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With “Thanks for the Memories.”

Abstract. We show that low height-achieving non-simple geodesics on a low-index cover of
the modular surface can be classified into seven types, according to the topology of highest
arcs.

The lowest geodesics of the signature (0; 2, 2, 2,∞) -orbifold Γ3\H are the simple closed
geodesics; these are indexed up to isometry by Markoff triples of positive integers (x, y, z)

with x2 + y2 + z2 = 3xyz, and have heights
p

9 − 4/z2. Geodesics considered by Crisp

and Moran have heights
p

9 + 4/z2 ; they conjectured that these heights, which lie in the
“mysterious region” between 3 and the Hall ray, are isolated in the Markoff Spectrum. As a
step in resolving this conjecture, we characterize the geometry on Γ3\H of geodesic arcs with
heights strictly between 3 and 6. Of these, one type of geodesic arc cannot realize the height
of any geodesic.

1. Introduction and Statement of Results

H. Cohn [Co] observed that the seemingly purely number theoretic Markoff spectrum formed
by the minima on the integer lattice of (appropriately normalized) indefinite binary quadratic
integral forms can be expressed in terms of heights of geodesics of certain small-index covers of
the modular surface, Γ\H; see also [Se], [LS], [BLS], [H], [H2], as well as chapter seven of [CF].
Indeed, the initial segment of the Markoff spectrum is closely related to the heights of the simple
closed geodesics of the hyperbolic punctured torus uniformized by the commutator subgroup of
Γ. This relationship also holds with respect to the heights of the simple closed geodesics of
Γ3\H , the quotient of this torus by its elliptic involution [Sh].

The height of a geodesic reports its penetration into a cusp; normalizing so that this cusp
lifts to ∞, the height of a geodesic is the supremum of the Euclidean diameters of lifts to H of
the geodesic. The set of all heights of geodesics of Γ3\H gives the Markoff spectrum.

An approach to the geometric study of the Markoff spectrum has emerged: study the simple
closed geodesics, thereafter the singly self-intersecting geodesics, and so on with increasing self-
intersection number, [Se], [Cr],[CM], [CM2], [CrEtAl]. Here we ask: To what extent does the
height of a geodesic determine topological aspects of the geodesic?

The well-known fact that a geodesic of Γ3\H of height at least 3n, for a natural number n,
must have at least n self-intersections already illustrates constrained height restricting topology.

A geodesic with a ‘highest arc’ is called a height-achieving geodesic, these are of main interest
for the Markoff spectrum, see Lemma 1. We show that there are eight types of height achieving
arcs in our region of interest, see Figure 4, on page 8. Furthermore, a highest arc can never be
of the eighth of these types, see §5.2.
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Main Theorem . Let γ be a height-achieving geodesic on Γ3\H of height strictly between h = 3
and h = 6. Then γ has a highest arc of one of the first seven of the types specified in Definition 5.

1.1. Remark on Generality: Teichmüller Space Context. The classification given by our
Main Theorem applies mutatis mutandis to the quotient of any hyperbolic once-punctured torus
by its elliptic involution, see [Sh] or [Sch] for the necessary background for this generalization.

1.2. Outline. Further background and motivation are given in § 2 and § 3, Section 4 gives the
technical results used in § 5 to establish the division into eight types of high arcs, Theorem 1.
In §5.2 we show that arcs of Type 8 can never be highest arcs.

1.3. Related Work. In [SS3], we use the Markoff triples-indexed fundamental domains for Γ3

introduced in [SS2] to study the various types of low height-achieving geodesics. In particular, we

show that our Type 3 geodesics are surprisingly constrained: each is of height
√

9/4 + 1/(z an )2

with z a greatest value in a Markoff triple, and for each z, an = an(z) an explicit increasing
sequence of integers.

1.4. Acknowledgements. We thank D. Crisp and W. Moran as well as M. Flahive for their
encouragement and interest in this and related work. We also thank the referee for a careful
reading.

2. Markoff Spectrum and Lifts of Geodesics

Throughout, we use the term geodesic to refer to a complete infinite geodesic; a geodesic ray
is a half-infinite ray; finally, a geodesic arc is a finite segment lying along some geodesic (which
we assume to be closed unless otherwise stated). Recall that the geodesics of the Poincaré
upper half-plane, H, are the vertical (half-)lines and the semi-circles centered on the real line.
Following tradition, we refer to these as h-lines, and their intersections with the (extended) real
line as feet, with the left foot of a non-vertical h-line being less than its right foot. The highest
point of a non-vertical h-line is called its apex.

Let S be a hyperbolic surface (or orbifold) with a distinguished cusp. One can uniformize S
such that the cusp of S is given by ∞. A high point of a geodesic arc on S is a point on the
arc that lifts to the apex of some h-line; in other words, the unit tangent vector to the geodesic
based at this point can naturally be viewed as being horizontal. The height of the point is the
Euclidean radius of this h-line. A highest point of a geodesic is a point along the geodesic that
lifts to be as least as high as any other point on the geodesic. The height of a geodesic is the
supremum of the Euclidean diameters of the h-lines that cover it. (Warning: a point p ∈ H has
height equal to =(p), the h-line of apex p has height 2=(p) .)

Suppressing further reference to our particular cusp, we define the Markoff spectrum of S to
be the set of all heights of geodesics of S. The related notion of the geometric Markoff value, see
[H3], of a geodesic γ is defined as the area of the largest horocycle centered at the cusp which
is disjoint from γ. Up to a normalizing constant, the height of γ is the inverse of its geometric
Markoff value.

We say that a geodesic γ achieves its height if there is a lift of γ that has diameter equal
to the height of γ. Due to the following result, we restrict our attention the height achieving
geodesics. Our lemma, similar to a result in [Cr], generalizes Lemma 6 of Chapter 1 of [CF].

Lemma 1. Let S be a hyperbolic surface (or orbifold) with a distinguished cusp, and let γ be a
geodesic of S. If the height of γ is finite, then there is a height-achieving geodesic of S of the
same height as γ.
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Proof: Of course, if γ is itself height-achieving, we are done. Otherwise, we normalize so that
the cusp is represented by ∞, and suppose that the fundamental translation is w 7→ w + λ. We
thus fix a strip in H of Euclidean width λ, and need only consider lifts of γ in this strip. Let
γ be of height h. Since h is the supremum of diameters of lifts of γ, there is a sequence of lifts
of γ of Euclidean diameter converging from below to the height of γ; we may assume that the
apexes of these lifts lie in some compact rectangle. A subsequence of these apexes converges to
a point, say p, lying on the horocycle of equation y = h/2.

The limit point p is the apex of some h-line, `. We claim that ` projects to a geodesic of S
that has the same height as γ. It suffices to show that ` is a highest lift of this projection. If
not, then there exist ε > 0 and some element M of the Fuchsian group uniformizing S such that
M sends ` to an h-line of apex lying above y = h/2 + ε. But, the action of M is continuous on
H — there is some δ such that M sends any h-line of apex within δ of p to an h-line of apex
lying above y = h/2 + ε/2. This is a contradiction, as h is the supremum of heights of lifts of
γ. �

3. Geometry of the Surface

The modular group is Γ = PSL(2, Z). It acts on the Poincaré upper half-plane H by way of
möbius transformations; the modular surface is Γ\H. Let Γ′ be the commutator subgroup of Γ.
Then Γ′\H is a punctured torus. Due to its simpler geometry, we focus upon a different cover
of the modular surface — the quotient of Γ′\H by its elliptic involution.

3.1. Group and Surface Basics. The elliptic involution has three fixed points, the Weierstrass
points. The quotient of this hyperbolic surface by this order two automorphism is a hyperbolic
orbifold of genus zero with three singularities and a single puncture. This quotient is Γ3\H —
where, as usual, Γ3 denotes the subgroup of Γ generated by its cubes — the group Γ3 thus has
signature (0; 2, 2, 2;∞) — and contains Γ′ as an index two subgroup (for a discussion of this,
see, for example, [Sh]). The singularities are the projections of elliptic fixed points of order two
for Γ3 , we often refer to them simply as elliptic points. Highest lifts to H of these singularities
are i, 1 + i and 2 + i, respectively. It is traditional to refer to the puncture as the cusp. We
call all other points of Γ3\H regular points. Each simple closed geodesic on Γ3\H connects a
pair of distinct elliptic points of order two, see [Sh] (especially, Figure 1.3b there) or [H2]; this
follows from the fact that each simple closed geodesic of a hyperbolic punctured torus meets
two distinct Weierstrass points.

The element of Γ, T : w 7→ −1/w is in Γ3 . Indeed, Γ3 is generated by Tj with j ∈ {0, 1, 2}
where Tj := SjTS−j with S : w 7→ w + 1 the fundamental translation of Γ itself. The fixed
points of the Tj project to the three elliptic points of Γ3\H . Note also that S3 = T2T1T0 is in
Γ3 . It is the presence of this translation in the group that ensures that any geodesic on Γ3\H
of height greater than three has a self-intersection.

Throughout, we will tacitly invoke the Jordan curve theorem in our setting. We classify
geodesics by geodesic arc configurations; since our surface is a once-punctured sphere with three
marked points, these are easily envisioned.

3.2. Geodesic Configurations.

Definition 1. (a.) A disk on a hyperbolic orbifold or surface is a region isometric to a
standard finite area hyperbolic disk. (In particular, a disk contains no singularities.)

(b.) A monogon on a hyperbolic orbifold or surface is a closed loop formed by a single
(otherwise simple) geodesic arc.

(c.) A bigon is a closed loop formed by two simple geodesic arcs, meeting in at most two
distinct points.
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(d.) We say that a monogon, or a bigon, is about the cusp if one of the connected compo-
nents of its complement contains a cusp and no elliptic points.

(e.) We say that a geodesic or configuration of geodesic arcs is pointed if it includes an
elliptic point.

(f.) We refer to the points of (self-)intersection of a monogon or bigon as nodes. The node
of a pointed monogon is its elliptic point (there is indeed at most one).

(g.) A geodesic including an unpointed monogon continues as a ray from the node, the
oppositely oriented geodesic also continues as a ray from this node. We call these rays
the arms extending the monogon. See Figure 3 on page 7.

The following result eliminates trivial cases in upcoming proofs.

Lemma 2. Suppose that α is a monogon on some hyperbolic surface or orbifold, and that α
bounds a cusped disk. Then the node of α is not a high point.

Proof. A high point lifts to H to be the apex of an h-line; that is, it lifts to be the base point
of a horizontal tangent vector. However, it is clear that the two unit tangent vectors of α at its
node cannot both lift to be horizontal. That is, the path of α continues to a higher point than
the node. �

The following is well-known. Items (a) and (b) result from considering lifts to H. Item (c) is
discussed in [Sh]; recall that a geodesic ray encountering an elliptic point of order two is reflected
— the geodesic retraces its path, but in the opposite direction. For ease of discussion, we say
that a geodesic ray has its path terminating at an elliptic point if the ray meets this point. For
pictorial indications of applications of this lemma, see Figures 3 and 5.

Lemma 3. Suppose that S is a hyperbolic orbifold or surface.

(a.) A monogon of S cannot bound a disk.
(b.) A bigon of S cannot bound a disk.
(c.) If in the homotopy class of a geodesic of S there is a curve including a loop about an

elliptic point of order two, then the path of the geodesic terminates at that elliptic point.

3.3. Simple Rays on the Surface. Haas, in Lemma 5.1 of [H], showed that on any hyperbolic
surface with finitely many cusps, any simple ray that does not escape into a cusp has a lift to H
that shares a foot with a lift of a geodesic in the closure of the simple closed geodesics. Elements
of this closure are examples of Thurston’s geodesic laminations, see [CEG] or [Bon]. In briefest
terms, a lamination is a closed subset given as the disjoint union of simple geodesics, its leaves;
a lamination is minimal if it is the closure of each of its leaves; following McShane [Mc], here
a lamination is called irrational if it is a non-empty minimal compact lamination that is not
a closed geodesic. If a geodesic ray shares a foot of a lift with some other geodesic ray, then
it spirals into this second ray; if the second ray lies on a finite length geodesic, then the first
ray comes arbitrarily close to every point of its path. Recall that Γ3\H is the quotient of the
modular punctured torus by its elliptic involution; upon taking this quotient, the Haas result
gives the following.

Lemma 4. (Haas) If ρ is a simple geodesic ray on Γ3\H , then exactly one of the following
holds:

(a.) the path of ρ terminates at an elliptic point;
(b.) ρ escapes in the cusp;
(c.) ρ spirals into a simple closed geodesic;
(d.) the set of limit points of ρ is an irrational lamination.
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Figure 1. Double loops about the cusp are high.

Since any h-line of finite height greater than 3 projects to a Γ3\H geodesic with self-intersection,
we have the following.

Corollary 1. A geodesic of Γ3\H that does not escape into the cusp is simple if and only if its
height is at most 3.

By the Haas result, any infinite simple geodesic ray eventually comes arbitrarily close to the
path of an infinite simple geodesic. But any such simple geodesic is the limit of simple closed
geodesics, we can take a subsequence in which each simple closed geodesic joins the same two
elliptic points of Γ3\H . Therefore, the infinite simple geodesic, and hence the infinite simple
ray, comes arbitrarily close to these two elliptic points. This gives the following corollary, which
is related to Lemma 4.1 of [Mc].

Corollary 2. If ρ is an infinite simple geodesic ray on Γ3\H , then ρ comes arbitrarily close to
at least two elliptic points.

For ease of reference, we define a specific type of arc.

Definition 2. A geodesic arc is a rho if it is either a monogon, or consists of a simple arc, called
the stem of the rho followed by a monogon, with stem and monogon meeting only at the node
of the monogon. (See the representation of a Type 3 arc in Figure 4 of page 8. )

Definition 3. We say that a geodesic on a hyperbolic surface or orbifold makes a double loop
about a cusp if it contains an arc α that is a rho, whose monogon is about the cusp, and is
continued by a simple arc that meets the stem of the rho so as to form an unpointed bigon
about the cusp. See Figure 1.

A geodesic that makes a double loop about a cusp is covered by an h-line that intersects its
own image under twice the fundamental translation corresponding to the cusp. This gives the
following.

Lemma 5. A geodesic of Γ3\H that makes a double loop about the cusp has height at least 6.

4. Extending by Rays

This is perhaps our most technical section. In the next section, we require it in the proof of
our main classification result, Theorem 1, where we decompose the path of a geodesic passing
through a point into two rays. Here we examine how geodesic rays emanating from a single
point can meet. We show that any two rays emanating from a single point admit subarcs such
that the union is one of only a few possible basic configurations.
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2. Stop dashed at solid.

c

1.   First self−intersections. 3.  Stop solid at dashed.

Figure 2. Finite configuration from rays.

The basic configurations are found by trimming rays at self-intersections, and then again at
intersections with each other. See Figure 2 for a sketch of an application of this process. Note
that here and elsewhere, there is an obvious difficulty: an infinite ray ρ could intersect a given
arc α so that there is no first point of intersection as measured along α. However, as α is of
finite length, there is a first point of intersection as measured along ρ.

Note that in the statement and proof of this classification, arc may mean infinite geodesic
segment.

Lemma 6. Suppose that c is a regular point of Γ3\H and that ρ1 and ρ2 are distinct geodesic
rays emanating from c that do not escape into the cusp. If the union of the rays is non-simple,
then there are connected subarcs emanating from c, α1 and α2, of ρ1 and ρ2 respectively, such
that both
(a) at least one of the following holds:

(1.) each αi is a rho;
(2.) exactly one αi is a rho, the other is simple and joins c to an elliptic point;
(3.) the union of the αi forms a simple loop;
(4.) exactly one of the αi is a rho, the other is an infinite simple ray;

and,
(b) other than in case (3), the αi meet only at c.

Proof. If either ρi is simple with path terminating at an elliptic point, accordingly let αi denote
this finite length arc. If either ray is non-simple, then it contains a shortest geodesic arc that
begins at c and has exactly one point of self-intersection; accordingly let αi be this arc.

Unless both of the original rays is infinite simple, we have determined at least one finite length
arc; we may assume that this is α1. If ρ2 meets α1, we now let α2 be the shortest subarc of ρ2

emanating from c that meets α1; thereafter, replace α1 by its shortest subarc emanating from
c that meets α2. The arcs so formed cannot terminate at distinct elliptic points, for then the
rays ρi would have already done so, and would have a simple union. If both arcs terminate at
the same elliptic point, we have an instance of case (3). Thus, we assume in what follows that
at least one arc does not end at an elliptic point. We now have one of the following: each arc
meets itself, the two arcs meet only at c, this is an instance of case (1); one arc terminates in
an elliptic point, the other arc meets itself, the two arcs meet only at c, of case (2); or, the arcs
meet (before either meets itself), an instance of case (3). If some ray remains infinite after the
above process, then it must not be met by the other subarc. Since the union is non-simple, it
must be that this second arc meets itself, thus the configuration is of case (4).

Finally, if both rays are infinite simple, then since their union is non-simple, the rays meet.
Choose a finite length subarc of ρ1 emanating from c that includes intersection points with ρ2;
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then ρ2 has a first point of intersection with this finite arc. Let each αi be the subarc of ρi

running from c to this point, this is of case (3). �

With a minor abuse of terminology, we refer to any element of the collection of elliptic points
and the cusp as a special point. By Lemma 3 monogons and bigons can only bound regions that
contain some special point; furthermore, a potential monogon about an elliptic point collapses
— the geodesic passes through the elliptic point. To elucidate the application of these facts in
the setting of extending finite geodesic configurations by rays, we first treat the following lemma.

Definition 4. A cusped disk on a hyperbolic surface or orbifold is a region that is bounded by
a monogon and contains one cusp (and no other special points). An internal cusped disk is one
for which the arms of the boundary monogon point into the cusped disk, see Figure 3.

Lemma 7. Let α be a geodesic arc on any hyperbolic surface or orbifold. If α bounds an internal
cusped disk, then α is not a highest arc of its geodesic.

Proof. If either of the arms of α eventually ends in the cusp, then clearly our conclusion is met.
We thus assume that this does not occur. See Figure 3 for the cases that we consider.

(A) If either geodesic arm of the monogon exits the cusped disk before meeting itself or the
other arm, then a bigon bounding a region void of special points is formed, but these do not
exist. If an arm meets itself first, then it either forms (B1) a monogon bounding a region void
of special points, thus non-existent, or it creates (B2) a new cusped disk; but, the monogon
bounding this cusped disk is higher than α. Finally, if the arms first meet each other, then they:
(C1) meet so as to form a closed loop bounding a region void of special points, this monogon
cannot exist; (C2) form a monogon about the cusp, but this newly formed loop and the original
monogon about the cusped disk then give a bigon bounding a region void of special points, an
impossibility; (C3) they form a bigon bounding a region void of special points, again impossible;
or, finally, (C4) they form a bigon about the cusp, here any extension of either arm results in
an impossible configuration. �

5. The 8-Fold Way of Low Height Arcs

Although there are many possible topological configurations of curves on Γ3\H , Theorem 1,
see §5.1, states that geodesic arcs of height between 3 and 6 can be distributed into eight of
these; see Figure 4. The proof proceeds as a case-by-case analysis of configurations formed by
oppositely oriented geodesic rays with common high point.

We say that a geodesic configuration is about some set of special points if this set is contained
in a connected component of the complement of the configuration, compare with Definition 1.d.

Definition 5. Let α be a geodesic arc on Γ3\H . We say that α is of one of the following types
if, up to possibly changing its orientation, it has the corresponding properties:

Type 1. The arc α is a pointed monogon about the cusp.
Type 2. The arc α is a geodesic whose path has a single self-intersection, occuring at the node

of an unpointed monogon about the cusp.
Type 3. The arc α is a rho, emanating from an elliptic point, with highest point on its stem, and

its monogon about the remaining two elliptic points; α has one point of self-intersection.
Type 4. The arc α forms a monogon about the cusp, this monogon meets in its node a bigon

about a single elliptic point; α has two points of self-intersection.
Type 5. The arc α is the union of a rho whose monogon is about the cusp, with a rho whose

monogon is about two elliptic points; α meets itself only at the monogons’ nodes.
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Case A: illegal bigon

X

Case C.2: illegal bigon

X
X

Case C.3: illegal bigon Case C.4: illegal continuations

X

Case C.1: illegal monogon

X

Case B.2: higher cusped disk

X

Case B.1: illegal monogon

X

Figure 3. Internal cusped disks are not highest.

x

x

x x

x

Type 2

Type 4 Type 5

Type 3

c

Type 1

x

Type 6

x

x

Type 7 Type 8

Figure 4. Topology of low nonsimple geodesics of Γ3\H , with parameter
simple closed geodesics. Cross denotes cusp; dots denote elliptic points; c is a
highest point. (Variation of orientations and relative positions possible.)
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Type 6. The arc α is the union of a monogon about the cusp, and a bigon about two elliptic
points, these share a common node; α has two points of self-intersection.

Type 7. The arc α forms a monogon about the cusp, as well as a bigon about the cusp, and a
bigon about one elliptic points; the arc α has three self-intersections.

Type 8. The arc α forms a monogon about the cusp and one elliptic point; α has one point of
self-intersection.

Lemma 8. If α as above is of any type other than Type 2, then there is a unique simple closed
geodesic of Γ3\H that does not meet α.

Proof. If α is of Type 1, 3, 5, 7, or 8, the definition of this type uniquely identifies a monogon
bounding two elliptic points; if α is of Type 6, then the bigon contains two elliptic points; finally,
if α is of Type 4, then there are two elliptic points in the region bounded by the union of the
monogon and bigon. In all these cases, there is a curve connecting these elliptic points, which
is unique up to homotopy. The result follows. �

Definition 6. For α as in Lemma 8, we call the associated simple closed geodesic the parameter
simple closed geodesic of α, see Figure 4.

Remark 1. Candidate parameter simple closed geodesics for closed Type 2 geodesics can be
imagined as in Figure 4, see also [SS3].

Definition 7. If γ is a height-achieving geodesic of Γ3\H and a highest subarc α of γ is of some
Type n, then γ is of Type n identified by α and the high point of α is called a defining high
point.

Remark 2. A geodesic of Γ3\H may achieve its height more than once, and thus perhaps be of
more than one type. However, a result of Gbur [G], see Theorem 2 of Chapter 5 of [CF], implies
that a geodesic that achieves its height more than six times must be a closed geodesic.

5.1. Distribution into Type.

Theorem 1. Let γ be a height-achieving geodesic on Γ3\H , of height greater than 3 and less
than 6. Then γ is of (at least) one of the eight types given in Definition 7.

Proof. Since γ is height-achieving, we can choose a highest point, c, of γ. Since γ is of height
greater than 3, c is certainly not an elliptic point. We consider two geodesic rays emanating
from c lying along the path of γ: ρ+, whose positive direction is that of γ; and ρ− of the opposite
direction.

Since γ is non-simple, it suffices to consider the four cases of configurations of subarcs given
by Lemma 6 on page 6. (In parentheses and italics we give brief phrases to aid in visualizing
the geometry of the various cases.)

Case 1 (Two Rho). By Lemma 2, c is not the node of either of the monogons, thus by
construction c lies on neither monogon. The two monogons divide Γ3\H into three regions: two
each bounded by a single monogon and the third having the two monogons as its boundary. For
each monogon, the cusp and c lie in the same connected component bounded by the monogon:
otherwise there is a high point that is closer to the cusp than is c. Now, by Lemma 3 (a) and (c),
for each monogon the connected component without the cusp must contain at least two elliptic
points. Since there are only three elliptic points, this is an impossibility.

Case 2 (One Rho, Other Ray Stops at Elliptic Point). As for Case 1, the cusp and c must be
in the same component bounded by the monogon of the rho. The terminus of the second ray is
of course also in this component. Hence, by Lemma 3, the other component must contain the
two remaining elliptic points. The geodesic is thus of Type 3.



10 THOMAS A. SCHMIDT AND MARK SHEINGORN

Case 3 (Rays Meet). In this case, a monogon containing c is formed. If the point of intersec-
tion is an elliptic point, then γ is of Type 1. We now suppose otherwise. The region bounded
by the monogon containing the cusp must contain at most one elliptic point, for otherwise the
other region bounded by the monogon would collapse.

(a) If the component containing the cusp also contains an elliptic point, then γ is of Type 8.
(b) We thus now assume that there is no elliptic point within this component, thus it is a

cusped disk.
(i) If the arms of the cusped disk continue internally to the cusped disk, Lemma 7 applies.
We may thus assume that the arms continue externally to the cusped disk.
Arms Do Not Return to Cusped Disk:
(ii) Assume neither arm continues so as to return to the monogon before meeting itself or the

other arm. Then if the arms never meet one another, γ is of Type 2; otherwise Lemma 6 applied
to these arms gives four subcases. The first subcase is (A) the arms extend simply from the node
until forming monogons, with the two extensions meeting one another only at the node of the
original monogon. However, there are only three elliptic points; as in Case 1, some component
of a monogon must in fact collapse. If (B) one arm forms a monogon and the second ends in
an elliptic point, then this monogon must contain both of the remaining elliptic points, and γ
is thus of Type 5. The arms may meet (C), to form a bigon, or a monogon (if they meet so as
to complete a closed geodesic). If the component not containing the cusp of this newly formed
configuration were to contain all three elliptic points, then a double loop about the cusp would
arise; by Lemma 5 this is a contradiction to γ being of height less than 6. Thus, this component
contains either one elliptic point and γ is of Type 4, or two elliptic points, and γ is of Type 6.

If (D) one of the arms is an infinite simple ray and the other forms a monogon not meeting
this ray, then the monogon bounds two regions. The cusp is in one region; by our hypothesis,
the infinite simple ray lies in this region (indeed, so does all of the original cusped disk). Let
us label the other region bounded by this monogon as R; by Lemmas 3 and 5, R must contain
exactly two elliptic points. Since R contains simple closed loops about these two elliptic points,
there is a simple closed geodesic (joining the two elliptic points) that lies completely within the
region R. It is easily verified that this is the unique simple closed geodesic that does not meet
the monogon.

By Lemma 4, the infinite simple ray either (1) spirals into a closed simple geodesic joining
two elliptic points, or else (2) is the limit of rays, with each lying along the path of a simple
closed geodesic. Now, if the infinite ray is of the first type and spirals into the simple closed
geodesic that does not meet the monogon, then it comes arbitrarily close to this simple closed
geodesic. Thus this infinite ray must enter R; in particular, it must meet the monogon. Similarly
any infinite ray spinning about some other simple closed geodesic certainly meets the monogon.
Finally, if a simple ray is of the second type, then by Corollary 2 it comes arbitrarily close to at
least two elliptic points; it certainly meets the monogon. Therefore, in all cases these arms in
fact do meet. Thus, this subcase is empty.

Arm Meets Cusped Disk: (iii) Finally, suppose an arm meets the cusped disk as its next
intersection. The arc returning to the cusped disk is the extension of an arc beginning at the
point of return: a monogon is formed. (A) If the point of return is not the node of the original
cusped disk, then there is a remaining arc of the monogon about the cusped disk that forms a
bigon with the returning geodesic arc (see the representation in Figure 4 of an arc of Type 7).
We say that the monogon and bigon are formed by our arm. Lemma 3 implies that for each,
both of the regions bounded by it must contain at least one special point, with those bounded by
the monogon not containing solely one elliptic point. Thus, one region bounded by the monogon
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formed by our arm contains two elliptic points, the other contains the cusp and the remaining
elliptic point, say e; the bigon must be about e.

Our arm cannot end at the cusp, thus it must extend so as to exit from the cusped disk; there
is thus an arc of the arm crossing the cusped disk. This crossing arc divides the cusped disk
into regions bounded by a bigon and a triangle. The bigon must contain a special point; thus it
contains the cusp. Now, the crossing arc either (1) exits the cusped disk along the bigon or (2)
along the monogon formed by our arm. In subcase (2), this crossing arc divides the monogon
so as to create a new monogon and a bigon. One of the regions bounded by this new monogon
contains the bigon formed by our arm and the triangle of the cusped disk — it thus contains
exactly one special point, the elliptic point e, a contradiction. Thus, only subcase (1) pertains;
we conclude that α is of Type 7.

Finally, we must consider (B) the possibility that the arm returning to the disk does so at
the node. In this case, an obvious monogon is created by this arm. But, there is a continuous
arc formed by the original monogon bounding the cusped disk and this new arc, this is also
a monogon. We thus have two regions bounded by (new) monogons into which three elliptic
points must be distributed. One of these components is forced to have at most one elliptic point
in it; this is a contradiction to Lemma 3, and we conclude that this case is void.

Case 4 (One Rho, Other Ray Infinite Simple). The remaining case arises by a first ray
continuing infinitely and simply from c while the second has an initial subarc meeting itself;
these meet only at c. The second ray gives rise to a monogon, as in Cases 1 and 2 above, the
component of the initial monogon not containing c must contain two elliptic points. We thus
argue as for Subcase 3.b.ii.D above; this case is void.

We have now exhausted all possibilities of γ, and have thus proven our result. �

5.2. Type 8 Arcs Not Highest. Recall that a highest arc of a geodesic is an arc whose highest
point is at least as high as the high point of any other arc of the given geodesic. We first show
that geodesic arcs of a general “internal” Type 8 description cannot be highest arcs.

Lemma 9. Let α be a geodesic arc on a hyperbolic orbifold. Suppose that α consists of a
monogon about a cusp and an elliptic fixed point of order two, and that the geodesic arms that
continue the monogon immediately enter this component. Then α is not a highest arc (with
respect to this cusp) of a finite height geodesic.

Proof. We discuss cases similar to that of the proof of Lemma 7; in particular, we can and do
assume that no arm ends at the cusp.

(A) If an arm exits the disk bounded by the monogon (before meeting itself or the other
arm), then the disk is partitioned into two components, bounded respectively by a monogon
and a bigon. Neither of these components can be void of special points, nor can the component
bounded by the monogon contain only the distinguished elliptic point. Thus, the only admissible
configuration has the monogon forming a cusped disk and the bigon bounding a region containing
the distinguished elliptic point. The second arm must continue into the newly formed cusped
disk. This arm either first intersects itself, forming a new cusped disk, whose bounding monogon
is higher than the original monogon; or, this second arm exits the cusped disk, resulting in a new
bigon and a new triangle. Both components of the bigon must contain some special point(s),
thus the cusp must lie in one of its components. But, this bigon is then higher than the original
monogon.

(B) If an arm meets itself first, then it forms a monogon. This monogon must have some
special point in it. If it contains the cusp, then this arm gives a higher arc; if the monogon
contains both the cusp and the elliptic point, then an annulus void of special points is formed,
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this collapses. If the monogon contains only the internal elliptic point, this monogon collapses
so that the arm ends at this special point. The only admissible continuation of the second arm,
that does not create a higher arc than the original monogon, is to also end at this elliptic point
— this is subcase C3 below.

If the arms first meet each other, then they: (C1) form a loop, thus a monogon, (C2) form
a bigon, or (C3) both end at the elliptic point. In subcase C1, the monogon must contain a
special point. If the monogon contains only the cusp, or the cusp and the elliptic point, then a
higher arc has been found; if the monogon contains only the elliptic point, then the monogon
collapses, this situation is thus in subcase C3.

In subcase C2, our original disk is partitioned into two components, bounded by a triangle
and by the bigon respectively. To avoid the formation of a higher arc, the cusp must be in the
interior of the triangle; to ensure a legal configuration, the distinguished elliptic point must be
in the component bounded by the bigon. Now, both arms must extend to meet the bounding
monogon of the original disk, or else a higher arc is found. But, these extended arms result in a
partition of the original disk into at least three components (if the arms do not exit at the same
point of the bounding monogon, then four components result). There are only two special points
to be distributed into these components, certain unions of which are bounded by (collapsing)
monogons or bigons. A contradiction is reached.

In subcase C3, either: (a) the curve joining the elliptic point to itself is homotopic to a simple
closed curve joining this special point to itself, or (b) the two arms form a loop about the cusp
(with the distinguished elliptic point on this loop). In the first subcase the geodesic is simple,
and hence α does not extend to a geodesic with arms continuing into the monogon, contrary to
hypothesis. In the second, the new loop is closer to the cusp than is α; therefore, α is not a
highest arc. �

Proposition 1. A geodesic arc of Type 8 is not the highest arc of its geodesic.

Proof. Let α be a geodesic arc of Type 8. By Lemma 9, we need only consider the case of
external continuation of the arms of a monogon bounding a region containing both the cusp
and one elliptic point. (A) If an arm returns to the cusped disk before meeting itself, or any
elliptic point (irrespective of meeting the other arm), then just as in Subcase 3.b.iii.A of the
proof of Theorem 1, both a new bigon and a new monogon are formed. Once again by Lemma
3, the non-cusped region bounded by the new monogon requires both of the remaining special
points; but the non-cusped region bounded by the bigon requires at least one of these. Thus, in
all choices, there is a collapse. We conclude that neither arm can return to intersect the initial
monogon unless it first meets itself.

(B) If an arm intersects itself before returning to the cusped disk, then a monogon is formed.
One region bounded by this monogon includes the original cusped disk; to avoid collapse, the
other must contain both of the remaining elliptic points. (But, then the original monogon and
this new monogon both are monogons about these two elliptic points. If they have opposite
orientations, they homotope to cancel each other. We thus may assume that they have the same
orientation.) Now, since the second arm begins in a region devoid of special points, by Lemma
3, it cannot self-intersect before meeting at least one of these two monogons. As well, if the
second arm forms a simple ray, then it must meet at least one of these monogons: any finite
length simple ray has path ending at an elliptic point and by Corollary 2 any infinite simple ray
comes arbitrarily close to some elliptic point. Thus, the second arm first certainly meets one
or the other of these monogons before meeting itself. But, from Case A, it must be that this
second arm meets the monogon about the two elliptic points (at a point besides the node). Fix
this point of intersection, it divides the monogon into two arcs. Follow the second arm back
from this point until it first meets the arc joining the nodes of the two monogons (this certainly
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exists, as this second arm begins at a point on this arc). This newly located arc and one of the
two arcs of the monogon about the elliptic points completes a bigon bounding a region without
special point, an impossibility. Therefore, this case is empty.

If the arms meet, then they may do so either by (C1) completing a single closed curve (forming
a monogon), or else a bigon. However, the monogon collapses if it is about a single elliptic point;
if it is about two elliptic points then the curve so completed homotopes to be a multiple of a
simple closed geodesic (see [Sh]; one can also argue by lifting the curve to Γ′\H ). If the two
arms next meet so as to form a bigon, then this bigon must be about either one, or both of
the two remaining elliptic fixed points. If (C2) this bigon is about both of these elliptic points,
then the total arc so described — monogon and subsequent bigon — can be homotoped to be
arbitrarily close to the path of the closed geodesic joining the two elliptic points. The geodesic
either is simple, or else there is a higher arc. If (C3) the bigon is about exactly one of the two
remaining elliptic points — see Figure 5, then at most one arm can have its path terminate
at the third elliptic point. Indeed, if both do, then once again a closed curve homotoping to a
multiple of a simple curve is formed. Furthermore, the bigon is not of the type reasonably called
internal, for at least one arm would exit the bigon to cause an illegal bigon. Now, choose an arm
whose path does not terminate at the third elliptic point. Since the arm neither meets itself,
nor returns to the original monogon, before some other intersection arises, applying Corollary
2 we conclude that this arm returns to the bigon. Of course, this arm returns to the bigon by
meeting the other arm; a new bigon is formed, it must be about the third elliptic point. Now
consider the second arm, it continues externally from the bigon; indeed, this continuation is into
a region devoid of special points bounded by the original monogon and the two bigons. Thus,
this second arm must in fact meet at least one of these configurations. A first such intersection
cannot be with the original monogon; but the first intersection being with either of the bigons
would imply the existence of a new bigon, bounding a region devoid of elliptic points. Therefore,
this subcase is empty.

(D) Finally, each ray may continue simply, without returning to the cusped disk. But, choose
any loop about the cusp and the elliptic point that is interior to the cusped disk. There is a
homotopy taking the finite region bounded by this loop arbitrarily close to the unique simple
closed geodesic joining the remaining elliptic points. That is, the geodesic itself is simple. �
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