
Generating Elliptic Curves of Prime Order� ��

� � �

Erkay Savaş1, Thomas A. Schmidt2, and Çetin K. Koç1

1 Department of Electrical & Computer Engineering
Oregon State University, Corvallis, Oregon 97331, USA

{savas,koc}@ece.orst.edu
2 Department of Mathematics

Oregon State University, Corvallis, Oregon 97331, USA
toms@math.orst.edu

Abstract. A variation of the Complex Multiplication (CM) method for
generating elliptic curves of known order over finite fields is proposed.
We give heuristics and timing statistics in the mildly restricted setting
of prime curve order. These may be seen to corroborate earlier work of
Koblitz in the class number one setting. Our heuristics are based upon a
recent conjecture by R. Gross and J. Smith on numbers of twin primes
in algebraic number fields.
Our variation precalculates class polynomials as a separate off-line pro-
cess. Unlike the standard approach, which begins with a prime p and
searches for an appropriate discriminant D, we choose a discriminant
and then search for appropriate primes. Our on-line process is quick and
can be compactly coded.
In practice, elliptic curves with near prime order are used. Thus, our tim-
ing estimates and data can be regarded as upper estimates for practical
purposes.

1 Introduction

An important category of cryptographic algorithms is that of the elliptic curve
cryptosystems defined over a finite field IFp, see [9] for a recent overview. While
there are many methods proposed for performing fast elliptic curve arithmetic,
there is a paucity of efficient means for generating suitable elliptic curves. The
methods proposed to date for curve generation mainly necessitate implementing
complex and floating point arithmetic with high precision. However, this hinders
the implementation of the proposed algorithms on simple processors with limited
amounts of memory. In [13], Miyaji proposed a practical approach to construct
� This research was supported by rTrust.

�� The reader should note that Oregon State University has filed US and International
patent applications for inventions described in this paper.

� � � Cryptographic Hardware and Embedded Systems - CHES 2001, Ç. K. Koç, D. Nac-
cache, and C. Paar, editors, Lecture Notes in Computer Science No. 2162, pages
145-161, Springer Verlag, Berlin, Germany, May 13-16, 2001.

“anomolous” elliptic curves; these elliptic curves, of order p over fields of char-
acteristic p, have since been shown to be insecure, [14], [16], [19]. However, the
idea of the construction can be applied to quickly find non-anomolous curves
as well. We present such a variant of the method to construct elliptic curves of
known prime orders. Our variant has less computational complexity in its online
implementation than that proposed in the IEEE standards [7]. Heuristics and
calculations show that our method is practical.

Timing estimates for the Complex Multiplication (CM) method of generating
elliptic curves seem difficult to find in the public literature. The above mentioned
survey article [9] mentions that in practice the method is fast, but cites a timing
result for a single curve. Our timing statistics are averaged over 1000 curves per
discriminant. As to previous theoretical bounds on running times, it seems that
Koblitz’s [8] conjectures and statistics for reduction of class number one CM
curves defined over the rationals are taken to indicate that the CM method is in
general speedy. We concur in our 6.3.

We thank the referees for helpful comments and for pointing us to important
entries in the literature. The second-named author thanks Professor G. Frey and
his team at the Institut für Experimentelle Mathematik for clarifying some of
the basics of the theory of elliptic curves.

The paper is organized as follows. Section 2 summarizes the complex mul-
tiplication curve generation method. In section 3, we explain our variant which
requires less data size and computation, while avoiding the weakness of Miyaji’s
method. Section 4 summarizes the method to construct the class polynomials,
the most computationally intensive part of the CM method. In our approach,
we pre-calculate a set of these and store the coefficients. Also in section 4, we
give some experimental results which indicate the efficiency of our approach. In
section 5, we provide more detailed implementation results. In section 6, we give
heuristics for the number of trials necessary to find prime order elliptic curves.
Section 7 is a brief conclusion.

2 Complex Multiplication Curve Generation Algorithm

For the ease of the reader, we summarize some basics of the theory of elliptic
curves.

An elliptic curve E defined over a finite field IFp, where p > 3, can be given
as

E(IFp) : y = x + ax + b a, b ∈ Fp (1)

Associated with E , there are two important quantities:
the discriminant

∆ = −16(4a3 + 27b2) (2)

and the j-invariant

j = 1728(4a)3/∆ (3)

where ∆ �= 0.

Lemma 1. Given j0 ∈ IFp there is an elliptic curve, E, defined over IFp such
that j(E) = j.

An elliptic curve with a given j-invariant j0 is constructed easily. We consider
j0 /∈ {0, 1728}; these special cases are also easily handled. Let k = j0/(1728 −
j0), j0 ∈ IFp then the equation

E : y2 = x3 + 3kx + 2k (4)

gives an elliptic curve with j-invariant j(E)= j0 .

Theorem 1. Isomorphic elliptic curves have the same j-invariant.

Theorem 2. (Hasse) Let #E(IFp) denote the number of points on the elliptic
curve E(IFp). If #E(IFp) = p + 1 − t, then |t| ≤ 2

√
p.

Definition 1. (Twist) Given E : y2 = x3 + ax + b with a, b ∈ IFp the twist of E
by c is the elliptic curve given by

Ec : y2 = x3 + ac2 x + bc3 (5)

where c ∈ IFp.

Theorem 3. Let E be defined over IFp and its order be #E(IFp) = p + 1 − t.
Then the order of its twist is given as

#Ec(IF∗
p) =

{
p + 1 − t if c is square in IFp

p + 1 + t if c is non-square in IFp
(6)

For the above basics of elliptic curves, we refer to [18]. The following result
is based upon work of M. Deuring in the 1940s. See [1] and [10].

Theorem 4. (Atkin-Morain) Let p be an odd prime such that

4p = t2 + Ds2 (7)

for some t, s ∈ ZZ. Then there is an elliptic curve E defined over IFp such that
#E(IFp) = p + 1 − t.

An integer D which satisfies (7) for a given p is called a CM discriminant of
p. Indeed, the curve E has complex multiplication by the integers of Q(

√
−D).

Given such a D for a prime p, the j-invariant of the elliptic curve can be calcu-
lated due to class field theory. Once the j-invariant is known, the elliptic curve
with p+1−t points is easily constructed utilizing Lemma 1. Actually, the method
gives an elliptic curve with either p + 1− t or p + 1 + t points. If the constructed
elliptic curve has p + 1 + t points, then one must take the twist of this elliptic
curve to obtain an elliptic curve with p + 1 − t points. Fortunately, it is trivial
to construct the desired curve when its twist is known, due to Theorem 3. This
technique for constructing elliptic curves of known order is called the Complex
Multiplication (CM) method.

A detailed explanation of the CM method is given in the P1363 standards.
One can also profitably refer to [2]. We summarize the method in the following:

1. Given a prime number p, find the smallest D in (7) along with t (s is not
needed in the computations).

2. The orders of the curves which can be constructed are #E(IFp) = p + 1 ± t .
Check if one of the orders has an admissible factorization (by admissible
factorization we mean a prime or nearly prime number as defined in the
standards). If not, find another D and corresponding t. Repeat until an
order with admissible factorization is found.

3. Construct the class polynomial HD(x) using the formulas given in the stan-
dards. (The class polynomial for a D is a fixed monic polynomial with integer
coefficients. In particular, it is independent of p).

4. Find a root j0 of HD(x) (mod p). This j0 is the j-invariant of the curve to
be constructed.

5. Set k = j0/(1728−j0) (mod p) and the curve will be E : y2 = x3 + 3kx + 2k .
6. Check the order of the curve. If it is not p + 1 − t, then construct the twist

using a randomly selected nonsquare c ∈ IFp.

With the CM method, one may first fix a prime number p, and thereafter con-
struct an elliptic curve over IFp. This has the possible advantage of allowing
the use prime numbers of special forms, possibly permitting an improvement in
efficiency of the underlying modular arithmetic for the curve operations. On the
other hand, the method is efficient only when the degree of the class polyno-
mial is small; in general, factoring a high degree polynomial is time consuming.
Furthermore, the construction of the class polynomials requires multi-precision
floating-point and complex number arithmetic.

3 A Variant of the CM Method

The variant is straightforward: Construct and store the corresponding class poly-
nomials for D in D and search for primes whose CM discriminants are in this set.
We thus avoid repeatedly calculating class polynomials; hence multi-precision
floating and complex number arithmetic as well as the factorization of high de-
gree class polynomials is avoided. Indeed, the original CM method as specified
in the standards becomes inefficient if not impractical as the class polynomial
degree becomes large.

Our algorithm is thus:

1. Off-line: Determine a set D of CM discriminants such that the corresponding
class numbers are small.

2. Off-line: Calculate and store the class polynomials of CM discriminants in
D.

3. Select randomly a CM discriminant D in D and obtain the corresponding
class polynomial HD(x).

4. Search for prime number p satisfying the equation 4p = t2 + Ds2. (First, we
select random t and s values of appropriate sizes and then determine if p is
prime)

5. Compute u1 = p+1−t and u2 = p+1+t, the orders of the candidate elliptic
curves and determine if either of them has an admissible factorization (i.e.
is a prime or nearly-prime number). If not, go to Step 4 and pick another
random pair of t and s.

6. If u1 has proper factorization set u = q1, otherwise u = q2.
7. Find a root j0 of HD(x) mod p (this is the j-invariant of the curve).
8. Set k = j0/(1728 − j0) mod p and the curve of order u1 or u2 will be

Ec : y2 = x3 + ax + b (8)

where a = 3kc2, b = kc3 and c ∈ IFp is randomly chosen.
9. Check the order of the curve. If it is u then stop. Otherwise, select a non-

square number e ∈ IFp and calculate the twist by e, Ee(Fp) = x3 + ae2 + be3 .

Our experiments and heuristics confirm that pairs p and u of the type sought
can be found quickly.

As stated in the introduction, the above is a generalizing variation of Miyaji’s
simplification of the general CM method. Recently, A.K. Lenstra [11] has also
suggested using restricted sets of discriminants. But, as Miyaji, Lenstra only
considers the class number one candidate discriminants.

4 Constructing Class Polynomials

Although there are different methods to calculate class polynomials, we adopt
that of [1], see also [4]. Let D = b2−4ac be the discriminant of a quadratic form

f(x, y) = ax2 + bxy + cy2

where a, b, c are integers. The quadratic form, f(x, y) is commonly represented
by the compact notation [a, b, c]. If the integers a, b, c have no common factor,
then the quadratic form [a, b, c] is called primitive. There are infinitely many
quadratic forms of any possible discriminant. We reduce to a finite number by
demanding that a root of f(x, 1) lie in a certain region of the complex plane.
Let the primitive quadratic form [a, b, c] be of negative discriminant. Let τ be
the root of f(x, 1) which lies in the upper half-plane:

τ = (−b +
√

D)/2a

The [a, b, c] is a reduced form if τ has complex norm greater than or equal to
1, and �(τ) ∈ [−1/2, 1/2]. Given a discriminant D < 0, we can easily find all
of the reduced quadratic forms of discriminant D. We then compute the class
polynomial HD(x) which is the minimal polynomial of the j(τ). For each value
of τ , the j-value (denoted ji below) is computed as follows:

j(
√

D) = (256f(τ) + 1)3/f(τ)

where
f(τ) = ∆(2τ)/∆(τ),

∆(τ) = q · [1 +
∑
n≥1

(−1)n(q3n(n+1/2 + q3n(n−1/2)]24,

and
q = e2πiτ .

Finally, the class polynomial can be constructed by using the following formula:

HD(x) =
h∏

i=1

(x − ji)

where h is the number of the reduced forms of D, commonly known as the
class number of D. Since HD(x) has integer coefficients one must use sufficient
accuracy during the computations.

Our approach, as stated earlier, is to construct class polynomials beforehand
for given D values. We do this using some software tool specialized for mathe-
matical calculations. In our implementation, we use Maple. Following [1], we set
the precision for floating point arithmetic as follows:

precision = 10 +
(

h
�h/2�

)
· π

√
D ·

h∑
i=1

1/ai ,

N = 10 +
(

h
�h/2�

)
·

h∑
i=1

1/ai .

Here N gives the number of terms to keep in the calculations involving the
various ∆(τ).

As stated earlier, other methods than the basic use of the j-function applied
here can be employed to construct class polynomials. In each of these, one ob-
tains some class-invariant polynomial for the CM discriminant D. One advantage
of using different methods is to obtain class polynomials with relatively small
integer coefficients. This is particularly important when the processor used to
store the polynomial coefficients is of limited memory.

5 Implementation Results

We implemented the algorithm using the NTL number theory and algebra pack-
age [17] on a 450-MHz Pentium II based PC. We restricted to t = 2v + 1 and
s = 2w + 1 where v, w ∈ ZZ. Thus, the prime numbers found in this setting are
of the form

p = v2 + v + (w2 + w)D +
D + 1

4
(9)

where D satisfies
D ≡ 3 (mod 4).

Furthermore, D is chosen such that (D+1)/4 is odd, hence p is odd for any choice
of v and w. Throughout, we avoid the imaginary quadratic field of exceptionally
many units: We exclude D = 3. We obtained average times to find the prime
p and prime u as well as to calculate the corresponding curve for the following
values of D. Again, were u merely required to be nearly prime number, the search
time for admissible pairs would decrease.

For
D= { 163 , 403 , 883},

the corresponding class polynomials are given in the following:

H163(x) = x + 640320;

H403(x) = x2 − 108844203402491055833088000000 x

+2452811389229331391979520000;

H883(x) = x3 + 167990285381627318187575520800123387904000000000 x2

−151960111125245282033875619529124478976000000 x

+34903934341011819039224295011933392896000.

We obtained efficiency results for these three cases. When the class number
is one, the class polynomial is of degree one; hence the root is obtained without
any computation. In the two other cases, we must determine a root for each p of
the quadratic or cubic polynomial, respectively. The results are given in Table 1.

Table 1: Timings to build curves of known prime order.

D class no bitsize Average time (s) Np Nu

163 1 192 1.22 23 11
163 1 224 2.29 27 14
403 2 192 1.57 30 14
403 2 224 3.29 36 21
883 3 192 1.63 30 14
883 3 224 3.01 36 19

To find a root modulo p of a class polynomial takes approximately a constant
time determined by the size of the modulus p and the degree of the polynomial.
However, the time or the number of trials to find admissible pairs of p and u
is of a more complicated nature. We have run our program repeatedly to build
1000 different curves with each value of D in Table 1. In the table, Np indicates
the approximate number of random pairs of v and w to be tried before a prime
p = v2 + v + (w2 + w)D + (D + 1)/4 is found. Similarly, Nu is the average trial
number of p of the form (9) to obtain a prime u.

The method remains efficient for larger class numbers, as shown in Table 2
and Figure 5.

Table 2: Timings to build curves of prime order for large class numbers.

bitsize D class no Average time (s) Np Nu

192 555 4 3.54 51 35
1051 5 2.78 48 26
451 6 5.70 86 57
811 7 4.61 76 44
1299 8 5.91 69 59
1187 9 7.35 79 72
611 10 12.53 126 128
1283 11 9.42 99 92
1235 12 10.62 107 104
1451 13 11.08 106 108
1211 14 14.22 124 142
1259 15 15.61 132 154
1379 16 13.54 135 131
1091 17 17.46 159 168
1691 18 15.35 136 146
2099 19 14.64 128 139
1739 20 17.45 150 166
25259 72 23.20 140 160
37571 95 24.90 152 157

Figure 1: Performance of the method with increasing class numbers.

0 10 20
0

2

4

6

8

10

12

14

16

18

Class Number

T
im

e
(s

ec
on

ds
)

Timings

Bitsize : 192

0 10 20
20

40

60

80

100

120

140

160

Class Number

N
um

be
r

of
 T

ria
ls

Np

Bitsize : 192

0 10 20
0

20

40

60

80

100

120

140

160

180

Class Number

N
um

be
r

of
 T

ria
ls

Nu

Bitsize : 192

Table 2 clearly indicates that the admissible pair search time increases with
the class number. Although this increase is not monotone — the timing for
class number 10 is much higher than those for class numbers 11, 12, and 13 —
it is reasonable to claim that the time needed to find proper pairs is directly
proportional to the class number. This result is consistent with the theoretical
considerations in [12]; see the next section for specific comments. The dependence
of the construction process on the particular value of D seems to account for the
deviation from simple monoticity. Note also, just as the theoretical heuristics of
the next section suggest, that the time to find an admissible pair (p, u) decreases
with the size of D. This can be observed in Table 3. See also the Figures 2, 3,
4, 5, 6, 7.

Table 3: Timings for various class numbers.

field type bitsize 192 bitsize 224
class no D Average time (s) Np Nu Average time (s) Np Nu

1 11 9.10 95 94 16.20 109 113
19 3.86 68 39 7.15 81 49
43 2.30 46 23 4.19 55 28
67 1.87 37 18 3.55 44 23
163 1.22 23 11 2.29 27 14

2 35 10.38 105 108 15.74 120 110
123 3.49 57 35 5.93 64 40
187 2.42 45 23 4.31 52 28
235 2.09 40 20 3.98 48 26
403 1.57 30 14 3.29 36 21

3 59 11.37 121 118 21.17 141 128
83 10.01 102 104 16.93 118 117
107 7.90 92 82 14.33 106 99
379 2.63 47 25 4.85 56 32
883 1.63 30 14 3.01 36 19

4 155 9.50 99 99 16.14 116 112
195 6.46 88 66 11.90 105 82
259 4.77 78 49 8.46 91 58
355 3.76 64 37 6.87 77 46
555 3.54 51 35 6.54 63 44

5 179 11.54 113 119 20.65 140 142
227 9.33 103 97 17.42 122 120
347 7.64 83 79 12.64 98 86
443 6.65 73 68 11.81 86 81
1051 2.78 48 26 5.52 55 36

Figure 2: Timings to build curves with increasing discriminants.

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

Discriminant (D)

T
im

e
(s

ec
on

ds
)

Timings

Bitsize : 192

h = 5

h = 4

h = 3h = 2
h = 1

Figure 3: Number of trials for p with increasing discriminants.

0 200 400 600 800 1000 1200
20

40

60

80

100

120

140

Discriminant (D)

N
um

be
r

of
 T

ria
ls

Np

Bitsize : 192

h = 5
h = 4

h = 3h = 2
h = 1

Figure 4: Number of trials for u with increasing discriminants.

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

Discriminant (D)

N
um

be
r

of
 T

ria
ls

Nu

Bitsize : 192

h = 5

h = 4

h = 3h = 2
h = 1

Figure 5: Timings to build curves with increasing discriminants.

0 200 400 600 800 1000 1200
0

5

10

15

20

25

Discriminant (D)

T
im

e
(s

ec
on

ds
)

Timings

Bitsize : 224

h = 5h = 4

h = 3h = 2
h = 1

Figure 6: Number of trials for p with increasing discriminants.

0 200 400 600 800 1000 1200
20

40

60

80

100

120

140

160

Discriminant (D)

N
um

be
r

of
 T

ria
ls

Np

Bitsize : 224

h = 5
h = 4

h = 3h = 2

h = 1

Figure 7: Number of trials for u with increasing discriminants.

0 200 400 600 800 1000 1200
2

4

6

8

10

12

14

16

18

20

22

Discriminant (D)

N
um

be
r

of
 T

ria
ls

Nu

Bitsize : 224

h = 5
h = 4

h = 3h = 2

h = 1

Another important implementation aspect is code size. While one implemen-
tation [15] of the full CM method [7] requires 204KB on a PC with Windows
NT, our implementation with NTL requires only 164KB code space on the same
platform. In fact, the code space can be made much smaller when code is writ-

ten expressly for curve generation. For sake of simplicity, we have written such
a program which treats only the class number one case. We found that only an
extra 10 KB of object code space is needed for curve generation routines (as-
suming that the basic subroutines for arithmetic operations needed for elliptic
curve arithmetic are already available).

6 Heuristics: Twin Primes and Prime Order Elliptic
Curves

6.1 Finding Primes

The Prime Number Theorem states that for sufficiently large M , the number of
primes in [2, M] is approximately M/ lnM . But, with D as chosen, 4p = t2+s2D
expresses that p is a norm of an element in the ring of integers Q(

√
−D). The

density of rational primes which are of this type is 1/(2hD), where hD is the class
number of Q(

√
−D). See [2–4]. We thus have that some M/(2hD lnM) primes

of size up to M are of our type.
With p ≤ M , each pair (s, t) ∈ ZZ2 gives an integral lattice point inside

the ellipse of equation t2 + s2D = M/4. Gauss, see for example [3], found an
asymptotic formula for the number of lattice points interior to an ellipse. Here,
this gives that the the number of the lattice points (s, t) with s, t both positive is
L(M) = π(M)

√
D + O(

√
M). Furthermore, our p are odd, we work with odd D

and we desire the elliptic curve order u = p + 1± t to be prime, hence certainly
odd. We thus only consider s and t odd. We thus search through a possible
L(M)/4 distinct values of t2 + s2D for (s, t) interior to the ellipse.

We search for prime p in specific ranges of the form [S, 2S], and hence expect
to have find a prime p after a total number of trials of (v, w) of some N̄p :=
c(πhD lnS)/

√
D, for some constant c. Our experimental data confirms this, see

Tables 1,2,3, where S is variously 2191 and 2223.

6.2 Prime Order Elliptic Curves and Twin Primes

The order of the curve we seek is u = p+1± t, we ask for it to be prime. Now, p
of our form is the norm of the element P = (t+s

√
−D)/2; note that t is the trace

of P. The norms of P±1 are easily seen to be the two possibilities for u. Thus, we
are seeking twin pairs (P,P ± 1). Indeed, the theory of complex multiplication
ensures that associated to each pair of this form is an elliptic curve defined over
IFp where p is the norm of P and whose exact number of points over this field
equals the norm of P ± 1.

Although it is not known if there are infinitely many twin prime (principal
ideal) pairs in any quadratic field, there are conjectures as to their numbers
within bounded regions. This is also the case for twin rational primes, for which
Hardy and Littlewood [6] conjectured that there are some C2

∫ M

2
1/(ln y)2 dy

twin primes of size less than M , with C2 = 2
∏

odd prime p 1 − 1/(p − 1)2. This

constant is approximately 1.32032. The integral
∫ M

2
1/(ln y)2 dy is M/(lnM)2×

γ(M), where γ(M) is (1+2!/ lnM+3!/(lnM)2+· · ·+n!/(lnM)n−1)+O((lnM)n−1).
Recently, Gross and Smith [5] have stated general conjectures for the number

of twin primes in algebraic number fields. For Q(
√
−D) with D congruent to 3

modulo 8, their conjecture is that the number of twin primes of norm less than
M should be

P (D, M) = 2
√

D/(πh2
D) × β(D) ×

∫ M

2

1/(ln y)2 dy ,

with β(D) =
∏

Q (1 − 1/(N(Q) − 1))2 where Q runs through the prime ideals
of Q(

√
−D) and N(Q) denotes the norm to ZZ. We thus see that the number of

(v, w) which lead to elliptic curves of prime order over a prime field IFp with p

of norm less than M should be 2
√

D/(πh2
D) × M/(lnM)2 × β(D) × γ(M).

We bound β(D) for D congruent to 3 modulo 8 by considering (unachievably)
extremal splitting behavior of rational prime ideals (p). Were every odd prime to
split as the product of two distinct primes to such a field, then βsplit = 2/9×C2

2 =
0.3874 If all odd primes were to remain inert, one finds βinert = 0.87299.

We conclude that the number of trials of pairs (v, w) to find a prime pair (p, u)
with p of norm in an interval [S, 2S] should be N̄p×N̄u with N̄u approximately a
constant times hD lnS/β(D)

√
D. Again, our data confirm this. See in particular

Figure 8.

Figure 8: A comparison of theoretic and experimental values for Np × Nu .

0 200 400 600 800 1000 1200
0

5000

10000

15000

Discriminant (D)

N
p

*
N

u

Expected trial numbers for twin primes (Np * Nu)

experimental

theoretical

Bitsize : 192

h = 5
h = 3

6.3 Special Case: Class Number One

The reduction of an equation over the integers ZZ with respect to a prime number
p is given by reducing each coefficient of the equation modulo p. This can be
extended to equations of the rational numbers; and indeed to equations over
algebraic number fields, where one reduces by prime ideals.

Koblitz [8] used the Hardy-Littlewood heuristics to derive conjectures on the
number of primes p for which the reduction of an elliptic curve defined over Q is
an elliptic curve of prime order. In the class number one CM setting this number
should be asymptotic to a constant times M/(lnM)2; the constant is explicit.

In deriving his conjecture, Koblitz does not directly use twin primes in
Q(

√
−D). It would be very interesting to relate his constant to the Gross-Smith

β(D) in this restricted case of class number one. We briefly review why there
might well be such a relationship.

An elliptic curve of j-value j0 (mod p) found with the CM method is the
reduction of an elliptic curve defined over the complex numbers having j-value
the corresponding root of the class polynomial HD(x). The reduction is with
respect to a prime lying above p in the algebraic number field in which the
root lies. In the class number one case, the single root of HD(x) is in ZZ. The
corresponding elliptic curve is defined over Q, and the CM method amounts to
reducing the equation of this curve modulo primes which split to principal ideals
in Q(

√
−D). Thus, Conjecture B of [8] then predicts the number of primes up

to M (up to choosing twists) that give prime order elliptic curves.
Table 4 gives a comparison between the Koblitz predicted value, the Gross-

Smith twin primes value, and actual counts of twin primes and of anomolous
primes. The anomolous values are primes naturally paired with themselves in
our construction. (These are not counted as acceptable values of u in our timing
and counts for the various Nu.) Whereas the Gross-Smith formula should give
the number of twins, the Koblitz formula reasonably interpreted should give the
number of twins plus half the number of the anomolous curves.

7 Conclusion

We present a variant of the complex multiplication (CM) elliptic curve generation
algorithm for IFp. We show that the new variant of the CM method allows off-
line precalculation and therefore provides smaller, faster and more easily coded
software on-line implementation. The theoretical analysis shows that there are
numerous prime numbers in this subset and experimental results confirm that
it is highly probable to construct a prime number belonging to this set with a
fairly small number of searches. Our experiments also reveal the fact that the
on-line performance of the modified CM method increases as the class number
decreases. Another interesting result is that the new CM method performs better
for larger discriminants of the same class.

Table 4: Twin primes: estimates and counts.

D M Koblitz Gross-Smith Twins Anomolous
11 2000 10.9 12.1 12 4

4000 17.9 19.2 20 4
6000 24.1 25.5 23 5
8000 30.1 31.3 26 5
10000 35.7 36.7 33 5

19 2000 24.2 25.9 23 5
4000 37.9 41.1 36 7
6000 51.2 54.5 51 7
8000 63.1 66.9 63 7
10000 75.2 78.6 78 9

43 2000 41.7 46.1 45 4
4000 67.1 73.2 72 5
6000 89.2 97.0 88 5
8000 111.1 119.0 105 6
10000 131.5 139.9 122 7

67 2000 54.8 59.2 56 4
4000 88.2 93.9 91 6
6000 117.2 124.5 125 7
8000 144.8 152.7 157 7
10000 172.4 179.4 189 8

163 2000 76.6 94.3 72 4
4000 128.9 149.6 127 5
6000 180.0 198.3 183 6
8000 225.4 243.3 234 6
10000 265.4 285.8 272 6

References

1. A. O. L. Atkin and F. Morain. Elliptic curves and primality proving. Mathematics
of Computation, 61(203):29–68, July 1993.

2. H. Cohen. A Course in Computational Algebraic Number Theory. Springer, Berlin,
Germany, 1997.

3. H. Cohn. Advanced Number Theory. Dover Publications, New York, NY, 1980.
4. D. A. Cox. Primes of the Form x2 +ny2: Fermat, Class Field Theory and Complex

Multiplication. John Wiley & Sons, New York, NY, 1989.
5. R. Gross and J. H. Smith. A generalization of a conjecture of hardy and littlewood

to algebraic number fields. Rocky Mountain J. Math, 30(1):195–215, 2000.
6. G. H. Hardy and J. E. Littlewood. Some problems of ’partitio numerorum’ iii: On

the expression of a number as a sum of primes. Acta. MAth, 44:1–70, 1922.
7. IEEE. P1363: Standard specifications for public-key cryptography. Draft Version

13, November 12, 1999.
8. N. Koblitz. Primality of the number of points on an elliptic curve over a finite

field. Pacific J. Math., 131(1):157–165, 1988.

9. N. Koblitz, A. Menezes, and S. Vanstone. The state of elliptic curve cryptogra-
phy. towards a quarter-century of public key cryptography. Designs, Codes and
Cryptography, 19(2-3):173–193, 2000.

10. G.-H. Lay and H. G. Zimmer. Constructing elliptic curves with given group order
over large finite fields. Algorithmic number theory (Ithaca, NY, 1994), pages 157–
165, 1994.

11. A. K. Lenstra. Efficient identity based parameter selection for elliptic curve cryp-
tosystems. Information Security and Privacy—ACISP ’99 (Wollongong), pages
294–302, 1999.

12. H. W. Lenstra Jr. Factoring integers with elliptic curves. Annals of Mathematics,
126(3):649–673, 1987.

13. A. Miyaji. Elliptic curves over Fp suitable for cryptosystems. In J. Seberry and
Y. Zheng, editors, Advances in Cryptology – AUSCRYPT 92, Lecture Notes in
Computer Science, No. 718, pages 492–504. Springer, Berlin, Germany, 1992.

14. T. Satoh and K. Araki. Fermat quotients and the polynomial time discrete log
algorithm for anomalous elliptic curves. Commentarii Math. Univ. St. Pauli, 47:81–
92, 1998.

15. M. Scott. A C++ implementation of the complex cultiplication (CM) elliptic curve
generation algorithm from Annex A.
http://grouper.ieee.org/groups/1363/P1363/implementations.html, March
14, 2000.

16. I. A. Semaev. Evaluation of discrete logarithms in a group of p-torsion points of an
elliptic curve in characteristic p. Mathematics of Computation, 67(221):353–356,
January 1998.

17. V. Shoup. NTL: A Library for doing Number Theory (version 5.0c).
http://shoup.net/ntl/, 2001.

18. J. H. Silverman. The Arithmetic of Elliptic Curves. Springer, Berlin, Germany,
1986.

19. N.P. Smart. The discrete logarithm problem on elliptic curves of trace one. Journal
of Cryptography, 12:193–196, 1999.

