The following exercises are due Monday, March 12.

1. In class I explained how to measure the mass in galaxies and galaxy clusters using the virial theorem. The basic formula is

\[M = \frac{\langle v^2 \rangle r_h}{\alpha G}, \]

where \(r_h \) is the half-mass radius and \(\alpha \) is a parameter determined by data fitting. For our purposes \(\alpha \approx 0.4 \).

The Draco galaxy is a dwarf galaxy within the Local Group. Its luminosity is \(L = 1.8 \times 10^5 \) \(L_\odot \) and half its total luminosity is contained within a sphere of radius \(r_h = 120 \) pc. The red giant stars in the Draco galaxy are bright enough to have their line-of-sight velocities measured. The measured velocity is 31.5 \(\text{km s}^{-1} \). What is the mass of the Draco Galaxy? What is the mass-to-light ratio? Given the fact that typical stars have a mass-to-light ratio of \(4M_\odot/L_\odot \), what fraction of the galaxy’s mass is dark matter?

2. One of the more recent speculations in cosmology is that the universe may contain a quantum field, called “quintessence,” which has a positive energy density and a negative value of the equation-of-state parameter \(w \). Assume, for the purposes of this problem, that the universe is spatially flat, and contains nothing but matter (\(w = 0 \)) and quintessence with \(w = -1/2 \). The current density parameter of matter is \(\Omega_{m,0} \leq 1 \), and the current density parameter of quintessence is \(\Omega_{Q,0} = 1 - \Omega_{m,0} \). At what scale factor \(a_{mQ} \) will the energy density of quintessence and matter be equal? Solve the Friedman equation to find \(a(t) \) of the universe. What is \(a(t) \) in the limit \(a \ll a_{mQ} \)? What is \(a(t) \) in the limit \(a \gg a_{mQ} \)? What is the current age of the universe, expressed in terms of \(H_0 \) and \(\Omega_{m,0} \)?
Problem Set #5 - Problem 1.

\[v = 31.5 \text{ km/s} \quad \Gamma_n = 120 \text{ pc} \]

\[v = 31.5 \frac{\text{km}}{\text{s}} \left(\frac{10^{16} \text{m}}{1 \text{ pc}} \right) = 3.15 \times 10^4 \text{ m} \]

\[\Gamma_n = 120 \text{ pc} \left(\frac{3.09 \times 10^{16} \text{ m}}{1 \text{ pc}} \right) = 3.21 \times 10^{18} \text{ m} \]

\[M = \left(\frac{3.15 \times 10^4 \text{ m/s}}{0.4 \times 6.67 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}} \right)^2 \frac{3.21 \times 10^{18} \text{ m}}{1.19 \times 10^{38} \text{ kg}} = 6 \times 10^7 \text{ M}_\odot \]

\[M = \frac{6 \times 10^7 \text{ M}_\odot}{1.8 \times 10^5 \text{ L}_\odot} = 3.3 \times 10^2 \text{ M}_\odot \text{ L}_\odot^{-1} \]

Compared with \(4 \text{ M}_\odot \text{ L}_\odot^{-1} \), we would estimate that \(1.8 \times 10^5 \text{ L}_\odot \left(\frac{4 \text{ M}_\odot}{\text{ L}_\odot} \right) = 7.2 \times 10^5 \text{ M}_\odot \) is luminous.

So the fraction of dark matter is

\[\frac{6 \times 10^7 \text{ M}_\odot - 7.2 \times 10^5 \text{ M}_\odot}{6 \times 10^7} = 0.938 \]
Problem 2

\[P_{\phi} = -\frac{1}{2} \rho \quad \omega = -\frac{1}{3} \quad \rho(t) = \rho_{0} a^{-3(1+\omega)} \quad (8.24) \]

So \[\rho(t) = \rho_{0} \alpha(t)^{-3/2} \quad \rho_{\mu}(t) = \rho_{\mu 0} \alpha(t)^{-3} \]

1st Friedmann eqn.

\[\left(\frac{\dot{a}}{a} \right)^{2} = \frac{8\pi G}{3} \left[\rho_{\phi 0} a^{-3/2} + \rho_{\mu 0} a^{-3} \right] \]

\[\left(\frac{\dot{a}}{a} \right)^{2} = H_{0}^{2} \left(\frac{8\pi G}{3 H_{0}^{2}} \right) \left[\rho_{\phi 0} a^{+1/2} + \rho_{\mu 0} a^{-1} \right] \]

\[a = H_{0} \left[\sqrt{\rho_{\phi 0} a^{-1/2} + \rho_{\mu 0} a^{-1}} \right]^{-1/2} \]

\[\int H_{0} \, dt = \int_{0}^{a} \frac{da}{\sqrt{\rho_{\phi 0} a^{-1/2} + \rho_{\mu 0} a^{-1}}} \]

\[= \int_{0}^{a} \frac{da \, a^{-1/2}}{\sqrt{\rho_{\phi 0} a^{-3/2} + \rho_{\mu 0}}} \]

\[H_{0} t = \frac{4}{3} \rho_{\phi 0} \left[\sqrt{\rho_{\phi 0} a^{-3/2} + \rho_{\mu 0}} - \sqrt{\rho_{\phi 0}} \right] \]

This can be inverted, but it's not very illuminating!
The two will be equal when

\[\Omega_{\text{m}, 0} \Omega_{\text{m}, 0} = \Omega_{\text{m}, 0} \]

or

\[a = \left[\frac{\Omega_{\text{m}, 0}}{\Omega_{\text{m}, 0}} \right]^{3/3} \]

\(a < a_{\text{cyc}} \) then \(\Omega_{\text{m}, 0} \Omega_{\text{m}, 0} < \Omega_{\text{m}, 0} \)

\[H_0 = \frac{4}{3Q_{\text{m}, 0}} \left[\sqrt{x + 1} - 1 \right] \]

where \(x = \frac{\Omega_{\text{m}, 0} a^{3/2}}{\Omega_{\text{m}, 0}} < 1 \)

\[H_0 \propto \frac{4}{3Q_{\text{m}, 0}} \sqrt{\Omega_{\text{m}, 0}} + \frac{1}{2} \frac{2Q_{\text{m}, 0}}{\Omega_{\text{m}, 0}} a^{3/2} = \frac{2a^{3/2}}{3 \sqrt{Q_{\text{m}, 0}}} \]

\(a > > a_{\text{cyc}} \) then \(a_{\text{m}, 0} a^{3/2} >> \Omega_{\text{m}, 0} \)

\[H_0 = \frac{4}{3Q_{\text{m}, 0}} a^{3/4} \]

To find the current age of the universe, set \(a = 1 \) \(\Omega_{\text{m}, 0} = 1 - \Omega_{\text{m}, 0} \)

\[H_0 t_0 = \frac{4}{3Q_{\text{m}, 0}} \left[1 - \sqrt{\Omega_{\text{m}, 0}} \right] \]