) such that

1. r(st) = (rs)t, for all r, s, t ∈ R.

2. r(s+ t) = rs+ rt, for all r, s, t ∈ R.

Moreover, a ring R is commutative if rs = sr, for all r, s ∈ R. If there exists an element
1 ∈ R such that 1r = r1 = r, for all r ∈ R, then R is called a ring with identity. Note that
in the context of rings, 0 is used to indicate the ring’s additive identity, and for an element
r ∈ R, the additive inverse is denoted −r.

Many of the examples of groups given in Section 2.1 are in fact rings. For example, Z,
Z/nZ, Q, R, and C are all commutative rings with identity. Additionally, given a ring R, it
is possible to construct other rings from it.

Example 3.1.1. For any ring R and any n ∈ N, the set of n × n matrices with entries
in R forms a ring under matrix addition and multiplication, denoted Mn(R). Note that if
R is nontrivial, then Mn(R) is not a commutative ring for any n ≥ 2. However, if R has
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an identity element, then so does Mn(R). The set of all invertible matrices in Mn(R) is a
subring of Mn(R) called the general linear group of degree n over R and is denoted GLn(R).

Example 3.1.2. Let R be a ring with identity such that 0 6= 1, and let G = {g1, . . . , gn} be
any finite group. Then we can define the group ring

RG = {a1g1 + . . .+ angn | ai ∈ R}.

Here, addition is defined componentwise and multiplication is defined using distributive laws.
The group ring RG is commutative if and only if G is abelian.

A field F is a commutative ring with identity such that each nonzero x ∈ F has a
multiplicative inverse x−1 ∈ F. Since Q \ {0}, R \ {0}, and C \ {0} are all groups under
multiplication, it is easy to see that in fact Q,R, and C are fields. Our other example, Z/nZ,
is a field if and only if n is a prime number. For instance, the coset 2 + 4Z does not have a
multiplicative inverse in Z/4Z, so Z/4Z is not a field.

Given a field F, recall that a vector space V over F is an abelian group (V,+) with scalar
multiplication F× V → V such that

1. (a+ b)v = av + bv, for all a, b ∈ F, v ∈ V .

2. (ab)v = a(bv), for all a, b ∈ F, v ∈ V .

3. a(v + w) = av + aw, for all a ∈ F, v, w ∈ V .

4. 1v = v, for all v ∈ V .

A basis of a vector space V is a minimal spanning set for V , and the dimension of V , denoted
dim(V ), is defined to be the number of elements in a basis of V . See [14] for a proof of the
Dimension Theorem, which states that the dimension of a vector space V is independent of
the choice of basis for V .

Example 3.1.3. For example, if F is any field, then for all n ∈ N,

Fn = {(a1, . . . , an) | ai ∈ F}

is an n-dimensional vector space over F with basis {e1, . . . , en}, where ei = (0, . . . , 0, 1, 0, . . . , 0)
is the element of Fn with the identity in the ith component and zeros elsewhere.

Example 3.1.4. Not all vector spaces are finite dimensional. The set

F[x] = {anxn + . . .+ a1x+ a0 | n ∈ N, ai ∈ F}

is an infinite dimensional vector space over F. To see this, suppose that dim(F[x]) < ∞.
Then F[x] has a finite basis, so there is an element in this basis of highest degree, say n.
However, any polynomial of degree n+ 1 can not be written in terms of this basis, which is
a contradiction. Thus, we must have that dim(F[x]) =∞.
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Let V and W be any vector spaces over F. A function T : V → W is called a linear
transformation provided that

1. T (v + w) = T (v) + T (w), for all v, w ∈ V .

2. T (av) = aT (v), for all v ∈ V , a ∈ F.

If V and W are both finite dimensional, say dim(V ) = n and dim(W ) = m, then there exists
a matrix A ∈ Mm×n(F) such that T (v) = Av, for all v ∈ V . Such a matrix A is called a
matrix representation of the linear transformation T and depends on the bases chosen for V
and W .

Now let V be a finite dimensional vector space. We define the trace of a linear transfor-
mation T : V → V to be the trace of any matrix representation of T . Recall that the trace
of a square matrix is the sum of the elements on the diagonal and that similar matrices have
the same trace.

An eigenvalue of a linear transformation T : V → V is a scalar λ ∈ F such that T (v) = λv,
for some nonzero v ∈ V . Such an element v ∈ V is called an eigenvector of T corresponding
to λ. The characteristic polynomial of T is the monic polynomial

f(x) = det(xI − T ),

where the determinant of a linear transformation T is defined to be the determinant of any
matrix representation of T . Thus, the roots of the characteristic polynomial of T are the
eigenvalues of T . Moreover, the minimal polynomial of T is the unique polynomial p(x)
satisfying

1. p(x) is monic.

2. p(T ) is the 0 map.

3. If f(T ) = 0 for some polynomial f(x), then p(x) | f(x).

Let V be an n-dimensional vector space and T : V → V be a linear transformation. If T has
n distinct eigenvalues or, equivalently, if the minimal polynomial of T has n distinct roots,
then there exists a basis of V such that the matrix representation of T is a diagonal matrix
with these distinct eigenvalues on the diagonal. As a consequence, the trace of T is the sum
of the eigenvalues of T . See [14] for a more in-depth discussion of diagonalizable matrices.

Example 3.1.5. We use Hom(V,W ) to denote the set of all linear transformations from
V to W . It is easy to check that Hom(V,W ) is also a vector space over F. If V and W
are both finite dimensional, with dim(V ) = n and dim(W ) = m, then we can define a map
φ : Hom(V,W ) → Mm×n(F) taking a linear transformation to its matrix representation in
terms of some fixed bases. The map φ is in fact an isomorphism, so we have that

dim(Hom(V,W )) = (dim(V ))(dim(W )).
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Example 3.1.6. Given a vector space V over F, the dual space of V , denoted V ∗, is the
space Hom(V,F) and elements of V ∗ are called linear functionals. By the above argument,
we have that

dim(V ∗) = dim(V ).

Moreover, if V is finite dimensional, then given a basis {v1, . . . vn} of V we can define the
dual basis {v∗1, . . . , v∗n} of V ∗ by

v∗i (vj) =

{
1 if i = j

0 if i 6= j.

Hence, there is a natural pairing between V and V ∗, denoted 〈 , 〉, where 〈v∗, w〉 = v∗(w),
for all w ∈ V , v∗ ∈ V ∗.

The dual space V ∗ will be useful in proving some results in the following sections.

3.2 Modules and Tensor Products

Before beginning our discussion of representations, it is necessary to introduce modules
and tensor products.

Definition 3.2.1. Similar to a vector space, given a ring R, a left R-module is an abelian
group (M,+) with an action R×M →M such that

1. (r + s)m = rm+ sm, for all r, s ∈ R, m ∈M .

2. (rs)m = r(sm), for all r, s ∈ R, m ∈M .

3. r(m+ n) = rm+ rn, for all r ∈ R, m,n ∈M .

4. If R has identity, then 1m = m, for all m ∈M .

A right R-module is defined in a similar fashion, with the action M × R → M defined by
m · r := rm. If R is commutative, then any left R-module is also a right R-module, and
therefore we just refer to it as an R-module.

Example 3.2.2. LetG be any additive abelian group. Then we can think ofG as a Z-module
by defining for any n ∈ Z, g ∈ G,

ng =


g + g + · · ·+ g(n times) if n > 0

0 if n = 0

−g − g − · · · − g(−n times) if n < 0.

Example 3.2.3. An R-module F is called free on a subset A ⊆ F if for all nonzero elements
x ∈ F there exist unique a1, . . . an ∈ A and unique r1, . . . rn ∈ R\{0} such that x =

∑n
i=1 riai,

for some n ∈ N. The set A is called a basis for F , and |A| is called the rank of F . In fact,
given any set A there exists a free R-module on A, denoted F (A), consisting of all finite
R-linear combinations of elements of A.
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Example 3.2.4. If R is any ring with identity, then for all n ∈ N,

Rn = {(r1, . . . , rn) | ri ∈ R}

is an R-module. In fact, Rn is a free R-module of rank n with basis {e1, . . . , en}, where
ei = (0, . . . , 0, 1, 0, . . . , 0) is the element of Rn with the identity in the ith component and
zeros elsewhere.

Definition 3.2.5. Let R be any ring, M be a right R-module, N be a left R-module, and
F (M×N) be the free Z-module on M×N . Define H to be the normal subgroup of F (M×N)
generated by all elements of the form

1. (m1 +m2, n)− (m1, n)− (m2, n),

2. (m,n1 + n2)− (m,n1)− (m,n2), and

3. (mr, n)− (m, rn),

for m,mi ∈ M,n, ni ∈ N, r ∈ R. The tensor product of M and N over R is the quotient
group

M ⊗R N := F (M ×N)/H.

Elements of M ⊗RN of the form m⊗n = (m,n) +H are called simple tensors, and in fact,
each element of M ⊗R N can be written as a finite sum of simple tensors.

As a direct consequence of the definition of M ⊗RN , we have the following properties of
tensors:

1. (m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n,

2. m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2,

3. mr ⊗ n = m⊗ rn, and

for all m,mi ∈M,n, ni ∈ N, r ∈ R.

Example 3.2.6. Let m,n ∈ N with d = gcd(m,n). Then, we have that

Z/mZ⊗Z Z/nZ ∼= Z/dZ.

First, notice that Z/mZ⊗Z Z/nZ is a cyclic group generated by 1⊗ 1, since for any element
a⊗ b ∈ Z/mZ⊗Z Z/nZ, we can write

a⊗ b = a⊗ (b · 1)

= ab⊗ 1

= ab · 1⊗ 1

= ab(1⊗ 1).
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Moreover, the order of Z/mZ ⊗Z Z/nZ divides d, since m(1 ⊗ 1) = m ⊗ 1 = 0 ⊗ 1 = 0
and n(1 ⊗ 1) = 1 ⊗ n = 1 ⊗ 0 = 0, implying that d(1 ⊗ 1) = 0. Now define a map
φ : Z/mZ⊗Z Z/nZ→ Z/dZ by

φ(a⊗ b) = ab (mod d),

and extend linearly to sums of simple tensors. Therefore, φ is a homomorphism. We have
that φ(1⊗ 1) = 1 ∈ Z/dZ, which has order d, so 1⊗ 1 ∈ Z/mZ⊗Z Z/nZ has order at least
d, giving that Z/mZ⊗Z Z/nZ has order at least d. Therefore, |Z/mZ⊗Z Z/nZ| = d, so φ is
an isomorphism, i.e.

Z/mZ⊗Z Z/nZ ∼= Z/dZ.

Example 3.2.7. Let V and W vector spaces. Define a map φ : V ∗ ⊗W → Hom(V,W ) by

φ(v∗ ⊗ w) = fv∗,w,

where fv∗,w is the linear transformation V → W defined by fv∗,w(u) = v∗(u)w. Since each
element of V ⊗W can be written as a sum of simple tensors, φ is clearly a homomorphism.
Furthermore, suppose v∗ ⊗ w ∈ ker(φ). Then, fv∗,w(u) = v∗(u)w = 0 for all u ∈ V . If v∗ is
the 0-map, then v∗ ⊗ w = 0⊗ w = 0. Now suppose v∗ 6≡ 0. Then, there is some u ∈ V such
that v∗(u) 6= 0. Hence, we must have that w = 0, so v∗⊗w = v∗⊗ 0 = 0. Thus, ker(φ) = 0,
so φ is injective. Since, dim(Hom(V,W )) = dim(V ∗ ⊗W ), then we have that

Hom(V,W ) ∼= V ∗ ⊗W.

3.3 Representations and Complete Reducibility

In this section we define a representation of a finite group. A representation associates
each element of a group with an invertible matrix so that the group operation may be viewed
as matrix multiplication. Studying group representations is motivated by the fact that it
enables us to examine the structure of a group in the context of linear algebra. Note that
all groups considered in the following sections are finite and that all vector spaces are over
C.

Definition 3.3.1. Let G be a finite group and V be a finite dimensional vector space over
C. A representation of G on V is a homomorphism ρ : G → GL(V ). For each g ∈ G,
ρg := ρ(g) is a linear transformation from V to V .

Equivalently, ρ : G→ GL(V ) is a representation of G on V if and only if

g · v := ρg(v)

defines a group action of G on V . Therefore, it is common to refer to V as a representation
of G. Moreover, this makes V into a C[G]-module with the action(∑

zigi

)
· v =

∑
zi(gi · v),
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for all
∑
zigi ∈ C[G], v ∈ V .

A subrepresentation of V is a subspace W ⊆ V such that g · w ∈ W , for all g ∈ G,
w ∈ W , and a representation is called irreducible if it does not have any proper, nontrivial
subrepresentations. Moreover, a linear transformation φ : V → W is called a G-linear map
provided that φ(gv) = gφ(v), for all g ∈ G, v ∈ V .

Given representations V and W of a group G, we can use them to generate other repre-
sentations of G. For instance, the direct sum

V ⊕W = {v + w | v ∈ V,w ∈ W}

and the tensor product V ⊗W are representations of G with the respective actions

g · (v + w) = gv + gw

and
g · (v ⊗ w) = gv ⊗ gw,

for all g ∈ G, v ∈ V,w ∈ W . Additionally, V ∗ is a representation of G. To see this, define
the dual representation of ρ : G→ GL(V ) to be ρ∗ : G→ GL(V ∗) with

ρ∗g = (ρg−1)t,

for all g ∈ G. Note that this preserves the pairing described in Example 3.1.6, i.e.

〈ρ∗g(v∗), ρg(v)〉 = 〈v∗, v〉.

Thus, as a consequence of Example 3.2.7, we have that Hom(V,W ) is a representation of G,
with the action

(g · φ)(v) = gφ(g−1v),

for all g ∈ G, φ ∈ Hom(V,W ).

Example 3.3.2. Let U = C and let G act trivially on U , i.e. g · u = u for all g ∈ G, u ∈ U .
Then U is called the trivial representation of G and is clearly irreducible. The regular
representation R of G is defined to be the vector space over C with basis {vg | g ∈ G}, where
G acts on R by

h ·
∑
g∈G

zgvg =
∑
g∈G

zgvhg,

for all h ∈ G,
∑

g∈G zgvg ∈ R.

Example 3.3.3. Consider the dihedral group D8 = {1, r, r2, r3, s, rs, rs2, rs3}, which is the
group of symmetries of a square, where r denotes a counterclockwise rotation of 90◦ and s
denotes a reflection across a line of symmetry. Therefore, D8 has the following relations:
r4 = 1, s2 = 1, and (rs)2 = 1. Define matrices

R =

(
0 1
−1 0

)
and S =

(
1 0
0 −1

)
,
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and define a function ρ : D8 → GL2(C) by

ρ(risj) = RiSj,

for 0 ≤ i ≤ 3, 0 ≤ j ≤ 2. It is easy to check that ρ is a homomorphism and also that
R4 = S2 = (RS)2 = I. Thus, it follows that ρ is a 2-dimensional representation of D8.

Proposition 3.3.4. Let V be a representation of a group G, and let W be a subrepresentation
of V . Then there exists a subrepresentation W ′ ⊆ V such that V = W ⊕W ′.

Proof. Let V be a representation ofG andW a subrepresentation of V . ThenW is a subspace
of the vector space V . Let BW = {w1, . . . , wr} be a basis for W , and let dim(V ) = n. Then
we know from linear algebra that BW can be extended to a basis for V by adding on
appropriate linearly independent vectors {u1, . . . , un−r}. Then U = span{u1, . . . , un−r} is a
subspace of V such that V = W ⊕U . See [14] for more on extending bases of vector spaces.

Let π0 : V → W be the projection of V onto W , i.e. for any v = w + u ∈ V written
uniquely with w ∈ W,u ∈ U , we define

π0(v) = w.

It is easily checked that π0 is a linear transformation. Define a map π : V → W by

π(v) =
∑
g∈G

g(π0(g
−1v)).

Since π0 is a linear transformation, then it follows from the properties of group actions that
π is also a linear transformation. We claim that, in fact, π is a G-linear map. Take any
h ∈ G, v ∈ V . Then by definition,

π(hv) =
∑
g∈G

g(π0(g
−1(hv))) =

∑
g∈G

g(π0(g
−1hv)).

Let x = h−1g. Then x−1 = g−1h and g = hx. By recognizing that summing over all x ∈ G
is equivalent of summing over all g ∈ G, we see that

π(hv) =
∑
x∈G

hx(π0(x
−1v)) = h

∑
x∈G

x(π0(x
−1v)) = hπ(v).

Therefore, π is G-linear. Moreover, for any w ∈ W ,

π(w) =
∑
g∈G

g(g−1w) =
∑
g∈G

w = |G|w.

Thus, π
(

1
|G|w

)
= w, so π is surjective.

Now let W ′ = ker(π), which is a subspace of V that is invariant under the action of G
since π is G-linear. Therefore, by definition, W ′ is a subrepresentation of V . Furthermore,
W ∩W ′ = {0}, so we can conclude that V = W ⊕W ′.
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Lemma 3.3.5. (Schur’s Lemma) Let V and W be irreducible representations of a group G,
and let φ : V → W be a G-linear map. Then

1. Either φ is an isomorphism or φ = 0.

2. If V = W , then φ = zI, for some z ∈ C.

Proof. For 1, let V and W be irreducible representations of G, and let φ : V → W be a
G-linear map. For any g ∈ G and v ∈ ker(φ), we have gv ∈ ker(φ), since

φ(gv) = gφ(v) = g · 0 = 0.

Therefore ker(φ) is a subrepresentation of G, and since V is irreducible, either ker(φ) = 0
or ker(φ) = V . Similarly, φ(V ) is a subrepresentation of W . Thus, either φ(V ) = W or
φ(V ) = 0. Therefore, either φ is an isomorphism or φ = 0.

For 2, note that C is algebraically closed, i.e. every non-constant polynomial of one
variable with coefficients in C has a root in C. In particular, the characteristic polynomial
of φ has roots in C, so there exists z ∈ C such that ker(φ − zI) 6= 0. Therefore, by 1,
ker(φ− zI) = V , so φ = zI.

Theorem 3.3.6. (Complete Reducibility) Let V be a representation of a group G. Then V
can be decomposed into a direct sum

V = V ⊕a1
1 ⊕ · · · ⊕ V ⊕ak

k ,

such that each Vi is a distinct irreducible representation of G. This decomposition into k
factors is unique, along with the Vi and their respective multiplicities ai.

Proof. As a result of Proposition 3.3.4, any representation V of a group G can be written as
a direct sum of irreducible representations. Let V = V ⊕a1

1 ⊕ · · · ⊕ V ⊕ak
k be a decomposition

of V into irreducible representations and suppose W is another representation of G with
decomposition into irreducible representations W = W⊕b1

1 ⊕ · · · ⊕W⊕bm
m .

Let T : V → W be a G-module homomorphism such that T is nonzero on the irreducible
representation Vi. Then by Schur’s Lemma, T |Vi

(V ) = Wj for some 1 ≤ j ≤ m. Hence,
Vi ∼= Wj and ai = bj. Now let T : V → V be the identity map. Then, by the above
argument, the decomposition of V into irreducible representations must be unique.

Complete reducibility should not be taken for granted, because it does not hold in general.
In particular, this property fails when considering representations on vector spaces over finite
fields. Since we have complete reducibility in the case of representations of finite groups
on vector spaces over C, then we can thoroughly understand the representation theory by
understanding the irreducible representations. Hence, our goals are to:

1. Determine all of the irreducible representations of G.

2. Determine the multiplicities ai in the decomposition V = V ⊕a1
1 ⊕ · · · ⊕ V ⊕ak

k of an
arbitrary representation V of G.
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Example 3.3.7. Consider the group S3. We know that the trivial representation U is
an irreducible representation of S3. However, this is not the only 1-dimensional irreducible
representation of S3. The alternating representation is the 1-dimensional vector space U ′ = C
with the action

g · u = sgn(g)u,

for all g ∈ S3, u ∈ U ′. Recall that, as mentioned in Example 2.1.1,

sgn(g) =

{
−1 if g is an odd permutation

1 if g is an even permutation.

Consider the 3-dimensional vector space C3 with the action

g · (z1, z2, z3) = (zg−1(1), zg−1(2), zg−1(3)),

for all g ∈ S3, (z1, z2, z3) ∈ C3. This is called the permutation representation of S3 and is
not an irreducible representation, since it has W = span{(1, 1, 1)} as a subrepresentation.
Define the 2-dimensional subspace V of C3 by

V = {(z1, z2, z3) | z1 + z2 + z3 = 0}.

Since V is invariant under the action of S3, V is a subrepresentation of C3. Moreover, notice
that W ∩ V = {0} and dim(C3) = dim(W ) + dim(V ), so C3 = W ⊕ V . By Schur’s Lemma,
W ∼= U , so in fact, C3 = U ⊕ V . We will see in the next section that U,U ′, and V are the
only irreducible representations of S3.

3.4 Characters

One way to determine the structure of a representation ρ of a group G is to compute the
eigenvalues of ρg for each g ∈ G. This, however, can be a long process, even for groups as
small as S3. In this section we will discuss a useful tool for describing all of the irreducible
representations of a finite group and finding the decomposition of a representation into
irreducible representations.

Definition 3.4.1. Let ρ : G→ GL(V ) be a representation of G. The character of V is the
function χV : G→ C defined by χV (g) = tr(ρg).

A class function is a function on a group G that is constant on the conjugacy classes of G.
Therefore, by properties of similar matrices, the character χV is a class function. Further-
more, since 1 ∈ G acts trivially on all elements of a representation V , then we have that
χV (1) = dim(V ).

Proposition 3.4.2. Let V be a representation of a group G. Then for all g ∈ G, χV (g) is
a sum of χV (1) roots of unity.
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Proof. Let V be a representation of G with character χV . Fix an element g ∈ G. Since G
is finite, then |g| = k, for some k ∈ N. Hence, (ρg)

k = ρgk = ρ1, which is the identity map.
Therefore, the minimal polynomial of ρg divides the polynomial xk − 1, so the roots of the
minimal polynomial of ρg are distinct kth roots of unity. Therefore, there is a basis of V
such that the matrix representation of ρg is diagonal with kth roots of unity on the diagonal.
Hence, χV (g) is the sum of χV (1) roots of unity.

Proposition 3.4.3. If V and W are representations of G, then

1. χV⊕W = χV + χW .

2. χV⊗W = χV χW .

3. χV ∗ = χV , where the bar denotes complex conjugation.

Proof. Fix an element g ∈ G. Let {λi} and {µj} be the eigenvalues of the action of g
on V and W , respectively. Suppose λ is an eigenvalue of the action of g on V ⊕W with
corresponding eigenvector v + w. Then

gv + gw = g · (v + w) = λ(v + w) = λv + λw.

Hence, gv = λv and gw = λw. It follows that either

1. w = 0 and λ ∈ {λi},

2. v = 0 and λ ∈ {µj}, or

3. λ ∈ {λi} ∩ {µj}.

Thus the eigenvalues of the action of g on V ⊕W are {λi}∪ {µj}. Similarly, the eigenvalues
of the action of g on V ⊗W are {λi · µj}

It follows from the pairing described in Example 3.1.6, that the eigenvalues of the action
of g on V ∗ are {−λi}. However, since the eigenvalues {λi} are all nth roots of unity, where
|g| = n, then for each i, −λi = λi.

The above formulas follow from the fact that the trace of a linear transformation is equal
to the sum of its eigenvalues.

Definition 3.4.4. Let G be a group with irreducible representations V1, . . . , Vk and let
g1, . . . , gn be representatives of the distinct conjugacy classes of G. The character table
of G is the table with the Vi along the left, the gj across the top (with the number of elements
in the respective conjugacy class [gj] above), and the boxes filled in with the values χVi

(gj).

Example 3.4.5. Consider the group S3. Since the trivial representation U associates each
group element with the 1 × 1 identity matrix, then the character χU takes the value 1 on
all elements of S3. Moreover, since dim(U ′) = 1 and dim(V ) = 2, then χU ′(1) = 1 and
χV (1) = 2. Also, χU ′ ((12)) = −1 and χU ′ ((123)) = 1, because (12) and (123) are odd
and even permutations, respectively. It remains to calculate the values of χV ((12)) and
χV ((123)).
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Recall the permutation representation C3 = U ⊕ V . In terms of the standard bases, the
linear transformation ρ(12) : C3 → C3 has matrix representation 0 1 0

1 0 0
0 0 1

 ,

so we see that χC3 ((12)) = 1. Similarly, ρ(123) : C3 → C3 has matrix representation 0 0 1
1 0 0
0 1 0

 ,

and thus χC3 ((123)) = 0. We know that χV = χC3 − χU , so it is easy to calculate that
χV ((12)) = 1− 1 = 0 and χV ((123)) = 0− 1 = −1. Therefore, the character table of S3 is:

1 3 2
S3 1 (12) (123)
U 1 1 1
U ′ 1 -1 1
V 2 0 -1

Once we know the irreducible representations of a group, our next goal is to be able to
describe every representation of the group as a direct sum of these irreducible representations.
In order to accomplish this, we define an inner product on Cclass(G), the set of class functions
on G, by

〈f, g〉 =
1

|G|
∑
x∈G

f(x)g(x).

This inner product is very useful, because it can be used to establish whether or not a
representation is irreducible and to find the multiplicities ai in the decomposition
V = V ⊕a1

1 ⊕ · · · ⊕ V ⊕ak
k .

For any representations V and W of a group G, let HomG(V,W ) denote the set of all
G-linear maps V → W . Moreover, define the set

V G = {v ∈ V | g · v = v, for all g ∈ G}.

Note that if the decomposition of V into irreducible representations contains m copies of the
trivial representation U , then V G = U⊕m.

Lemma 3.4.6. Let V and W be representations of a group G. Then

Hom(V,W )G = HomG(V,W ),

and

dim(HomG(V,W )) =

{
1 if V ∼= W

0 if V � W.
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Proof. Take any map φ ∈ HomG(V,W ) and any element g ∈ G. Since φ is G-linear, then
for all v ∈ V ,

(g · φ)(v) = gφ(g−1v)

= φ(g(g−1v))

= φ((gg−1)v)

= φ(v).

Therefore, φ ∈ Hom(V,W )G, so HomG(V,W ) ⊆ Hom(V,W )G.
Now take any φ ∈ Hom(V,W )G. Since φ is fixed under the action of G, then g · φ = φ

for all g ∈ G. So for any g ∈ G,

gφ(v) = gφ((g−1g)v)

= gφ(g−1(gv))

= g · φ(gv)

= φ(gv).

Thus, φ ∈ HomG(V,W ), so we have that Hom(V,W )G ⊆ HomG(V,W ). Therefore, Hom(V,W )G =
HomG(V,W ).

Now let V be an irreducible representation of G. If φ ∈ Hom(V,W )G, then φ(V ) is
an irreducible subrepresentation of W . Therefore, by Schur’s Lemma, the dimension of
Hom(V,W )G is equal to the multiplicity of V in W . Likewise, if W is an irreducible repre-
sentation of G, then the dimension of Hom(V,W )G is equal to the multiplicity of W in V .
Hence, if V and W are both irreducible, then

dim(HomG(V,W )) =

{
1 if V ∼= W

0 if V � W.

Theorem 3.4.7. Let V and W be irreducible representations of a group G. Then, in terms
of the above inner product,

〈χV , χW 〉 =

{
1 if V ∼= W

0 if V � W.

Proof. Let V be an irreducible representation of G and define a map φ : V → V G by

φ(v) =
1

|G|
∑
g∈G

g · v.

By properties of group actions, φ is linear. Moreover, for any h ∈ G,

φ(hv) =
1

|G|
∑
g∈G

g(hv) =
1

|G|
∑
g∈G

hgh−1(hv) =
1

|G|
∑
g∈G

hg(h−1hv) = h
1

|G|
∑
g∈G

g(v) = hφ(v).
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Thus, φ is G-linear.
Furthermore, take any v ∈ φ(V ). Then there is some w ∈ V such that

v = φ(w) =
1

|G|
∑
g∈G

g(w).

. Then for any h ∈ G,

hv =
1

|G|
∑
g∈G

h(gw) =
1

|G|
∑
g∈G

hg(w) =
1

|G|
∑
g∈G

g(w) = v.

Therefore, φ(V ) ⊆ V G. Moreover, for any v ∈ V G,

φ(v) =
1

|G|
∑
g∈G

v = v.

Thus, φ(V ) = V G, so φ is a projection of V onto V G.
Therefore, since the dimension of V G is equal to the number of copies of the trivial

representation U in the decomposition of V ,

dim(V G) = tr(φ) =
1

|G|
∑
g∈G

χV (g).

So, by Example 3.2.7 and Lemma 3.4.6,

dim(HomG(V,W )) = dim(Hom(V,W )G)

=
1

|G|
∑
g∈G

χHom(V,W )(g)

=
1

|G|
∑
g∈G

χV ∗⊗W (g)

=
1

|G|
∑
g∈G

χV ∗(g)χW (g)

=
1

|G|
∑
g∈G

χV (g)χW (g)

= 〈χV , χW 〉.

Hence, if V and W are irreducible representations of G, then we can conclude that

〈χV , χW 〉 =

{
1 if V ∼= W

0 if V � W.
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As a consequence, a representation is uniquely determined by its character, because
if V = V ⊕a1

1 ⊕ · · · ⊕ V ⊕ak
k is the decomposition of V into irreducible representations, then

χV1 , . . . , χVk
are linearly independent and χV =

∑k
i=1 aiχVi

. Hence, the number of irreducible
representations of a group G is less than or equal to the number of conjugacy classes of G.
We also have the following results:

Corollary 3.4.8. A representation V of a group G is irreducible if and only if 〈χV , χV 〉 = 1.

Proof. Let V = V ⊕a1
1 ⊕· · ·⊕V ⊕ak

k be the decomposition of V into irreducible representations
of G. Then by Theorem 3.4.7,

〈χV , χV 〉 =

〈
k∑
i=1

aiχVi
,

k∑
j=1

ajχVj

〉
=

k∑
i=1

k∑
j=1

aiaj〈χVi
, χVj
〉 =

k∑
i=1

a2
i .

(⇒) Suppose V is an irreducible representation of G. Then V = Vi for some 1 ≤ i ≤ k.
So 〈χV , χV 〉 = 〈χVi

, χVi
〉 = 1.

(⇐) Conversely, suppose that 〈χV , χV 〉 = 1. Then, ai = 1 for some 1 ≤ i ≤ k, and aj = 0
for all j 6= i. Hence, V = Vi is irreducible.

Corollary 3.4.9. Let V be an irreducible representation of a group G. Then V ∗ is also an
irreducible representation of G.

Proof. By Proposition 3.4.3,

〈V ∗, V ∗〉 =
1

|G|
∑
g∈G

χV ∗(g)χV ∗(g)

=
1

|G|
∑
g∈G

χV (g)χV (g)

=
1

|G|
∑
g∈G

χV (g)χV (g)

= 〈χV , χV 〉
= 1.

Thus, by Corollary 3.4.8, V ∗ is irreducible.

Example 3.4.10. Therefore, we can check that the representations U,U ′, and V of S3 that
we discussed earlier this section are in fact irreducible and distinct. From the character table
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of S3 given in Example 3.4.5, we see that

〈χU , χU〉 =
1

6
(1 · 12 + 3 · 12 + 2 · 12) = 1,

〈χU ′ , χU ′〉 =
1

6
(1 · 12 + 3 · (−1)2 + 2 · 12) = 1,

〈χV , χV 〉 =
1

6
(1 · 22 + 3 · 02 + 2 · (−1)2) = 1,

〈χU , χU ′〉 =
1

6
(1 · 1 · 1 + 3 · 1 · (−1) + 2 · 1 · 1) = 0,

〈χU ′ , χV 〉 =
1

6
(1 · 1 · 2 + 3 · (−1) · 0 + 2 · 1 · (−1)) = 0,

〈χU , χV 〉 =
1

6
(1 · 1 · 2 + 3 · 1 · 0 + 2 · 1 · (−1)) = 0.

So, U,U ′, and V are distinct irreducible representations, and since S3 has three conjugacy
classes, then these are the only irreducible representations of S3.

Now that we can determine the irreducible representations of a group G, this next corol-
lary gives us a way to compute the multiplicity ai of an irreducible representation Vi in the
decomposition V = V ⊕a1

1 ⊕ · · · ⊕ V ⊕ak
k .

Corollary 3.4.11. Let V be a representation of a group G such that V = V ⊕a1
1 ⊕· · ·⊕V ⊕ak

k ,
where the Vi are distinct irreducible representations. Then

〈χV , χVi
〉 = ai,

for each 1 ≤ i ≤ k.

Proof. Let V = V ⊕a1
1 ⊕ · · · ⊕ V ⊕ak

k be a representation of G, where the Vi are distinct
irreducible representations. Then, by Theorem 3.4.7,

〈χV , χVi
〉 =

1

|G|
∑
g∈G

χV (g)χVi
(g)

=
1

|G|
∑
g∈G

 k∑
j=1

ajχVj
(g)

χVi
(g)

=
1

|G|
∑
g∈G

(
k∑
j=1

ajχVj
(g)

)
χVi

(g)

=
k∑
j=1

aj

(
1

|G|
∑
g∈G

χVj
(g)χVi

(g)

)

=
k∑
j=1

aj〈χVj
, χVi
〉

= ai〈χVi
, χVi
〉

= ai.
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Theorem 3.4.12. Let V1, . . . , Vk be all of the irreducible representations of a group G. Then
the characters {χV1 , . . . , χVk

} form an orthonormal basis for Cclass(G). Therefore, the number
of irreducible representations of G is equal to the number of conjugacy classes of G.

Proof. We already know that {χV1 , . . . , χVk
} are linearly independent in Cclass(G), so it re-

mains to show that they span Cclass(G). Suppose α ∈ Cclass(G) is such that 〈α, χVi
〉 = 0 for

all 1 ≤ i ≤ k. Fix an irreducible representation Vi and define a map φα,Vi
: Vi → Vi by

φα,Vi
=
∑
g∈G

α(g)g.

Take any h ∈ G. Then, by substituting hgh−1 for g in the definition of φα,Vi
(hv), using

properties of groups actions, and using the fact that α is a class function, we see that

φα,Vi
(hv) =

∑
g∈G

α(g)g(hv)

=
∑
g∈G

α(hgh−1)hgh−1(hv)

=
∑
g∈G

α(hgh−1)hg(h−1hv)

= h
∑
g∈G

α(hgh−1)g(v)

= h
∑
g∈G

α(g)g(v)

= hφα,Vi
(v).

Thus, φα,Vi
is a G-linear map. Therefore, by Schur’s Lemma, φα,Vi

= zI for some z ∈ C. If
we write dim(Vi) = n, then tr (φα,Vi

) = nz, and since V ∗ is irreducible by Corollary 3.4.9,
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then

z =
1

n
tr (φα,Vi

)

=
1

n

(∑
g∈G

α(g)χVi
(g)

)

=
1

n

(∑
g∈G

α(g)χVi
(g)

)

=
1

n

(∑
g∈G

α(g)χV ∗i (g)

)

=
|G|
n
〈α, χV ∗i (g)〉

=
|G|
n
· 0

= 0.

Therefore, φα,Vi
is the 0-map for all irreducible representations Vi of G.

Recall the regular representation R with basis {vg | g ∈ G}. We have that

0 = φα,Vi
(v1) =

∑
g∈G

α(g)g · v1 =
∑
g∈G

α(g)vg,

so by the linear independence of the basis elements, α(g) = 0 for all g ∈ G. So α is the
0-map, which implies that {χV1 , . . . , χVk

} span Cclass(G) and, therefore, form an orthonormal
basis for Cclass(G).

Example 3.4.13. Note that the identity element of 1 ∈ G fixes all elements of the regular
representation R, however no elements of R are fixed under the action of any nonidentity
element of G. Therefore,

χR(g) =

{
0 if g 6= 1

|G| if g = 1.

So, by Corollary 3.4.8, if G is a nontrivial group, then R is not an irreducible representation
of G.

Proposition 3.4.14. Let V1, . . . , Vk be all of the distinct irreducible representations of a
group G, and let R be the regular representation of G. Then

R = V ⊕ dimV1
1 ⊕ · · · ⊕ V ⊕ dimVk

k .
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Proof. By Corollary 3.4.11 and Example 3.4.13, if R = V ⊕a1
1 ⊕ · · · ⊕ V ⊕ak

k , then

ai = 〈χR, χVi
〉

=
1

|G|
∑
g∈G

χR(g)χVi
(g)

=
1

|G|
χR(1)χVi

(1)

=
1

|G|
|G|χVi

(1)

= χVi
(1)

= dim(Vi).

Therefore any irreducible representation Vi of G appears in the decomposition of R dim(Vi)
times, so

R = V ⊕ dimV1
1 ⊕ · · · ⊕ V ⊕ dimVk

k .

Example 3.4.15. Let R be the regular representation of the group S3. By Example 3.4.10
we know that the irreducible representations of S3 are U , U ′, and V . Thus, by Proposition
3.4.14,

R = U ⊕ U ′ ⊕ V ⊕ V.
Corollary 3.4.16. Let V1, . . . , Vk be all of the distinct irreducible representations of a group
G. Then

|G| =
k∑
i=1

dim(Vi)
2.

Proof. By Example 3.4.13 and Proposition 3.4.14,

|G| = χR(1) =
k∑
i=1

dim(Vi)χVi
(1) =

k∑
i=1

dim(Vi)
2.

Corollary 3.4.17. For any nonidentity element g ∈ G,

k∑
i=1

χVi
(1)χVi

(g) = 0.

Proof. By Propositions 3.4.13 and 3.4.14, we have that

0 = χR(g) =
k∑
i=1

dim(Vi)χVi
(g) =

k∑
i=1

χVi
(1)χVi

(g).

This Corollary will be used in the proof of Burnside’s Theorem presented in the following
section.
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Chapter 4

Proofs of Burnside’s Theorem

In this chapter we demonstrate two proofs of Burnside’s Theorem:

Theorem. Let p, q ∈ N be prime, and let a and b be nonnegative integers. If G is a group
of order paqb, then G is solvable.

Burnside’s Theorem was first proved by English mathematician William Burnside in 1904
[4]. While he is mainly known for his contributions to group theory, Burnside began his work
in other areas of math, including elliptic functions and hydrodynamics. It was in 1893, as a
Professor at the Royal Naval College in Greenwich, that Burnside published his first paper
on group theory [2], and in 1897 he published the first edition of his book Theory of Groups
of Finite Order [5].

As mentioned in the introduction, there were several mathematicians involved in the
search for simple groups around this time, and many results about the orders of solvable
groups emerged as a consequence. In 1892, German mathematician Otto Hölder showed
that groups whose orders are the product of two or three distinct primes are solvable [15].
Soon after, German mathematician Ferdinand Georg Frobenius proved that groups whose
orders are square-free are solvable. Additionally, he proved that for primes p, q ∈ N and
nonnegative a, b ∈ Z, groups of order p4qb, where p < q, are solvable, and groups of order
paq are solvable [10].

Burnside was also producing similar results concerning solvable groups at this time. In
1897 he proved that groups of order paq2 are solvable. Moreover, he showed that if G is a
group of order paqb such that a < 2m, where m ≡ ord(p) (mod q), then G is solvable [5].
In 1902, Frobenius proved a similar result with the condition a < 2m replaced by a ≤ 2m
[11]. Then in 1904, Burnside published his representation theoretic proof of Lemma 4.1.2
[4], from which it easily follows that all groups of order paqb are solvable.

After decades of work, purely group theoretic proofs of Burnside’s Theorem were discov-
ered by American mathematician David Goldschmidt in 1970 [13], German mathematician
Helmut Bender in 1972 [1], and Japanese mathematician Hiroshi Matsuyama in 1973 [18].
However, these proofs are significantly longer than Burnside’s proof and require a much
stronger background in the theory of finite groups. Therefore, we will simply give an outline
of a group theoretic proof of Burnside’s Theorem in Section 4.2. See [16] for a complete
proof.
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4.1 A Representation Theoretic Proof of Burnside’s

Theorem

For the first step in proving Burnside’s Theorem, we give the following lemmas.

Lemma 4.1.1. Let G be any group with a conjugacy class K and an irreducible represen-
tation ρ : G→ GL(V ) such that gcd(|K|, χV (1)) = 1. Then for all g ∈ K, either χV (g) = 0
or ρg = zI, for some z ∈ C.

Proof. Let G be any group with a conjugacy class K and an n-dimensional irreducible
representation ρ : G → GL(V ) such that gcd(|K|, χV (1)) = 1. Then from elementary
number theory, we know there exist s, t ∈ Z such that s|K|+ tχV (1) = 1. Take any g ∈ K.
Multiplying both sides of this equations by χV (g) and dividing by χV (1) gives

s|K|χV (g)

χV (1)
+ tχV (g) =

χV (g)

χV (1)
.

By Proposition 3.4.2, χV (g) is the sum of χV (1) roots of unity and is, thus, an algebraic

integer, i.e. it is the root of a monic polynomial in Z. Moreover, we claim that |K|χV (g)
χV (1)

is

also an algebraic integer. See [8] for a proof of this and for more information on algebraic

integers. As a consequence, we have that χV (g)
χV (1)

is an algebraic integer, call it α1, and let
α1, α2, . . . , αn be the conjugates of α1 overQ, i.e. the distinct roots of the minimal polynomial
of α1 over Q. For each 1 ≤ i ≤ n, αi is the sum of χV (1) roots of unity divided by χV (1),
so |αi| ≤ 1. The constant term in the minimal polynomial of α1 is ±

∏n
i=1 αi ∈ Z, so since

each |αi| ≤ 1, we have that ∣∣∣∣∣
n∏
i=1

αi

∣∣∣∣∣ =
n∏
i=1

|αi| ≤ 1.

Thus, this product must be either 0 or ±1. If
∏n

i=1 αi = 0, then we have that α1 = 0, so
χV (g) = 0.

Therefore, suppose that
∏n

i=1 αi = ±1. In this case we have that |α1| = 1. Thus,
|χV (g)| = χV (1) = n. Since the minimal polynomial of ρg has n distinct roots, then there
exists a basis B of V such that the matrix representation of ρg is a diagonal matrix

[T ]B =


z1

z2

. . .

zn

 .

Hence, we have that χV (g) =
∑n

i=1 zi. If zi 6= zj for all i 6= j, then by the triangle inequality
|χV (g)| = |

∑n
i=1 zi| <

∑n
i=1 |zi| = n = χV (1). This is a contradiction, so it must hold that

z = zi for all 1 ≤ i ≤ n, and hence ρg = zI.

Lemma 4.1.2. Let G be a group with a nonidentity conjugacy class K such that |K| = pa

for some prime p ∈ N. Then G is not a non-abelian simple group.
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Proof. Suppose G is a non-abelian simple group with a nonidentity conjugacy class K such
that |K| = pa for some prime p ∈ N. Then, there exists a nonidentity element g ∈ K. If
a = 0 then K = {g} is a conjugacy class consisting of a single element. Therefore, for all
h ∈ G, hgh−1 = g, so g ∈ Z(G). This is a contradiction, since Z(G) E G and we assumed
that G was non-abelian and simple. Therefore, we may assume that a > 0.

Let χ1, . . . , χk be the characters of all of the distinct irreducible representations of G,
such that χ1 is the character of the trivial representation. By Proposition 3.4.17, we know
that

0 =
k∑
i=1

χi(1)χi(g) = 1 +
k∑
i=2

χi(1)χi(g).

If p|χj(1) for all j > 1 such that χj(g) 6= 0, then write χj(1) = pdj to get that

0 = 1 + p
∑
j>1

χj(g) 6=0

djχj(g).

Therefore,
∑

j djχj(g) = −1
p

is an algebraic integer, and is hence in Z, which is a contradic-

tion. So there exists some 2 ≤ j ≤ k such that p - χj(1) and χj(g) 6= 0.
Let ρ : G → GL(V ) be the representation with character χj. Since gcd(|K|, χj(1)) = 1

and χj(g) 6= 0, then by Lemma 4.1.1, ρg = zI, for some z ∈ C. Thus, ρg ∈ Z(ρ(G)).
Moreover, since we assumed that G is simple, ker(ρ) must be trivial. Therefore, ρ is injective.
So for all h ∈ G,

ρhρgρh−1 = ρg

⇒ ρhgh−1 = ρg

⇒ hgh−1 = g

⇒ g ∈ Z(G).

This is a contradiction to G being a non-abelian simple group, so it must hold that G is not
a non-abelian simple group.

Now we are ready to prove Burnside’s Theorem.

Proof. Let G be a group of order paqb, where p, q ∈ N are prime and a and b are nonnegative
integers. If p = q or if either a or b is zero, then G is a p-group and is solvable by Corollary
2.2.12. So we can assume that p 6= q and a, b ∈ N.

Suppose G is of minimal order such that G is not solvable. If G is not a simple group,
then G has a nontrivial normal subgroup N . However, by induction, both N and G/N are
solvable, since their orders divide and are strictly less than |G|. Thus, by Lemma 2.2.11, G
is solvable. Therefore, we may also assume that G is a non-abelian simple group.

Let P be a Sylow p-subgroup of G. Then |P | = pa and by Corollary 2.2.5, Z(P ) 6= 1.
Thus, there exists a nonidentity element g ∈ Z(P ), which implies that P is a subgroup of
CG(g). As discussed in the proof of Theorem 2.2.3, the order of the conjugacy class of g is
given by |G : CG(g)|. However, since pa = |P | ≤ |CG(g)|, then the order of the conjugacy
class of g must be a power of q. This is a contradiction to Lemma 4.1.2. Therefore, G is
solvable.
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4.2 A Group Theoretic Proof of Burnside’s Theorem

The goal of this section is to give an outline of a group theoretic proof of Burnside’s
Theorem, so as to contrast it with the simplicity of the representation theoretic proof that
was given in the previous section. This proof relies on a sequence of lemmas which, as
mentioned in the beginning of this chapter, require a strong background in finite group
theory. Therefore, we will omit the proofs of these lemmas, but they can be found in [16].

Proof. This proof begins in the same manner as the representation theoretic proof. Let G be
a finite group of order paqb, where p, q ∈ N are prime and a and b are nonnegative integers.
As shown in the previous section, we can assume that p 6= q, a, b ∈ N, and that G is simple.
Now suppose that G is of minimal order such that G is not solvable. The first step in the
proof is to prove the following lemma.

Lemma 4.2.1. If P is a Sylow p-subgroup of G, then P does not normalize any nontrivial
q-subgroup of G.

Before proceeding, we need a few more definitions. Let G by any group. Define subgroups
Z0(G) = 1 and Z1(G) = Z(G), and then inductively define Zi+1(G) to be the subgroup of G
containing Zi(G), such that Zi+1(G)/Zi(G) = Z(G/Zi(G)). The group G is called nilpotent
if Zk(G) = G for some k ∈ N. The Fitting subgroup of G, denoted F (G), is the unique
largest normal nilpotent subgroup of G. Lemma 4.2.1 is used to prove the following result
about the Fitting subgroup of a maximal subgroup of G.

Lemma 4.2.2. If M is a maximal subgroup of G, then F (M) is of prime-power order.

As a consequence, we get this next result.

Lemma 4.2.3. If P is a Sylow p-subgroup and x ∈ Z(P )\{1}, then x does not normalize
any nontrivial q-subgroup of G.

Again, it is necessary to give some more definitions. Let G be any finite group and let
p ∈ N be prime. The p-core of G, denoted Op(G), is the largest normal p-subgroup of G.
Now let P be any p-group. Then Ω1(P ) is defined to be the subgroup of P generated by all
elements of P of order dividing p. As a result of Lemmas 4.2.2 and 4.2.3, the subsequent
lemmas follow.

Lemma 4.2.4. 1. |G| is odd.

2. If B is a p-subgroup of G, then Oq(NG(B)) = 1 and Oq(CG(B)) = 1.

3. If B is a nonidentity p-subgroup of G, then CG(Ω1(Z(Op(CG(B))))) is a p-group.

Lemma 4.2.5. Suppose q < p. If D is a nonidentity q-subgroup of G, the Sylow p-subgroups
of NG(D) are cyclic.
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Now let p ∈ N be prime and let G be an abelian group such that every nonidentity
element of G has order p. Then G is called an elementary abelian group. Let P be any
p-group. Then, Je(P ) is defined to be the subgroup of P generated by all elementary abelian
subgroups of P which are of order as large as possible. As a consequence of the preceding
lemma, we get the following result about the subgroup Je(P ).

Lemma 4.2.6. Suppose M is a maximal subgroup of G, Oq(M) = 1, and P is a Sylow
p-subgroup of M . Then M = NG(Je(P )) and P is a Sylow p-subgroup of G.

For any element g ∈ G and any subgroup H of G, define Hg = gHg−1. By Lemmas 4.2.3
and 4.2.6, we obtain these last two results necessary for the proof.

Lemma 4.2.7. Let M be a maximal subgroup of G. If Oq(M) = 1, then M ∩ M g is a
q-group for any g ∈ G\M .

Lemma 4.2.8. If P is a Sylow p-subgroup of G, then |P |2 ≤ |G|.

By our hypotheses, |G| = paqb, where p, q ∈ N are distinct primes and a, b ∈ N. Let P
be a Sylow p-subgroup of G, and let Q be a Sylow q-subgroup of G. Then |P | = pa and
|Q| = qb. Without loss of generality, suppose pa < qb. Then,

|G| = paqb < (qb)2 = |Q|2.

This contradicts Lemma 4.2.8, so it must hold that G is solvable.
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Chapter 5

Conclusion

Burnside’s Theorem played a significant role in the classification of finite simple groups,
which was a huge project involving hundreds of mathematicians that took over three decades.
The classification was completed in 1980, when the following result, often referred to as the
“enormous theorem,” was proved.

Theorem. Every finite simple group is one of the following (up to isomorphism):

1. A cyclic group of prime order.

2. An alternating group of degree greater than or equal to 5.

3. In one of the 16 families of groups of Lie type.

4. One of 26 sporadic simple groups.

All together, the papers comprising the proof of this theorem total over 5,000 pages. The
reason that Burnside’s Theorem was important in the classification of finite simple groups
is because of the following corollary.

Corollary. Let G be a non-abelian finite simple group. Then |G| is divisible by at least three
distinct primes.

As a consequence, in the second edition of his book Theory of Groups of Finite Order,
Burnside made the following conjecture [6].

Conjecture. Let G be a non-abelian finite simple group. Then |G| is even.

Over 50 years later, this conjecture was eventually proved in 1963 by American math-
ematicians Walter Feit and John Griggs Thompson when they proved the celebrated Feit-
Thompson Theorem [20].

Theorem. (Feit-Thompson Theorem) Let G be a finite group of odd order. Then G is
solvable.

The proof of this theorem is 255 pages and very complicated. It was a significant step
in the classification of finite simple groups and established several new techniques that were
later used in the classification.
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