
PARAMETRIZING SIMPLE CLOSED GEODESY ON Γ3\H .
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Abstract. We exhibit a canonical geometric pairing of the simple closed
curves of the degree three cover of the modular surface, Γ3\H , with the proper
single self-intersecting geodesics of Crisp and Moran. This leads to a pairing of
fundamental domains for Γ3 with Markoff triples.

The routes of the simple closed geodesics are directly related to the above.
We give two parametrizations of these. Combining with work of Cohn, we
achieve a listing of all simple closed geodesics of length within any bounded
interval. Our method is direct, avoiding the determination of geodesic lengths
below the chosen lower bound.

1. Introduction

Late in the 19th century, Markoff [M1, M2] initiated an extensive theory of the
minima of indefinite binary quadratic forms. He showed in particular that these
begin with a countable discrete spectrum. Early in the 20th century, Ford [F]
showed that these values are closely related to the geometry of the modular surface.

Some forty years later, Cohn [C] recognized a connection between these initial
values of Markoff’s spectrum and certain closed geodesics on the so-called ho-
mology cover of the modular surface. This was clarified and extended by various
authors [S, LS, BLS, H, H2, Sh]. In particular, the Markoff numbers, which com-
prise this initial countable set of values of the spectrum, correspond one-to-one to
the simple closed geodesics on the hyperbolic once-punctured torus Γ′\H . The
same result was shown to hold if Γ′\H is replaced by Γ(3)\H or Γ3\H , the
subject of our study.

Our results describe paths between elliptic fixed points of order 2. In addition,
our work is global and metrical — indicating where on Γ3\H the paths run, their
lengths, and order in which their constituent arcs are traversed. In particular,
the fact that Γ3\H has torsion singularities, serves to put our work at some re-
move from the rather successful alternative approach for smooth surfaces — the
laminations and train tracks of the Thurston school. See say, [CB] and [PH] for
this. It should be noted that there are results using laminations for the behavior
of geodesics near cusps (again for smooth surfaces), see say [Mc].
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1.1. The Geometry of Γ3\H . The modular group is Γ = PSL(2, Z). As a
subgroup of PSL(2, R), Γ acts as möbius transformations on the Poincaré upper
half-plane, H. The modular surface is Γ\H. Let Γ′ be the commutator subgroup
of Γ. Then Γ′\H is the punctured torus which plays the crucial role mentioned
above.

Due to its simpler geometry, we focus upon a different cover of the modular
surface. Let Γ3 denote the subgroup of Γ generated by its cubes. This group has
signature (0; 2, 2, 2;∞) — that is, the corresponding surface is of genus zero with
three elliptic fixed points of order two and a single puncture. It is traditional to
refer to the puncture as the cusp; we refer to the elliptic fixed points as efp2 or
simply as efp. The group Γ3 contains Γ′ as an index two subgroup (for a discussion
of this, see, for example, [Sh]). The fact that the surface is a sphere, and thus
that one can easily apply notions related to the Jordan Curve Theorem, more
than compensates for the complications due to ramification. Indeed, Γ3\H has
manageable geodesic geometry as the ramification is of degree 2; as is well known
(see say [Sh]): the key feature is that a geodesic encountering an elliptic fixed
point of order two ‘bounces back’ along the path of the encounter. For example,
it happens that each simple closed geodesic on Γ3\H connects a pair of distinct
elliptic fixed points of order two.

The group of isometries of Γ3\H is of order six. The three orientation preserving
isometries are induced by the fundamental translation of Γ, i.e. by the action on
H, of S : z 7→ z + 1. To obtain the full group of isometries, one includes the
orientation reversing map z 7→ −z̄.

The element of Γ, T : z 7→ −1/z is in Γ3. Indeed, Γ3 is generated by Tj with
j ∈ {0, 1, 2} where Tj := SjTS−j. Note also that S3 = T2T1T0 is in Γ3. In
particular, this implies that a geodesic on Γ3\H of height greater than three must
have a self-intersection. Here height means the greatest (or limsup) diameter of
the set of lifts to H of the geodesic.

It is well known that neither one nor two geodesic arcs can bound a disc of
trivial topology on a Riemann surface. We will say that an illegal disc is formed
if a purported geodesic must be such that it would contradict this. On Γ3\H , a
disc bounded by one geodesic arc (a ‘monogon’) or by two such arcs (a ‘bigon’)
must contain at least the puncture or some elliptic fixed point. But, see [Sh], if
there is exactly one elliptic fixed point and no cusp within a monogon, then the
geodesic arc collapses onto the elliptic fixed point so as to have this point as a
terminus.

Also, it follows easily (see [Sh]) that a simple closed geodesic on Γ3\H , which
perforce cuts the surface into two discs one of which contains exactly two efp2,
must collapse onto an arc connecting these two efp2.

1.1.1. Automorphisms and the PSSI. The topological structure of Γ′\H is that
of a punctured torus. Thus, the fundamental group of Γ′\H is isomorphic to
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the free group on two generators. But, Γ′ has no elliptic elements and thus the
fundamental group of Γ′\H is isomorphic to Γ′. We can choose generators A and
B for Γ′ such that for the Tj defined above, A = T1T2T1T0 and B = T0T1. Indeed,
these are the generators with which [CM] work.

Geodesics correspond to conjugacy classes, closed geodesics to hyperbolic (that
is, absolute value of trace greater than 2) classes. Hence, the fundamental group
modulo inner automorphisms identifies the geodesics. All outer automorphisms,
modulo inner automorphisms, of this fundamental group were shown by J. Nielsen
[N] to be induced by homeomorphisms. Therefore, when proving a topological
property holds throughout some automorphism group orbit of geodesics, it suffices
to show that a single geodesic of the orbit enjoys the property.

Since geodesics realize the minimal number of self-intersections within their free
homotopy class, it is easily seen that the simple closed geodesics on Γ′\H form a
single orbit under the action of the automorphism group. A PSSI is defined to a
closed geodesic of Γ′\H which intersects itself exactly once and does not contain
a monogon about the puncture. Crisp and Moran showed that these also form a
single class modulo the action of the automorphism group. Indeed the class of the
PSSI can be represented by A2B2.

The orientation preserving outer automorphism group acts on the Teichmüller
space of the hyperbolic once punctured tori as the Teichmüller group — basically,
the action is given by a relabeling of geodesics with no other change in the un-
derlying geometry. Furthermore, Γ′\H geodesics in an orbit of the automorphism
group of Γ′ project to homeomorphic geodesics on Γ3\H . We can simplify vari-
ous topological arguments by simply checking that a property holds for a single
representative of a geodesic configuration and thereby conclude that this topolog-
ical property holds for every corresponding configuration under the action of the
automorphism group. See, for instance, our proof of Lemma 1.

2. Results in this Paper

Note. We use the abbreviation scg for simple closed geodesic and continue with
efp for elliptic fixed point.

2.1. Alignment and the Markoff equation. In Sections 3 and 4, we show that
there is a natural pairing between PSSI and scg. Each PSSI has a unique simple
closed geodesic which it does not intersect, its paired scg. Appropriately adding
two more geodesics, we may triangulate Γ3\H . This set of curves can be lifted to
H, affording a fundamental region for Γ3, one for each PSSI-scg pair. In a precise
sense, most of the area of Γ3\H lies in the PSSI disc containing the cusp. Finally,
the heights of the PSSI and the scg are aligned with respect to the cusp. That is,
they lie on a common vertical geodesic terminating in the cusp; highest lifts to the
upper half-plane of the paired PSSI and scg are concentric Euclidean semi-circles.
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2.2. Two Parametrizations of SCG on Γ3\H .

2.2.1. Tine Parametrization. In Section 5 we prove that a simple closed geodesic
σ is characterized by its structure in neighbourhoods of the three elliptic fixed
points. At each of the two elliptic fixed points which lie on σ, the structure is an
even number of arcs (tines) around the elliptic fixed point and a single tine going
into the elliptic fixed point; at the remaining elliptic fixed point there is a choice
of passing above or below. Thus σ is be characterized by a signature (m,n,±1).
It turns out that gcd(2m+1, 2n+1) = 1. There are m+n arcs under or over the
elliptic fixed point not on σ.

By using Γ3\H isometries, we can normalize the signature to choose a rep-
resentative of each isometry class of simple closed geodesics. We show how to
pass between geodesics and normalized signatures, by way of recovering an ele-
ment whose axis projects to the given simple closed geodesic. This is discussed
in Section 5. From this, a minor refinement in the classic work of Harvey Cohn
achieves a listing of all simple closed geodesics whose length lies between M and
N , without simply determining all shorter geodesics (Section 5.3).

2.2.2. Basic Arc Parametrization. In Section 6 we describe a dynamic way of
following the path of a scg. This leads us to a parameterization of all isometry
classes of scg, and a signature identifying each such class. The signature is of the
form (α, β, m, n) where α and β are chosen from our three basic scgs (as discussed
in Section 6), m is the number of laminations about α, and n is the number of
times we choose to exit rather than terminate (when we have that option). This
parametrization gives a good global picture of the scg and also a simple upper
bound for its length in terms of l(α), l(β), m and n. Here l(τ) is the length of the
closed geodesic τ on Γ3\H .

3. Alignment of PSSI and SCG Lifts.

Choose an scg τ connecting e0 and e1, say. There is then a unique geodesic
connecting e2 with itself that avoids τ and has its only self-intersection at e2. This
is straightforward, see our proof of Lemma 1. It turns out that these geodesics are
nothing but the proper single self-intersection PSSI geodesics of Crisp and Moran
([CM]), projected to Γ3\H .

Alternatively, starting with a PSSI, the corresponding scg is the unique simple
closed geodesic which does not intersect the PSSI. We call this the parameter scg
or pscg.

Define a generating pair to be a pair of simple closed geodesics with a single
point of intersection (the lifts of such a pair are the axes of a generating pair of
elements in the free group Γ′). Both PSSI and parameter simple closed geodesics
admit well defined highest points. Given such a PSSI–simple pair, we define its
marking segment to be the shortest geodesic segment connecting their high points.
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As the following lemma shows, this allows us to associate to each PSSI a unique
generating pair, which we will refer to as the companions of the PSSI.

Lemma 1. For each PSSI on Γ3\H , there is a unique associated generating pair
which intersects the PSSI and its parameter simple closed geodesic only at the
elliptic fixed points while avoiding the marking segment.

Proof: Topologically, we can replace the marking segment by any segment
joining the PSSI and its parameter simple closed geodesic (but avoiding the elliptic
fixed points). Hence, by the automorphism group arguments, it suffices to consider
the setting of the PSSI given by T3T0. Here, the uniqueness of such a pair is
geometrically clear; see Figure 1, where the pair is given by T0T1 and T2T3. �

���
���
���
���

TT0
T

σ

T1 2 3

α

(cusped disc)

Figure 1. Axes of T3T0 and T2T1; a PSSI α and parameter simple σ

Lemma 2. Each PSSI of Γ3\H admits a highest lift on H which connects a
pre-image of an elliptic fixed point of Γ3\H to the translate of this pre-image by
S3 : z 7→ z + 3.

Proof: We simply note that a PSSI of Γ3\H forms a monogon about the punc-
ture. Since the isotropy group in Γ3 of ∞ is generated by S3, the intersection
point of this monogon lifts to some z and z +3. But, that intersection point is an
elliptic fixed point. �

Theorem 1. If α is a PSSI on Γ3\H , then there is an elliptic element E ∈ Γ3

such that the axis of S3ES−3E is a highest lift of α. Furthermore, the axis of S3E
is a highest lift of the parameter simple closed geodesic.
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Proof: Given α, by the previous lemma, there is a highest lift passing through
the fixed point of an elliptic element of Γ3, say that of E, and through the trans-
lation of this point by 3. This second point is fixed by H = S3ES−3. Thus, HE
has as its axis the required lift.

The parameter simple of α, say σ, has a highest lift which lies strictly between
the vertical lines passing through the fixed points of E and H. Furthermore, the
marking segment lifts to some geodesic segment joining the lifts of α and σ. This
marking segment lift can be taken to lie above the lift of σ. But, this means that
we can also lift the companions to the region. One companion thus lifts to join
the fixed point of E to the lift of σ; the other lifts so as to join σ to the fixed
point of H. These companion lifts meet the lift of σ at elliptic fixed points. Label
these points as the fixed points of F and G respectively. We thus have identified
a pentagon of vertices fixed by: S3 (which fixes ∞), E, F , G, and H.

From the topology of the quadrilateral on the punctured sphere Γ3\H bordered
by the PSSI, parameter simple and the companions, a fundamental region for this
surface is given by taking the pentagon and adjoining a triangle bounded by lifts
of the companions and the parameter simple closed geodesic. That is, we can
extend each of the companion lifts by a contiguous lift such that these two new
lifts intersect, see Figure 1 for a special case. But, these contiguous lifts have new
endpoints fixed by FEF and GHG. (To see this for the first of these, note that
FE = FEF · F .) Hence, FEF = GHG. Let I = FEF . The fundamental region
is thus bounded by the fixed points of S3, E, I and H. The elliptic F acts so as
to glue the side of vertices fixed by E and I to itself; G acts similarly with respect
to I and H. But this implies that GFE = S3. Therefore, a highest lift of σ is
indeed given by S3E = GF . �

The largest hyperbolic punctured disc centered about the cusp of Γ3\H is called
the fundamental cuspidal horocycle. There is a natural striation of this: lift the
fundamental horocycle to the upper half-plane with the cusp at ∞ and consider
the striations induced by the vertical h-lines. Since the cusp is fixed only by trans-
lations, this induces a well-defined striation of the fundamental cuspidal horocycle.
We say that points on Γ3\H are aligned if they lie upon a single striation.

Corollary 1. The high points of a PSSI and its parameter simple closed geodesic
are aligned.

Proof: Given the PSSI, as above we can find an elliptic E. But, there exist in-

tegers m, k and b such that E =

(
−k b
m k

)
. Thus, S3E =

(
3m− k 3k + b

m k

)
and

HE = S3ES−3E =

(
9m2 − k2 − 3km− bm ∗

3m2 k2 + 3km− bm

)
.
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Therefore, the axis of S3E has endpoints 3/2− k/m±
√

9/4− 1/m2, while that

of HE has endpoints 3/2− k/m±
√

9/4 + 1/m2. The high points thus lift to lie
on the line x = 3/2− k/m. �

4. PSSI-Indexed Fundamental Regions for Γ3

To begin, we introduce some geometric notation. Fix a PSSI and a highest lift
of it; label the highest (left most) lift of its elliptic fixed point (that is, its point
of self-intersection) as e0. We label the endpoints of the (aligned, highest) lift of
the pscg as e1 and e2. Let e′ = Te1(e0). (Note that here we are using the notation
ej in a more liberal fashion than previously.)

The boundary of our fundamental region consists of four h-arcs: one connecting
e0 to ∞; its translate by S3, and two arcs connecting e0 (respectively, e0 +3) with
e′. Now the bisector of these last arcs are e1 (respectively, e2). Of course, e′ is
also the image of e0 + 3 under Te2 .

The first interesting feature of these fundamental regions is that they are parametrized
by the PSSI-pscg pairs. Since these are in 1-1 correspondence with the Teichmüller
orbit of our surface, we have explicit lifts corresponding to this orbit. We know of
no other nontrivial arithmetic surface for which such explicit fundamental regions
have been given.

Secondly, quite naturally in terms of m, most of Γ3\H lies above the PSSI. Re-
call that scg are in one-to-one correspondence with the Markoff triples (m, m1, m2),
solutions in natural numbers to the markoff equation m2 + m2

1 + m2
2 = 3mm1m2.

We say that a PSSI is associated with such a triple if its pscg corresponds to the
triple.

Lemma 3. The difference between the total area of Γ3\H and the region lying
above the PSSI cusped disc associated with a Markoff triple (m, m1, m2) is o(1/m).

Proof: We have that e0 has height 1/m and the region above the PSSI lifts to
a triangle with vertices at ∞, e0 and e0 + 3. The area of this triangle (and thus
the region) is π − 2 arctan 2/3m. Now, the area of all of Γ3\H is π, three times
that of the full modular surface, and we are done. �.

In closing this section, we note that this lemma suggests an attack on the
notorious Uniqueness Conjecture — which states that m determines m1 and m2,
apart from trivialities — as follows: The heights on the PSSI and the pscg are
given solely in terms of m. If this occurred twice in the spectrum, there would be
two accompanying fundamental regions given by the respective PSSI-pscg pairs.

Consider the SL(2,R) translation (meant literally: a parabolic action fixing ∞)
placing one PSSI upon the other (isometrically). The previous lemma states that
this is a surface isometry on all but a residue of the surface. Further, since the
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pscg lifts are mapped one onto the other, the high points of the respective lifts
are matched by this translation.

If the endpoint of the pscgs were also matched by the translation, then trans-
lation would be an isometry on the full surface, and the Uniqueness Conjecture
follows easily from this. However, though we know that the lengths of the pscgs
are the same, we do not know that the endpoints are the same. Since this issue is
external to the PSSI cusped discs, which do match exactly, the fate of uniqueness
seems in a way to reside on vanishingly small pieces of Γ3\H .

Apropos of this, let us take this view: Say we specify e0 and e1. Then e′ and
more importantly e2 are determined. Consider the conditions satisfied by e2:

• It is an efp2 of Γ3.
• It is the bisector of e′ and e0 + 3.
• The arc (e1, e2) is concentric with (e0, e0 + 3).

Is it plausible that there are two different ways to do this? It appears to be
quite difficult!

5. Paths and Words of Simple Closed Geodesics

5.1. Tine Signatures of Simple Closed Geodesics. We now associate an
identifying signature to each isometry class of simple closed geodesics on Γ3\H .
This signature directly reflects the geometry of a normalized representative of the
isometry class, with particular emphasis of the local geometry near the elliptic
fixed points.

For ease of notation, we again label the three elliptic fixed points as e0, e1 and
e2. Given a simple closed geodesic, we may assume that it connects e0 and e2.
The geodesic remains a bounded distance from the cusp, hence we can decompose
Γ3\H into neighbourhoods of the cusp and of the ei such that the simple geodesic
is contained in the union of the three elliptic neighbourhoods. The intersection
of the geodesic with each of the neighbourhoods of the ei is a union of non-
intersecting simple arcs. We call these ei-arcs. We can decompose Γ3\H so as
to ensure that the e0-arcs do not meet e2-arcs. Furthermore, we can choose our
decomposition so as to minimize the number of e0- and e2-arcs.

We can envision the e0-arcs and e2-arcs as forming the tines of a pitchfork; the
central tine meets the elliptic fixed point. Thus, there is an odd number of tines
at each, say 2m + 1 at e0 and 2n + 1 at e2. By isometry, we may assume that
m ≥ n. We can also order each of the sets of tines and of arcs from bottom to
top. Furthermore, we can note if an e1-arc lies above or below e1.

Each e2-tine is joined to some e1-arc. The remaining vertex of each of these
e1-arcs is joined to some e0-tine. Thus, there remain 2(m − n) e0-tines which
must be joined two at a time by e1-arcs. The loops so formed are homotopically
interesting only if the e0-tines joined by a single e1-arc lie on opposite sides of
e0, one above, the other below. But, then the e1-arcs meeting e2-tines either all
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lie above e1, or all lie below e1. Our signature is (m, n, +1) in this first case,
(m,n,−1) in the second.

Figure 2 gives some samples.

(2, 1, +1)

  curve to

(2, 1, −1)

  signature

(3, 1, −1)

Figure 2. (m,n, ε) Examples

We note the following.

Lemma 4. Each isometry class of Γ3\H simple closed geodesic defines a unique
signature.

Proof: The isometries of Γ3\H permute the ej. Indeed, it is easily checked that
z 7→ z + 1 induces σ(e0, e1, e2) = (e1, e2, e0) and z 7→ −z̄ induces τ(e0, e1, e2) =
(e0, e2, e1). Note that this extends to a faithful representation of the isometry
group as the full symmetric group on three letters.

Given a simple closed geodesic on Γ3\H , this geodesic joins two of the ej. There
is a unique power of σ which takes these two to the pair e0 and e2. Furthermore,
there is a unique element interchanging e0 and e2 (as a permutation, this is simply
στσ−1).

Hence, the normalization to a geodesic joining e0 and e2 such that there are
more e0-arcs than e2-arcs uniquely identifies an isometry class representative of
the class of the initial simple closed geodesic. (If there are exactly as many e0-arcs
as e2-arcs, it turns out that the isometry fixes the possible geodesics.) �

We now show that the assignment of signature to simple closed geodesic isom-
etry class gives a bijective correspondence.

Lemma 5. There is at most one isometry class of Γ3\H simple closed geodesic
of any given signature.

Proof: Given a simple closed geodesic on Γ3\H , we obtain the corresponding
signature. Since a curve uniquely identifies its free homotopy class, and this latter
uniquely identifies its isometry class, it suffices to show that there is only one way
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of joining the various ei-arcs so as to obtain a simple, closed, connected curve
from e0 to e2.

For each i, order the ei-arc vertices by increasing height. To preserve simplicity,
the joining of e2-tines to e1-arc vertices must respect this order. Similarly for
e0-tines. The only choice to be made is in the placement of the e0-tines which
are not joined by e1-arcs to e2-tines. Again, simplicity requires that these e0-tines
be adjacent in the order. But, were these not all at one of the extremes of this
order, then the curve formed would either not be connected, or else m would not
be minimal (in this latter case, we could homotope the curve so as to collapse
e0 tines). Now, the e1-arcs joining e0-tines must pass around e1, else we can
homotope the curve and show that m is not minimal. The sign of the signature
indicates whether the other e0-tines lie above or below these. Therefore, there
is only one way of passing from a simple closed geodesic signature to a curve
identifying an isometry class of such geodesics. �

We now show exactly which signatures can be achieved by simple closed geodesics
on Γ3\H . All other signatures actually give laminations by simple closed curves.

Theorem 2. Each (m, n, ε) ∈ N × N × {±1 } with m ≥ n defines a union of
closed curves on Γ3\H . A signature (m, n, ε) defines a simple closed curve if and
only if gcd(2m + 1, 2n + 1) = 1.

Proof: Given a signature, (m, n, ε), we draw 2m + 1 tines at e0, 2n + 1 at e2.
We join the e2-tines to e0-tines by way of e1-arcs. If ε = 1, then we join by
starting from the top and working down. If ε = −1, we reverse this. All of these
joining e1-arcs lie either above or below e1, again depending upon the sign of the
signature.

We now join the remaining 2(m − n) e0-tines to themselves by e1-arcs which
loop around e1. This joining is done recursively, first the extreme (with respect
to the order) tines are joined, then their neighbours, and so forth.

The above is always possible for any signature, and it is exactly this which
recovers the simple curves. Now, suppose that there is more than one connected
component of the curve so formed. By a parity argument, the component meeting
e0 also meets e2. Consider any other component. This new component must
be a simple closed loop. But, ignoring any other components, this component
is homotopically equivalent to the e0—e2 component. Hence, it has the same
number of each of the ei-arcs as that component. Of course, this is true for all of
the components. But, this then implies that gcd(2m + 1, 2n + 1) > 1.

If gcd(2m + 1, 2n + 1) =: d > 1, then consider the curve of signature ( (2m +
1)/d, (2n + 1)/d , ε). By the above, this is a simple closed curve. Placing d − 1
simple closed loops concentrically about this, each with the same ei-arc data gives
a union of curves of the signature (m, n, ε). �
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We call a signature (m,n, ε) a simple signature if gcd(2m + 1, 2n + 1) = 1.

5.2. From Signature to Word. Given any simple signature (m, n, ε), we con-
struct a matrix W = W (m, n, ε) whose axis projects to a simple closed geodesic
of this signature. The matrix W is given as a word in non-negative powers of the
elements a = T0T1, b = T0T2 and c = T0T1T2T1. Only two letters will appear in
each word. To motivate the formation of W , we have the following result.

Lemma 6. Let γ be the curve formed by the above process from a simple signature
(m,n, ε). Then γ is homologous to the projection of the axis of a2(m−n)b2n+1 when
ε = +1 and to that of a2(m−n)c2n+1 otherwise.

Proof: The axis of a is the shortest path from e0 to e1. The axes of b and c
project to the shortest paths which connect e0 to e2 while passing above and below
e1, respectively. Thus, we can collapse the various strands of γ onto multiples of
a, b and c as announced. �

In each homology class, there is at most one simple geodesic class, see [H] or
[Z] for this. But, each of (a, b) and (a, c) is a generating pair, as defined above.
Hence, [C2] gives the exact simple word in this class. Indeed, let

fj := b j(2n + 1)/[2(m− n)] c − b (j − 1)(2n + 1)/[2(m− n)] c.
Then we have W given by

W (m, n, ε) :=


∏2(m−n)

j=1 a bfj , if ε = +1;

∏2(m−n)
j=1 a cfj , otherwise.

Since W (m, n, ε) is in the correct homology class, is simple, and there exists
only one such simple, our construction gives the following.

Proposition 1. Let (m, n, ε) be a simple signature. Then the axis of W (m,n, ε)
projects to a simple closed geodesic on Γ3\H which is of signature (m,n, ε).

5.3. All Isometry Classes of Predetermined Length. In this section we show
that a minor extension of the work of Cohn in [C2] suffices to produce a list of all
non-isometric scgs whose lengths lie between M and M + T . The point here is to
does this without recursively generating the entire Markoff tree below M + T .

Like our signatures, the step-words of Cohn give a listing of words for simple
closed geodesics, in his case the geodesics naturally lie on Γ′\H . The word M(u, v)
is defined as are our W above, except that now the two generating elements present
in a word are the above mentioned A and B, with A corresponding to u. Note
that A and B are of equal trace.
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Theorem 3. Given integers u and v, let M(u, v) be the step-word as above. Let
γ(u, v) be the projection to Γ3\H of the axis of M(u, v). Then each simple closed
geodesic of Γ3\H is some γ(u, v) with u and v relatively prime or else with uv = 0.
The γ(u, v) such that (u, v) = (0, 1) or else such that u and v re relatively prime
with 0 < u < v/2 uniquely represent all isometry classes of simple closed geodesics
of Γ3\H .

Proof: That every simple closed geodesic is of the form stated is proved in [C2].
By inspection, T0 conjugates each of A and B to its own inverse. The action of

S : z 7→ z+1 takes (A, B) to (B−1, AB), and the action of z 7→ −z̄ interchanges A
and B. Using these, it is easy to see that every isometry class can be represented
by an M(u, v) with 0 < u < v, or with u = 0 and v = 1. However, M(u, v)
minimizes trace amongst all words in A and B with the same ordered exponent
sum (u, v), [H, Z]. Hence, applying the isometries S and z 7→ −z̄ sends M(u, v)
to a word of minimal trace and exponent sums v − u and v. But, this word is
simple, that is the axis of the corresponding element of Γ3 projects to a simple on
Γ3\H . Therefore, this is conjugate to M(v − u, v). Hence, we may assume that
0 < u < v/2, or else u = 0 and v = 1. �

We now give bounds on the lengths of the corresponding geodesics. We will
need the fact that for matrices X and Y in SL(2, R), trXY = trXtrY − trX−1Y .
Let t(u, v) = trM(u, v).

Lemma 7. If v > 0 and 0 < u < v/2, then t(u, v) < t(u, v + 1).

Proof: From the formation of M(u, v), there exists a unique i such that fi(u, v+
1) 6= fi(u, v); for this i, fi(u, v + 1) = fi(u, v) + 1. For all j, let fj = fj(u, v).
Thus,

t(u, v + 1) = tr(
i∏

j=1

ABfj ·B ·
u∏

j=i+1

ABfj ).

But, since trace is a conjugacy class invariant, the trace relation for products leads
to t(u, v + 1) = 3t(u, v) − trV , with V of ordered exponent sum (u, v − 1). The
minimal trace property thus gives that t(u, v +1) ≥ 3t(u, v)− t(u, v−1). We thus
use induction, and it suffices to show that t(u, 2u + 1) ≥ t(u, 2u).

Let r(u) = t(u, 2u) and s(u) = t(u, 2u + 1). That is, r(u) = tr(AB2)u and
s(u) = tr(AB2)uB. Using the trace relation, it is easily seen that each of r(u) and
s(u) forms a recurrence sequence. Explicit solutions then give that s(u) > r(u)
for u ≥ 1. �

Lemma 8. If v > 0 and 0 < u < (v + 1)/2, then t(u, v) > t(u + 1, v).

Proof: From the isometries, t(u, v) = t(v, u + v) and similarly for t(u + 1, v).
From this, arguments as for the previous lemma give the result. �
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Theorem 4. Let l be the length of some simple closed geodesic on Γ3\H and
suppose that u, v as above are such that uv 6= 0 and where l = l(u, v) is the length
of γ(u, v). Then there is a linear bound on l, depending only on v:

c1v > l ≥ c2v ,

where c1 < 4v log[(1 +
√

5)/2] and c2 ≥ (v/2) l(1, 2).

Proof: Using recurrence sequences, it is readily seen that t(1, v) = 3F2v, where
Fj is the j-th fibonacci number. Now, let l(u, v) be the length of the Γ3\H
geodesic corresponding to M(u, v). Thus, if t = t(u, v), then l(u, v) = 2 log(t +√

t2 − 4)/2 < 2 log t. In particular, l(1, v) < 2 log 3F2v−2 < 4v log[(1 +
√

5)/2]. By
the preceding lemmas, this last gives an upper bound on l(u, v).

Recall that [McR] showed that geodesic length induces a norm on homology (of
any hyperbolic punctured torus). From this in particular one has that l(u, v)+l(v−
u, v) ≥ l(v, 2v). But, l(v, 2v) = vl(1, 2). Furthermore, l(u, v)+l(v−u, v) = 2l(u, v)
(from our isometries). Therefore, l(u, v) ≥ (v/2) l(1, 2). �

It is now straightforward to give all geodesics of length within predetermined
bounds.

As an example of this, it is quickly checked that there is exactly one isometry
class of geodesics of length between 11 and 12, l(1, 6) = 11.475 . . . . Table 1 gives
the ten isometry classes and lengths between 111 and 112; the 29 isometry classes
and lengths between 311 and 312; and the 47 isometry classes and lengths between
511 and 512. (There are 85 classes of length between 1011 and 1012.)
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Table 1. All geodesic lengths between 111 and 112, 311 and 312, and 511 and
512.

111-112 311-312 511-512
(u, v) length, l(u, v) (u, v) length, l(u, v) (u, v) length, l(u, v)

(15, 61) 111.81105 (65, 174) 311.92698 (67, 279) 511.99248
(5, 59) 111.69281 (41, 170) 311.90176 (31, 272) 511.94472
(21, 62) 111.66743 (73, 175) 311.89694 (89, 283) 511.93460
(29, 63) 111.64199 (81, 176) 311.89247 (78, 281) 511.93390
(16, 61) 111.45688 (5, 163) 311.87693 (118, 287) 511.91655
(11, 60) 111.37087 (36, 169) 311.82771 (134, 289) 511.90738
(6, 59) 111.31817 (31, 168) 311.76366 (26, 271) 511.89306
(1, 58) 111.26651 (58, 173) 311.73204 (57, 277) 511.84437
(23, 62) 111.18520 (26, 167) 311.70931 (95, 284) 511.79665
(17, 61) 111.10797 (47, 171) 311.69539 (16, 269) 511.78973

* * (74, 175) 311.66115 (73, 280) 511.75977
511–512 cont’d (21, 166) 311.65729 (103, 285) 511.75047
(85, 282) 511.41094 (16, 165) 311.60561 (11, 268) 511.73807
(53, 276) 511.4088 (11, 164) 311.55395 (47, 275) 511.72704
(48, 275) 511.35322 (53, 172) 311.52125 (111, 286) 511.70444
(97, 284) 511.31442 (6, 163) 311.50229 (127, 288) 511.67582
(38, 273) 511.24721 (59, 173) 311.49092 (135, 289) 511.67181
(91, 283) 511.23712 (37, 169) 311.45773 (143, 290) 511.66781
(80, 281) 511.23608 (1, 162) 311.45063 (1, 266) 511.63474
(113, 286) 511.22228 (67, 174) 311.44481 (68, 279) 511.62250
(121, 287) 511.20917 (83, 176) 311.42133 (37, 273) 511.62183
(137, 289) 511.20068 (27, 167) 311.33481 (90, 283) 511.58586
(33, 272) 511.19546 (60, 173) 311.24981 (79, 281) 511.58499
(28, 271) 511.14378 (17, 165) 311.23098 (63, 278) 511.54844
(59, 277) 511.10441 (76, 175) 311.18978 (27, 271) 511.51842
(23, 270) 511.09212 (43, 170) 311.17235 (104, 285) 511.50936
(18, 269) 511.04046 (7, 163) 311.12765 (58, 277) 511.47439
(106, 285) 511.02712 (38, 169) 311.08775 (120, 287) 511.44496

(61, 173) 311.00869 (17, 269) 511.4151

6. The Array of SCG via the Basic SCG

In this section, we give a second type of signature, again identifying each isom-
etry class of simple closed geodesic. The emphasis here is more dynamic then
in the previous section. In particular, the present signature naturally gives an
elementary, but apparently quite good, lower bound on the length of the scg in
the class. Our construction of the signature naturally classes the scg into arrays,
determined by parametrizing basic geodesics.



PARAMETRIZING SCG ON Γ3\H 15

Up to isometry, the shortest scg are: α the projection of the axis of T1T2,
trace = 3, l(α) = log (7 + 3

√
5)/2 = 1.9248473 . . . ; β that of T0T2, trace = 6,

l(β) = log (17 + 3
√

32) = 3.525494345 . . . ; and finally γ of T0T1T0T2, trace =
15, l(γ) = log (223 + 15

√
221)/2 = 5.407151662 . . . . We call any element of the

isometry classes of any of these three geodesics the basic scg. Each of α, β and γ
has an element of its isometry class connecting any pair of distinct elliptic fixed
points.

To create an array of scg connecting e0 and e2, we choose a hinged pair of basic
scg. Such a pair shares a single point (e1 or e2). The geometry of our construction
relies upon the old insight ([Sh]) that scgs on Γ3\H exist only because it is possible
to use the efp2s as ‘maypoles’ in order to reverse direction, without incurring an
intersection. In a typical scg, all three efp2s are used in this way, with two of
them also being termini. We have two geometric steps — entry/exit over one of
the basic scg in the hinged pair and lamination on the other.

We now create an example array by first choosing a hinged pair µ, connecting
e0 and e2, and λ, connecting e1 and e2. The m, n-entry of the array is the scg
formed in the following manner. First, upon leaving e0 we approach e2, adhering
to the path of µ. We now wrap about λ a total of m times. We stop facing e2. We
can terminate or circle the point e2 in the opposite direction, which then forces
an exiting process comprised of m more wraps about λ. (We have now drawn
the labyrinth of the scg, see Figure 3.) Upon exiting the labyrinth, there is a
unique direction around which we can circle e0 one time (only!) before entering
the labyrinth again in such as way as to have access to e2 and e1. This single
laminate adheres to our chosen path from e0 to e2, say µ. We have only one
further choice: the number of times to exit (n − 1) before choosing termination
when facing e2 or e1.
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exiting

re−entry

labyrinth

µ

λ

Figure 3. A Labyrinth and Its Basic SCG.

Thus we define the signature of a scg so constructed to be (λ, µ, m, n).

It is a simple matter to describe approximately where the height occurs on an
scg corresponding to an entry of the array: If there is an exit, then the height
occurs after the last exit and before the last entry. Depending on m and n, this
can lie anywhere on the geodesic. If there is no exit (n = 1), the height occurs
before we start spinning about λ.

Theorem 5. Fix a pair of basic scg. The signatures (λ, µ, m, n) identify each scg
homotopy class once, up to isometry. Given a scg of signature (λ, µ, m, n), its
highest point occurs after the last exit and before the last entry, as defined above,
except in those cases where there is no exit, when it occurs before the (unique)
entry. The number n l µ + [m + (n − 1)(2m − 1)] l λ is an upper bound for the
length of the geodesic of that position in the array.

Proof: We first show that each isometry class does indeed correspond to (at
least) one of the signatures. The main step is of course to identify the associated
hinged pair.

Suppose an scg connecting is given. By applying isometries, we may assume
that it connects e0 to e2 and that the number of arcs at e2 is greater than the
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number at e0. Follow the scg away from e0 until its first intersection with the
vertical geodesic from e2 to the cusp. (Vertical here means that this geodesic is
the projection of a vertical h-line.) The homotopy class of the union of this arc
and of the arc of the vertical geodesic joining it to e2 is a simple class; let λ be
the geodesic in this class.

Form the largest disk about e1 which does not meet the scg; mark one point
where the closure of this disk meets the scg. Cut the scg at this point. Follow each
of the two newly formed arcs away from e1 until its closest point to e2. Of these
two arcs, take the arc whose closest point is nearer to e2. Connect this nearer
point to e1; the union of this arc with the chosen arc gives the class of µ.

Note that λ and µ meet at e2. Since the unions of arcs which lead to these
geodesics did not intersect but at these points, neither do λ and µ have any other
points of intersection. By this construction, λ and µ have no “swings about the
maypoles” of the efp2. However, it is easily checked that the only scg of this
simplicity are the basic scg.

We must now show that the given scg can be arise from our constructed using
the hinged pair λ and µ. First note that it is possible that the scg is simply λ;
this is the case of signature (λ, µ, 1, 0). In all other cases, µ is indeed of geometric
significance. For the geodesic to remain connected and simple, we easily find that
it is formed by a process as in our construction.

We now arrange the scg in an array, by indicating the associated homology
class. The initial entry, the geodesic in the isometry class of µ which connects e0

to e2 and is the sole entry of the n = 0-column, we suppress.

µ + λ −−−→ µ + 2λ −−−→ µ + 3λ −−−→ µ + 4λ −−−→ . . .y y y y
2µ + 2λ −−−→ 2µ + 5λ −−−→ 2µ + 8λ −−−→ 2µ + 11λ −−−→ . . .y y y y
3µ + 3λ −−−→ 3µ + 8λ −−−→ 3µ + 13λ −−−→ 3µ + 18λ −−−→ . . .y y y y

. . . −−−→ . . . −−−→ . . . −−−→ . . . −−−→ . . .

The entries in the array count the number of arcs in the free homotopy class
of λ and µ which is required to make the corresponding scg. The algorithm for
generating this array is simple: In the n,m-th position, put nµ+[m+(n−1)(2m−
1)]λ. Here, to reiterate, m is the number of initial wraps about λ and n− 1 is the
number of exits.

Note also that if we start at the n, m-th position and rise k rows (0 < k < n,
of course), then the coefficient of µ decrements by k and that of λ, by (2m− 1)k.
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Likewise, a move to the right l columns leaves the coefficient of µ unchanged and
while that of λ increments by (2n− 1)l.

Since a geodesic minimizes length in its homotopy class, it is clear that the
geodesic of entry n, m has length at most n l (µ) + [m + (n− 1)(2m− 1)] l (λ). �

It is perhaps surprising that this upper bound is in fact a fairly good approx-
imation, as Table 2 — where we give values of 1 ≤ m, n ≤ 5 — and Table 3
indicate. We leave a more detailed pursuit of the quality of this approximation to
a later publication.

Table 2. Comparing naive upper bounds and true lengths: λ = α; µ = β.
(Beginning of array)

upper bound true length
5.45034 7.37519 9.30004 11.2249 5.40715 7.32581 9.24975 11.1745
10.9007 16.6752 22.4498 28.2243 10.8143 16.5756 22.3489 28.1234
16.351 25.9753 35.5995 45.2237 16.2215 25.8253 35.4482 45.0724
21.8014 35.2753 48.7492 62.2232 21.6286 35.0751 48.5475 62.0214
27.2517 44.5753 61.899 79.2226 27.0358 44.3248 61.6468 78.9704

Table 3. Comparing naive upper bounds and true lengths : λ = α; µ = β.
(23 ≤ n,m ≤ 25)

upper bound true length
2030.95668 2117.57481 2204.192942 2029.79664 2116.41477 2203.03290
2121.10031 2211.56813 2302.03595 2119.88983 2210.357650 2300.82547
2211.24393 2305.56145 2399.87897 2209.98301 2304.30053 2398.61805
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