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Abstract.

We show that the natural action of the absolute Galois group on the ideals defining
principal congruence subgroups of certain nonarithmetic Fuchsian triangle groups is

compatible with its action on the algebraic curves that these congruence groups
uniformize.

0. Introduction

Grothendieck, see [Schn], sketched a program for the investigation of the absolute
Galois group Gal(Q̄/Q) by study of the action of this group on the set of algebraic
curves defined by equations all of whose coefficients lie in Q̄. This program was
strongly influenced by Belyi’s [Bel] characterization of these arithmetic curves as
being the algebraic curves which admit maps to the Riemann sphere ramified in
at most three points. The program has been extremely fruitful, see say [Schn] or
[JS2].

In particular, it has been recognized that any algebraic curve defined over Q̄ can
be uniformized by some subgroup of the modular group PSL(2,Z). Here we use
the closely related Hecke triangle groups, which have entries in rings of integers of
certain algebraic extensions of the rationals, but which are in general nonarithmetic
groups.

The entries of a Hecke group lie in the ring of integers of the maximal totally
real subfield of a corresponding cyclotomic extension of the rational number field.
Each ideal in this ring defines a principal congruence subgroup of the Hecke group.
This subgroup uniformizes an algebraic curve, which we call a principal congruence
Hecke curve. By way of an interpretation due to Wolfart [Wo3], the Belyi result
implies that each principal congruence Hecke curve is defined over Q̄. We ask if the
set map from ideals to algebraic curves is equivariant with respect to the action of
the absolute Galois group. We prove, under certain restrictions, that the response
is affirmative. This is our Theorem — we denote by Gm the Hecke group of index
m, for this and further notation, see §1. A generalized version of this theorem is
stated in §4.
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Theorem. Let p be an odd prime number and let n be an odd natural number which
is relatively prime to p. Let m = npa for some nonnegative integer a. Let

∏
Pei

i

give the ideal factorization of (p) in the ring of integers of the maximal totally real
subfield of the cyclotomic field Q(ζm).

Suppose that both p and n are greater than 5, and that the residue degree of the
Pi is odd. Then the algebraic curves defined by Xi := Gm(Pi)\H form a complete
Galois orbit under the geometric action of Gal(Q̄/Q). The action of Gal(Q̄/Q) on
the Xi is compatible with that on the set of the Pi.

The theorem is applied in a special case in the following example.

Example. Fix a prime m, greater than 5. Let p be any prime greater than 5
which is congruent to either 1 or −1 modulo m. Then the rational prime ideal (p)
splits completely in Z(ζm). The residue degree of each of the φ(m)/2 corresponding
ideals Pi is one. (Here, φ(n) denotes Euler’s totient function.) Thus, m and p satisfy
the hypotheses of the theorem. The absolute Galois group acts transitively on the
Pi; in particular, we find that the algebraic curves uniformized by the corresponding
principal congruence groups form a single Gal(Q̄/Q)-orbit of length φ(m)/2.

In the case of (m, p) = (7, 13), there is thus a resulting Galois orbit of three
curves. An application of Proposition 3 below shows these curves to be of genus
g = 37. Proposition 4 shows that each of these curves is uniformized by a subgroup
of a (2, 7, 13) triangle group. An application of Proposition 5 shows that the curves
are nonhyperelliptic, and each has automorphism group isomorphic to PSL(2,F13).
These automorphism groups have order fairly close to the Hurwitz bound — 84 ·13
out of the maximal 84 · 36 number of automorphisms for a curve of this genus. �

A remark of MacBeath [Mac2] shows that curves such as our Xi cannot be
uniformized by congruence subgroups of the modular group. The techniques of
Streit [Str2] and of Streit and Wolfart [StrW] show that the Xi admit the maximal
totally real subfield of the cyclotomic field Q(ζm) as field of definition.

0.1 Brief History.
Our work is most directly inspired by that of Streit [Str1, Str2] and of Streit and

Wolfart [StrW]. In particular, our key Proposition 1 is related to results of [Str2].
We work with the Hecke triangle Fuchsian groups, see §1.2. That triangle groups

are directly related to the Grothendieck program is a result of Wolfart [Wo3]. To
that date, the relationship of triangle groups to special curves seems to have been
noticed most sharply by Macbeath [Mac1] , who showed that every Hurwitz curve —
that is, every algebraic curve of genus g attaining the Hurwitz bound of 84(g − 1)
automorphisms — is uniformized by a subgroup of the (2, 3, 7) triangle group.
Building on Macbeath’s work, Lehner and Newman [LN] found several families of
Hurwitz curves. In particular, they used a specific principal congruence subgroup
of a fixed Hecke group to determine one of these families.

The Hecke groups and their subgroups have been studied in various contexts.
Recently, Cangül and Singerman [CS] considered low-index normal subgroups and
regular maps. Chan et al, see say [CLLT], have studied congruence subgroups. For
a brief survey of other related research see the introduction to [SS].

This work is an extension of parts of the second-named author’s Oregon State
University Ph.D. dissertation [Sm]. We thank Manfred Streit for comments on
an early version of this paper. We thank both the referee and the reader for
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suggestions for improvement of the text. We also thank Pierre Lochak for pointing
out an ambiguity in a previous version.

In §1 we review material and fix notation. In §2 we give basic results about the
curves we are studying. In §3 we show that the Galois orbits are as claimed in the
Theorem. In §4 we give concluding remarks, and pose a closing question.

1. Background

1.1 Fuchsian Groups; Belyi’s Theorem.

The Uniformization Theorem, see say [JS], states that every Riemann surface of
sufficient topology (including all those of genus at least two) is biholomorphically
equivalent to the quotient of the hyperbolic plane by a subgroup of its oriented
isometry group. The upper half-plane model, H = { z = x + iy |x, y ∈ R, y > 0 }
of arc length ds with ds2 = (dx2 + dy2)/y2, has oriented isometry group PSL(2,R)

where the action of A =
(
a b
c d

)
on z ∈ H is Az = az+b

cz+d . (Note that throughout we

will choose representatives such as A for the class ±A in the appropriate projective
group.) A discrete subgroup Γ of PSL(2,R) is called a Fuchsian group. It acts
properly discontinuously, see [Bea], and hence Γ\H is a reasonable quotient space,
indeed it is a Riemann surface.

The Riemann Existence Theorem, see say [JS2] for a discussion of a circle of
ideas related to this, states that every compact nonsingular Riemann surface can be
realized as an algebraic curve: thus as the common zero locus in some complex pro-
jective space Pn

C to all homogeneous polynomials in a prime ideal I of C(x0, . . . , xn)
(such that the corresponding function field is of transcendence degree one over C).
A stunning result of Belyi [Bel] is that an algebraic curve can be defined with
polynomials all of whose coefficients are algebraic over Q if and only if there is a
(holomorphic) map from the curve to the Riemann sphere which is ramified over
at most three points. We say that such an algebraic curve is arithmetic.

A triangle Fuchsian group is a subgroup of PSL(2,R) given by the words of even
length in the reflections about the sides of a hyperbolic triangle. Wolfart [Wo3] has
reinterpreted the Belyi theorem to say that an algebraic curve is arithmetic if and
only if it is (the possible compactification of) a Riemann surface uniformized by a
finite index subgroup of a triangle group.

The most celebrated Fuchsian triangle group is the modular group, Γ = PSL(2,Z),
whose quotient surface is the moduli space for elliptic curves. The modular group is

generated by S =
(

1 1
0 1

)
and T =

(
0 −1
1 0

)
; indeed, PSL(2,Z) = 〈S, T |T 2 =

(ST )3 = I〉. One can show that every arithmetic algebraic curve is the compact-
ification of a Riemann surface uniformized by some finite index subgroup of the
modular group [JS2].

There is a notion of arithmeticity for Fuchsian groups as well. Two Fuchsian
groups are called strictly commensurable if they have a common subgroup of finite
index in each. They are called commensurable if the first has a finite index sub-
group which is PSL(2,R)-conjugate to a finite index subgroup of the second. An
element of PSL(2,R) is called parabolic if the square of its trace equals 4; it then
fixes exactly one point on the boundary of H. A Fuchsian group with parabolic
elements is arithmetic if it is commensurable with the modular group PSL(2,Z). (A
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general Fuchsian group is arithmetic if it is commensurable to a group arising from
some quaternion algebra, see say [K].) Margulis [Mar] has shown that each strict
commensurability class of nonarithmetic Fuchsian groups has a unique maximal
element.

Takeuchi [T] addressed the question of exactly which Fuchsian triangle groups
are arithmetic. Using the standard signature notation of (p, q, r) for the order
of generating elements corresponding to rotation about vertices of a fundamental
domain for the triangle group, we extract the following from his results.

Lemma A (Takeuchi [T]). Let q and r be integers greater than 5 and such that
r is a prime not dividing q. Then the Fuchsian triangle group of signature (2, q, r)
is nonarithmetic.

A Fuchsian group is finitely maximal if it is contained as a finite index subgroup of
no other Fuchsian group. Singerman [Si] has identified all finitely maximal Fuchsian
groups. We extract the following from his results.

Lemma B (Singerman [Si]). Let q and r be integers greater than 5 and such that
r is a prime not dividing q. Then the Fuchsian triangle group of signature (2, q, r)
is finitely maximal.

1.2 Hecke Groups.

A main role in the present work is played by the Hecke (triangle Fuchsian)
groups:

Gm := 〈
(

1 λm

0 1

)
,

(
0 −1
1 0

)
〉 = 〈Sm, T |T 2 = (TSm)m = I〉,

where λm = 2 cos(π/m) with m ∈ {3, 4, 5, . . . }. Note that G3 is the modular group;
G3, G4 and G6 are the only arithmetic Hecke groups. Leutbecher [Leu] showed that
the remaining Gm are pairwise incommensurable. Furthermore, see say [Bea], each
Gm is a maximal Fuchsian group. Thus for m /∈ {3, 4, 6}, Gm is the maximal
element in its strict commensurability class.

Congruence subgroups of the modular group play a fundamental role in the
theory of elliptic curves. We will use principal congruence subgroups of the Hecke
groups. Fix an index m, and define G := PSL(2,Z[λm]); thus, Gm ⊂ G. For I any
ideal of Z[λm] we define

G(I) := {
(
a b
c d

)
∈ G | a ≡ d ≡ ±1 mod (I), b, c ∈ I }.

Recall that Q(λm) is the maximal totally real subfield of the cyclotomic field
Q(ζ2m) and that Z[λm] is the full ring of integers of Q(λm), see say [Wa]. Leutbecher
[Leu: Hilfssatz 2] showed that λm is a unit in this ring of integers as long as m is
not the product of 2 with a prime power. If m = npa with n relatively prime to p,
then the the primitive (2m)th roots of unity over Q reduce modulo p to give (2n)th

roots of unity over the Galois field of p elements, see say [Wa].
If P is a prime ideal of Z[λm] of absolute norm pf , then by taking matrix entries

modulo P, one defines a homomorphism giving rise to the following short exact
sequence of groups:
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1 → G(P) → G → PSL(2,Fpf ) → 1.

We define Gm(P) to be Gm ∩ G(P). Thus Gm(P) is itself the kernel of a ho-
momorphism and is in particular a normal subgroup of Gm. Our main work is the
study of the arithmetic algebraic curves Xi := Gm(Pi)\H for pZ[λm] =

∏
Pei

i ,
with p a prime rational integer. We will show that the action of Gal(Q̄/Q) on the
Xi, defined by the action on the coefficients of the defining polynomials, permutes
the Xi exactly as Gal(Q̄/Q) naturally permutes the prime ideals Pi. In other terms,
the map from ideals to algebraic curves is Gal(Q̄/Q)-equivariant.

1.3 PSL(2,Fpf ).

The modern treatment of PSL(2,Fpf ) depends on the pioneering work of Dick-
son [D]. Based upon Dickson’s classification of the subgroups of special projective
groups, Borho [Bo] determined when certain pairs of elements can be generators.

Lemma C (Borho [Bo]). Let n and p be as in the Theorem. Let f be the residue
degree of any of the Pi. Let λ̄ = ζ̄ + ζ̄−1 with ζ̄ a (2n)th root of unity over Fp and

suppose that Fpf = Fp(λ̄). The two elements
(

1 λ̄
0 1

)
and

(
0 −1
1 0

)
generate all

of PSL(2,Fpf ) whenever λ̄ ∈ Fp(λ̄2).

Slightly earlier than Borho’s work, and also based upon Dickson’s classification,
Macbeath [Mac2] treated generating triples for PSL(2,Fpf ) of the type (A,B,C)
with C = AB. He defined an equivalence on these triples by letting (A,B,C) ∼
(A′, B′, C ′) if there is an isomorphism taking the first triple to the second. The
study of the corresponding triples of traces (where to avoid ambiguity, one can
work in SL(2,Fpf ) and thereafter descend to the projective group) was crucial to
Macbeath’s approach.

By way of fractional linear transformations, PSL(2,Fpf ) acts on the projective
line, Fpf ∪{∞}. An element of PSL(2,Fpf ) is called parabolic if it fixes exactly one
point in the projective line. Dickson already noted that there are two conjugacy
classes of parabolic elements, but any other pair of elements of the same trace are
conjugate in PSL(2,Fpf ).

Recall that the automorphism group of PSL(2,Fpf ) is the direct product of
the conjugations induced by PSL(2,Fpf ) ⊂ PGL(2,Fpf ) and the automorphisms
induced by the field automorphisms of Fpf (a field automorphism induces an entry-
wise action on a matrix), see say [Su; (8.8)]. Thus, the only possible differences in
traces of two equivalent generating triples can be accounted for by field automor-
phisms taking one set of traces to the other (and, as always, signs being correctly
treated).

1.4 Canonical Embedding, Action of the Absolute Galois Group.

Consider an arithmetic algebraic curve C of genus g. Let {ω1, . . . , ωg} be a basis
over the complex numbers for ΩC , the space of abelian differentials of C. We obtain
the canonical map to projective g − 1 space,

i : C → Pg−1

P 7→ [ω1(P ) : · · · : ωg(P )].
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When C is nonhyperelliptic, this map is in fact an embedding. A different choice
of basis for ΩC gives rise to a map which differs by an obvious projective change of
coordinates; the image of C is thus isomorphic.

Fix ω ∈ ΩC , an automorphism α of C, and a point P of C. There are local
coordinates at P such that ω = f(z)dz for some holomorphic f(z). We find that
(α∗ω)(P ) = (f ◦ α)(P ) d(z ◦ α) defines locally at Q = α−1(P ) some element of ΩC .
If furthermore our α fixes P , then it will do so in such a way that α∗ω(P ) = ζω(P )
for ζ an nth root of unity, where α is of order n. Note that then α does indeed fix
P under the canonical map as given above.

The action of automorphisms such as α on ΩC is clearly linear. We thus obtain
a representation of the automorphism group of C acting linearly upon the complex
vector space ΩC . Furthermore, the fixed points of automorphisms of C are given by
the eigenvectors for the action of the automorphism group on ΩC .

Now let I(C) be the ideal of C; that is, C is the subvariety of Pg−1 of ideal I(C).
Thus C is the zero locus of all polynomials in I(C). Since C is arithmetic, we may
assume that this ideal is generated by polynomials whose coefficients are algebraic
numbers.

Suppose now that σ ∈ Gal(Q̄/Q). We extend the action of σ to an automorphism
of C/Q. We then define σ(C) to be the variety of the ideal σ(I(C) ). We have an
induced set map, fσ : C → σ(C), sending in particular each P = [x0 : · · · : xg−1]
with the xi ∈ Q̄ to σ(P ) = [σ(x0) : · · · : σ(xg−1)].

1.5 Streit’s Distinguished Eigenvalues.

Let H be a normal subgroup of a Fuchsian group G. As a set, the Riemann
surface H\H is simply { [z]H | z ∈ H} where [z]H = {hz |h ∈ H }. If g ∈ G, then
the normality of H in G implies that g ◦ [z]H = [gz]H is well defined; furthermore,
every element of Hg acts on H\H as g does. We obtain a group homomorphism,
say φ, from G to the automorphism group of H\H; the kernel of φ is H.

Now suppose that G = ∆ = ∆(p, q, r) is a triangle group of signature (p, q, r)
with p, q and r relatively prime integers. Let γ ∈ ∆ be of order r. If [z]H is a fixed
point of φ(γ), then there exists h ∈ H such that (hγ)z = z. But then by normality,
there are h2, . . . , hr ∈ H such that (hγ)r = hh2 · · ·hr and hh2 · · ·hr thus fixes
z ∈ H. If H is torsion-free, then we find (hγ)r = I. But, any element of order r in
∆ is conjugate to some power of γ. We conclude that there exists δ ∈ ∆ such that
hγ = δγjδ−1 for some j ∈ {1, . . . , r − 1 }. Thus φ(γ) and φ(γ)j are conjugate.

Suppose further that Aut(H\H) ⊂ PSL(2,Fs) for some s and that φ(γ) is non-
parabolic of order r there. Then φ(γ) is diagonalizable either over Fs or over its
unique quadratic extension. The units of each of these fields being cyclic, in either
case there is then a unique subgroup of diagonal (projective) matrices of order r.
Considering traces, one now finds that j is congruent to either 1 or −1 modulo r.

We now state a proposition which mildly generalizes results in [Str2].

Proposition 1 (Streit). Fix p, q and r pairwise relatively prime integers and let
∆ = ∆(p, q, r) be a triangle group of signature (p, q, r). Let H be a torsion-free
and normal subgroup of ∆ such that H\H is nonhyperelliptic. Let C be the smooth
canonical model of H\H and let φ : ∆ → Aut(C) be the natural homomorphism.

Suppose that
(a) Aut(C) ⊂ PSL(2,Fs) for some s; and,
(b) φ is surjective.
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Then for any γ ∈ ∆ of order r and such that φ(γ) is nonparabolic of order r
there exists a primitive rth root of unity ζ and an atlas of coordinates on C such
that:

(1) The automorphism φ(γ) acts at each of its fixed points as either ζ or ζ−1;
(2) If P ∈ C is a fixed point of φ(γ), and Aγ is a matrix representation of φ(γ)

acting on ΩC, the complex vector space of abelian differentials on C, then P is the
projection to C ⊂ Pg−1 = P(ΩC) of an eigenvector of Aγ of eigenvalue ζ or ζ−1;

(3) For P as above and σ ∈ Gal(Q̄/Q), σ(P ) ∈ σ(C) is a fixed point of φ(γ)
corresponding to an eigenvector of eigenvalue σ(ζ).

Proof(Sketch). We can choose local coordinates on C such that the action of φ(γ) is
given in terms of the local coordinates of the hyperbolic setting. From the discussion
of this section, this then implies the first statement. The second statement then
follows from the discussion of the previous section. The third statement also follows
from the previous section; note that the action of φ(γ) on σ(C) is that of fσ ◦φ(γ),
with fσ as in the previous section. �

Remark. Under its hypotheses on γ, Proposition 1 establishes a one-to-one cor-
respondence between eigenvalues ±ζj and appropriate Galois images of C. This
is key to establishing that principal congruence curves do indeed lie in the same
Galois orbit, see Proposition 9.

2. The Curves

Proposition 2. Let m and p be as in the Theorem; let P be a prime ideal of Z[λm]
lying above (p); and, let f be the residue degree of P. Let Y be the noncompact
Riemann surface Gm(P)\H. Then the (holomorphic) automorphism group of Y is
isomorphic to PSL(2,Fpf ).

Proof. The Hecke group Gm is a maximal Fuchsian group and contains Gm(P)
as a normal subgroup. Therefore, the automorphism group of Y is isomorphic to
Gm/Gm(P), see say [JS].

From the definition of Gm(P), it follows that Gm/Gm(P) ⊂ PSL(2,Fpf ).
Since Sm and T generate all of Gm, their reductions modulo Gm(P) generate

the quotient group Gm/Gm(P). The hypotheses on p and n ensure that we can
apply Lemma C. We conclude that the reductions of Sm and T modulo P generate
all of PSL(2,Fpf ). �

Proposition 3. Suppose that Y is as above. Let X be the compactification of Y ; let
X have its natural structure as a smooth projective curve. Then X is an arithmetic
curve of genus

g = 1 +
pf (p2f − 1)/2

4pn
(pn− 2p− 2n).

Proof. Since Y is a ramified cover of Gm\H, we compute the genus with the
Riemann-Hurwitz formula, see say [JS]. We compute using the corresponding ram-
ified covering of compactified curves. These compatifications are given by adding
points at the cusps – each cusp is a puncture which corresponds to a conjugacy
class of primitive parabolic elements. The ramification degree at a point in the
completed curve is computed by determining the order of the coset gGm(P) for
g ∈ Gm a (primitive) element fixing a lift of the point. Thus, ramification occurs
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only above the cusps or above the projections of fixed points of elliptic elements of
Gm to Gm\H.

The elliptic elements in Gm are the conjugates of T and of TSm; the parabolic
elements are the conjugates of Sm.

Since the conjugates of T all have trace zero, it is clear that none of these can
be in Gm(Pi). But, T is of order 2. Hence, the ramification index at each point
above the fixed point of T is two.

The reduction of ζ2m modulo P is a (2n)th root of unity. Hence, TSm induces an
element which is of order n in PSL(2,Fpf ), see [Bo: Lemma 3.1]. The same holds
for the Gm-conjugates of TSm. Since Gm/Gm(P) is isomorphic to PSL(2,Fpf ), we
find that the ramification index at each point above the fixed point of TSm is n.

In our setting λm is a unit, hence Sp
m is the lowest nontrivial power of Sm which is

contained in Gm(P). Therefore, the ramification at each point above the completed
cusp of Gm\H is of order p.

We thus know that X is a degree d = pf (p2f −1)/2 = #PSL(2,Fpf ) cover of the
Riemann sphere, ramified over three points. In particular, Beyi’s theorem implies
that X is an arithmetic curve. The branching orders above the three points of
ramificaqtion are d − d/2, d − d/n and d − d/p. We find g = 1 − d + 1

2 (d − d/2 +
d− d/n+ d− d/p) = 1 + n

4pn (pn− 2p− 2n). �

Proposition 4. Suppose that X is as above. Then X is uniformized by a normal
subgroup of a triangle group of signature (2, n, p).

Proof. We argue topologically, using arguments similar to those of [Wo2]; see also
[CIW]. A fundamental domain in H for Gm is made of two (2,m,∞) triangles. A
fundamental domain for Gm(P) contains d = [Gm : Gm(P)] = #PSL(2,Fpf ) copies
of the fundamental domain for Gm. Thus, the open Y of above is triangulated by
2d of the (2,m,∞) triangles.

Recall that r = p is the smallest positive exponent such that Sr
m lies in Gm(P).

Thus the cusp width at ∞, see say [Leh], of Y is p; by the normality of Gm(P)
this is the cusp width of Y at every cusp. Therefore, there are 2p of the (2,m,∞)
triangles which meet at each cusp of Y . Similarly, 4 such triangles meet at each
image on Y of the fixed point of T and 2n meet at each image of the fixed point of
TSm. Let us call these images of fixed points special points.

Upon compactification, we find 2p topological triangles meeting at each of the for-
mer cusps, with the arrangements of the triangles at the special points unchanged.
This topological data allows us to conclude that X is uniformized by a subgroup of
a triangle group of signature (2, n, p).

Let us denote by ∆ the triangle group of signature (2, n, p) whose subgroup K
uniformizes X. Fix a generating triple (A,B,AB) of ∆ such that A is of order 2,
B of order n and AB of order p. Fix the homomorphism ψ : Gm → ∆ induced by
mapping the generating triple (T, TSm, Sm) to the generating triple (A,B,AB).

Now fix a fundamental domain in H for Gm(P). This Fuchsian group is then
generated by the side pairings of its domain. There are three basic types of pairings:
parabolic — pairing across a cusp; elliptic; and hyperbolic. Each pairing can be
expressed as a reduced word in T and TS. Here and for the remainder of the proof,
for typographic simplicity we denote Sm by S. Let the pairings be given by the
words: Pi(T, TS) for parabolic pairings; Ej(T, TS) for the elliptic pairings; and
Wk(T, TS), for the remaining generating words; respectively, and with appropriate
indices.
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Let K ⊂ ∆ uniformize X. From the topological discussion above, there is
a fundamental domain of K whose side pairings are the Wk(A,B). Now, each
parabolic Pi(T, TS) is a conjugate of Sp and thus Pi(A,B), its image under ψ,
is the trivial word in ∆. Similarly, the elliptic words Ej(T, TS) are conjugates of
(TS)n and also have trivial images in ∆.

Since Gm(P) is normal in Gm, the various conjugates TWk(T, TS)T−1 and
(TS)Wk(T, TS)(TS)−1 are contained in Gm(P). That is, each of these can be
expressed as some word in the various Pi(T, TS), Ej(T, TS) and Wk(T, TS). We
now apply ψ and find that the various AWk(A,B)A−1 and BWk(A,B)B−1 are
expressible in terms of the Wk(A,B). Since A and B generate ∆, we conclude that
K is a normal subgroup of ∆. �

We first read in [H] of the technique used in the preceding proof for passing
from the signature of the noncocompact triangle group to that of the cocompact
triangle group admitting a subgroup uniformizing the compactification of a Rie-
mann surface. Having also proved that normality of subgroup is preserved under
the compactification, we now easily determine the automorphism group of the al-
gebraic curve defined by the compact Riemann surface.

Corollary. Suppose that X is as above. Let ∆ be the triangle group of signature
(2, n, p) and K /∆ the corresponding uniformizing group. Then the automorphism
group of X is isomorphic to ∆/K.

Proof. The automorphism group of X is isomorphic to the quotient by K of the
normalizer in PSL(2,R) of K. Since K is normal in ∆, this normalizer contains
∆. But, by our conditions on n and p, ∆ is finitely maximal. Therefore, ∆ is the
normalizer and the claim follows. �

Proposition 5. Suppose that X is as above. Then X is nonhyperelliptic and has
automorphism group isomorphic to PSL(2,Fpf ).

Proof. A hyperelliptic Riemann surface has a normal subgroup of order 2. But, it
is well known that PSL(2,Fpf ) is a simple group for p > 3 and any f . Thus, it
suffices to show that Aut(X) is indeed PSL(2,Fpf ). By Proposition 2, it suffices to
prove that each automorphism of X = Y restricts to an automorphism of Y .

Consider the tiling of X by (2, n, p)-triangles as discussed in the proof of Propo-
sition 4. By the Corollary to Proposition 4, each automorphism of X is induced by
some δ ∈ ∆. The effect on the tiling of such an automorphism is hence a permuta-
tion of the tiling. In particular, the automorphism restricts to give a permutation
on the set of points of valency p. Therefore, the automorphism restricts to an
automorphism of the complement of these points. However, the cusps of Y are
completed to the points of valency p. We have thus proved that every nontrivial
automorphism of X restricts to a nontrivial automorphism of Y . �

3. The Galois Orbits

Proposition 6. Let Pi be as in the Theorem. Let Xi be the corresponding projec-
tive curves. The Xi are pairwise nonisomorphic.

Proof. Suppose that Xi and Xj are isomorphic for some i and j; let Ki,Kj ⊂ ∆ be
the corresponding uniformizing groups. Then there exists M ∈ PSL(2,R) such that
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MKjM
−1 = Ki. But, then M∆M−1 contains Ki. Since ∆ is a finitely maximal

nonarithmetic group, Ki is contained in no other finitely maximal Fuchsian group.
We conclude that M∆M−1 = ∆. But, the PSL(2,R) normalizer of a finitely
maximal Fuchsian group is the group itself. Hence, M ∈ ∆. Since Kj is a normal
subgroup of ∆, we conclude that Ki and Kj are equal. �

Proposition 7. Fix some X = Xi. Let Z be in the Galois orbit of the arithmetic
curve X. Then Z is one of the Xj.

Proof. Since X is not hyperelliptic, the canonical map gives a nonsingular embed-
ding of X into Pg−1, which for simplicity we call X as well. The ideal of X can
then be taken to be generated by polynomials with algebraic coefficients, and if
σ ∈ Gal(Q̄/Q), then σ(X) is the algebraic curve whose ideal is generated by the
polynomials arising from applying σ coefficient-wise to the generators of the ideal
of X. Since X is uniformized by a normal subgroup of the triangle group ∆ and
has automorphism group isomorphic to PSL(2,Fpf ), the same is true for its image
under σ; see [Wo2] or [JStr].

Thus, there is a surjective homomorphism φσ : ∆ → PSL(2,Fpf ) whose kernel
uniformizes the algebraic curve σ(X). Now, see say [Mac2], any element of order
two in PSL(2,Fpf ) has zero trace, any element of order n 6= p has trace ζ̄ + ζ̄−1

with ζ̄ a (2n)th root of unity, and any element of order p has trace 2 (all up to
signs). Hence, φσ sends the fixed generating triple (A,B,C) of ∆ to a generating
triple of trace triple (0, ζ̄ + ζ̄−1, 2).

For each j, let φj : ∆ → PSL(2,Fpf ) be the surjective homomorphism corre-
sponding to Xj . Fix ζ̄2n a primitive (2n)th root of unity over Fp. We claim that
for each trace triple of the form (0, ζ̄r

2n + ζ̄−r
2n , 2) there is some j and some field

automorphism α of Fpf such that the given trace triple is the image of the trace
triple of φj under α. Indeed, by Kummer’s Theorem see say [Wa: Prop. 2.14], the
ideals Pj are in one-to-one correspondence with the irreducible factors modulo p of
the minimal polynomial for λm = ζ2m + ζ−1

2m over Q. As stated in §1.2, ζ2m reduces
to some ζ̄2n. But then, each ζ̄r

2n + ζ̄−r
2n is the root of some irreducible factor. Any

two roots of the same irreducible factor are Galois conjugates, that is are paired by
some field automorphism of Fpf . Therefore, given a trace triple (0, ζ̄r

2n + ζ̄−r
2n , 2),

we do indeed have that there is some j and some field automorphism α which takes
the trace triple of φj to this given trace triple.

Having proved the claim of the previous paragraph, we conclude that there is
some j such that the trace triple of φσ is mapped to the trace triple of φj by some
field automorphism α. But, the kernel of φσ is the kernel of the composition of φσ

with the the automorphism of PSL(2,Fpf ) induced by α. In particular, the kernel
of φσ must then be Kj . That is, σ(X) is biholomorphically equivalent to Xj . �

The following proposition is unnecessary for the proof of our theorem, but may
be of independent interest. Although the various Hecke groups Gnpa are incom-
mensurable, we point out that their principal congruence subgroups uniformize
algebraic curves which have the same compactification. It might be interesting to
investigate the relations amongst the corresponding automorphic forms. Compare
this with Wolfart’s [Wo1] proof that the coefficients of automorphic forms for the
nonarithmetic triangle groups are essentially transcendental.
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Proposition 8. Let n be an odd positive integer and p a rational prime which does
not divide n, and suppose both p and n are greater than 5 . Fix a nonnegative
integer a, and let m = npa. Then for each prime ideal Q in the factorization of (p)
in Z[λm], there is a prime ideal P in the factorization of (p) in Z[λn], such that
Gm(Q)\H and Gn(P)\H are isomorphic as algebraic curves.

Proof. Recall that (p) ramifies completely in Q(ζpa) and that Q(ζnpa) is the com-
position of Q(ζpa) with Q(ζn). Thus, the residue degree f of Q equals the residue
degree of Pi, for Pi any of the prime ideal divisors in Z[λn] of (p).

By Proposition 4, both Gm(Q)\H and the Gn(Pi)\H are uniformized by normal
subgroups of the triangle group of signature (2, n, p). Indeed, by Proposition 5 and
the remarks of the previous paragraph, these normal groups all share a common
index in this triangle group.

Consider the generating triple of PSL(2,Fpf ) induced by our chosen generators
of Gm under the identification of Gm/Gm(Q) with this projective group. By the
arguments of the proof of Proposition 7, there is some Pi such that this generating
triple arises in the analogous manner from the isomorphism of Gn/Gn(Pi) with the
projective group. With P equal to this Pi, our result follows. �

Proposition 9. The arithmetic curves Xi form a single Galois orbit.

Proof. Given i and j, we will show that there is some σ ∈ Gal(Q̄/Q) which takes
Xi to Xj .

Fix a primitive root of unity ζ̄2n ∈ F̄p such that the algebraic curve Xi is de-
termined by the homomorphism φi which takes our preferred generators of ∆ to
generators of PSL(2,Fpf ) of trace triple (0, ζ̄2n + ζ̄−1

2n , 2). Suppose that in a similar
manner Xj corresponds to the trace triple (0, ζ̄r

2n + ζ̄−r
2n , 2), with r relatively prime

to 2n.
Consider the automorphism of order n of Xi, α = φi(TSm). Let P be a fixed

point of α. Let ζ2n be a primitive root of unity in Q̄ which reduces modulo Pi to
ζ̄2n. There are appropriate local (affine) coordinates on Xi, such that α acts locally
by multiplication by the primitive nth root of unity ζ2

2n.
There exists σ ∈ Gal(Q̄/Q) such that σ(ζ2n) = ζr

2n. Now, define the algebraic
curve σ(Xi) and the set map fσ as in §1.4. Then α ◦ fσ−1 is an automorphism
of σ(Xi) of order m which fixes σ(P ). Indeed, pulling back our local coordinates,
α◦σ−1 acts locally at σ(P ) by multiplication by ζr

2n. By Proposition 1, σ(Xi) corre-
sponds to the trace triple (0, ζ̄r

2n + ζ̄−r
2n , 2) and is thus biholomorphically equivalent

to Xj . �

4. Concluding Remarks

Since every arithmetic algebraic curve is uniformized by a subgroup of a trian-
gle group, there is great possibility for generalization of our work. Indeed, up to
PSL(2,R)-conjugation, each triangle group can be taken to lie in some PSL(2,OK),
where OK is the ring of integers of a number field. Thus the study of congruence
subgroups is very natural. Again, most of the corresponding curves will be uni-
formized by noncongruence subgroups of the modular group.

The reader may well have noticed that our proof of the main theorem implies
the following general result.
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Theorem. Let OK be the ring of algebraic integers of a Galois extension field K
of Q. Let G = PSL(OK) and let G ⊂ G be a noncocompact triangle Fuchsian group.
Suppose p is an odd rational prime whose OK ideal factorization is (p) =

∏
Pei

i ;
let f be the residue degree of the Pi. For each i, let G(Pi) = G ∩ G(Pi) and let
Xi := Gm(Pi)\H be the corresponding algebraic projective curve.

Suppose that Aut(Xi) is isomorphic to PSL(2,Fpf ); that the natural homomor-
phism from G to Aut(Xi) is surjective; and that this homomorphism from G factors
through a nonarithmetic finitely maximal triangle group of signature (2,m, p) for
some odd m relatively prime to p. Then the set map sending Pi to Xi is Gal(Q̄/Q)
equivariant.

Our main technique is the use of Macbeath’s generating triples for PSL(2,Fpf ).
We learned of this approach from Streit [Str2], who uses the (2, 3, 7) triangle group
to study aspects of the so-called Macbeath-Hurwitz curves. Streit also treats certain
subgroups of signatures (2, 3, n) and suggests that one should be able to continue in
this vein to more general signatures. We do this, in particular by using a different
set of the trace triples (see §1.3) of Macbeath.

The set of values for (p,m) excluded in the hypothesis of our main theorem is
determined by: (1) the desire to have the resulting cocompact triangle group be
nonarithmetic and maximal; and (2) the desire to have the automorphism group of
the Xi be all of the corresponding special projective group. The latter condition
is the more severe, and our hypotheses were not even sharp with respect to the
use of the Borho result, Lemma C, to ensure this (our demanding that the residue
degree f be odd is overly restrictive). The use of the nonarithmetic and maximal
cocompact groups is to exclude “extra” automorphisms. More careful accounting
might well keep track of such automorphisms.

The possibilities for the automorphism group of the Y of Proposition 2 which are
excluded by our hypotheses are explicitly listed in the full Borho [Bo] result. When
p is odd, the proper subgroups of PSL(2,Fpf ) that elements T and Sm can generate
are an icosahedral group or a conjugate of PSL(2,F(λ̄2)). In the very special case
(pf ,m) = (9, 5) of the simple icosahedral group, our results hold mutatis mutandis.
In the remaining cases, one could hope to get good control of the generating triples
and thus be able to weaken the hypotheses of our Theorem.

We have only treated the case of nonhyperelliptic X here. However, as Manfred
Streit reminded us, results of B. Schindler [Schi] show that there are few hyperel-
liptic curves uniformized by normal subgroups of triangle groups.

In summary, we are led to the following question.

Question. Fix a triangle group ∆ all of whose entries are in some number field
and consider the primes of the number field lying over some fixed rational prime.
Do the corresponding principal congruence subgroups of ∆ always uniformize a
complete Galois orbit of nonisomorphic algebraic curves?

Added in Proof: Results similar to that of [Bo] have recently been given by Lang
et al [LLT]; they apply these results to find the indices of principal congruence
subgroups of Hecke groups .

[LLT] M.-L. Lang, C.-H. Lim and S.-P. Tan, Principal congruence subgroups of the
Hecke groups, J. Number Th. 85 (2000), 220–230.
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