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Abstract. We define maps which induce mediant convergents of Rosen con-

tinued fractions and discuss arithmetic and metric properties of mediant con-
vergents. In particular, we show equality of the ergodic theoretic Lenstra

constant with the arithmetic Legendre constant for each of these maps. This

value is sufficiently small that the mediant Rosen convergents directly deter-
mine the Hurwitz constant of Diophantine approximation of the underlying

Fuchsian group.

1. Introduction

Ergodic properties of a number theoretic transformation can in certain circum-
stances be studied by way of transformations which induce it. In the classical
setting of the simple continued fraction (SCF) expansion S. Ito [6] studied maps
corresponding to the mediant convergents for exactly this purpose. Motivated by
this classical setting, we call any such inducing transformation a mediant map. In
this paper we give mediant maps for the Rosen continued fraction maps, allow-
ing us to extend the work of [13] and [2]. We discuss some arithmetic and metric
properties of mediant convergents arising from these maps, in particular using tech-
niques of [14] to show that the Legendre constant—determining membership in the
sequence of approximations of a real number—is equal to the ergodic theoretic
Lenstra constant.

One motivation for this work comes from Diophantine approximation in terms
of the Rosen fractions. Diophantine approximation by simple continued fractions
has of course a rich history. A geometric aspect of this is expressible in terms of the
Möbius action of the modular group PSL(2, Z). In the middle of the last century,
this was generalized to approximation by the orbit of infinity under a reasonably
large class of Fuchsian groups. Some thirty years after Rosen [16] introduced his
continued fractions to study elements of the Hecke triangle groups (a family of
Fuchsian groups including the modular group), Lehner [10, 11] used these continued
fractions to begin the study of the quality of approximation by the orbit of infinity
under each of the Hecke groups. His goal was to determine the Hurwitz constant
for this approximation, thus in a sense bounding how bad the approximation can
be. These Hurwitz constants were finally determined by Haas and Series [5], using
techniques of hyperbolic geometry.

One would naturally like to determine these Hurwitz values using purely con-
tinued fraction methods, and this is what we do. However, the process is not as
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straightforward as one might guess. (See the introduction to Section 5 for a more
detailed discussion of the following).

The Rosen continued fraction algorithm does provide approximates to each real
number that are elements of the orbit of infinity under the corresponding Hecke
group; however, there exist real numbers that are yet better approximated by other
elements of the orbit. Thus, what one might reasonably call the Hurwitz value of
the Rosen fractions, which we easily deduce from results of [9], could a priori be
greater than the Hurwitz constant of the corresponding group. The difficulty here
is that the (correct, as opposed to the value given in Section 4 of [17]) Legendre
value for the Rosen fractions is too large to allow direct determination of the group
Hurwitz constants. In order to capture sufficiently closer approximates, we use the
mediant maps. As stated above, we determine the Legendre constant for these by
first showing equality with the Lenstra constant, whose value we then explicitly find.
This Legendre constant is sufficiently small that we can conclude the determination
of the Hurwitz constant of the corresponding Hecke group.

1.1. Outline. In the next section, we introduce the mediant algorithm. In Sec-
tion 3, we give the underlying mediant maps. Section 4 is devoted to the construc-
tion of planar natural extensions for these, and to the study of their basic ergodic
properties. Section 5 gives the continued fraction determination of the Hurwitz
constants. Definitions of the Legendre and Lenstra constants for the mediant maps
appear in Section 6, where their equality is proven. In Section 7, we evaluate the
Lenstra constants.

2. Mediants of Rosen Fractions

Throughout this paper, λk = 2 cos π
k and Ik = [− cos π

k , cos π
k ) for k ≥ 3. For a

fixed integer k ≥ 3, the Rosen continued fraction map is defined by

Tk(x) =

{∣∣ 1
x

∣∣ − λb
∣∣ 1

λx

∣∣ + 1
2c x 6= 0;

0 x = 0

for x ∈ Ik; here and below, we omit the index “k” whenever it is clear from context.
We define

εn(x) = sgn(Tn−1x) and rn(x) = r(Tn−1x)

with

ε(x) = sgn(x) and r(x) =
⌊ ∣∣∣∣ 1

λx

∣∣∣∣ +
1
2

⌋
.

Then we have the Rosen continued fraction expansion of x as follows

x =
ε1(x)
λr1(x)

+
ε2(x)
λr2(x)

+ · · ·+
εn(x)
λrn(x)

+ · · · ,

which is denoted by x = [ ε1(x) : r1(x), ε2(x) : r2(x), . . . , εn(x) : rn(x), . . .] . Here
the expansion terminates at a finite term if and only if x is a parabolic point of
Hecke group of index k, denoted by Gk (see [16]). As usual we can define the
convergents pn/qn of x ∈ Ik by(

p−1 p0

q−1 q1

)
=

(
1 0
0 1

)
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and (
pn−1 pn

qn−1 qn

)
=

(
0 ε1

1 λr1

) (
0 ε2

1 λr2

)
· · ·

(
0 εn

1 λrn

)
for n ≥ 1. From this definition it is easy to see that |pn−1qn − qn−1pn| = 1, and
that we have the well-known recurrence relations

p−1 = 1; p0 = 0; pn = λrnpn−1 + εnpn−2, n ≥ 1
q−1 = 0; q0 = 1; qn = λrnqn−1 + εnqn−2, n ≥ 1.

It also follows that(
pn−1 qn−1

pn qn

)
=

(
0 1
εn λrn

) (
0 1

εn−1 λrn−1

)
· · ·

(
0 1
ε1 λr1

)
,

giving

(1)
pn

qn
=

ε1

λr1

+
ε2

λr2

+ · · ·+
εn

λrn

and

(2)
qn−1

qn
=

1
λrn

+
εn

λrn−1

+ · · ·+
ε2

λr1

.

Since Hecke groups are discontinuous groups, the (parabolic) value pn/qn uniquely
determines qn up to sign; we can and do assume qn to be positive. We sometimes
call (2) the dual of (1). In the case of simple continued fractions the dual continued
fractions are also simple continued fractions (see [12]). However, in the case of the
Rosen fractions the resulting sequence of εi : ri may fail to be admissible.

In the sequel, we identify any 2× 2 matrix with the associated linear fractional

transformation. That is,
(

a b
c d

)
(x) means

ax + b

cx + d
.

From the definition of pn/qn, we have

pn+1

qn+1
=

rn+1λpn + εn+1pn−1

rn+1λqn + εn+1qn−1
.

If rn+1 > 1, then—following [6] in the SCF-case—we can interpolate between pn/qn

and pn+1/qn+1 by

(3)
un,l

vn,l
=

lλpn + εn+1pn−1

lλqn + εn+1qn−1
, 1 ≤ l < rn+1,

and call un,l/vn,vl the l-th mediant convergent of x (of level n); note that such a
mediant does not exist in case rn+1 = 1. In the next section, we define a map which
induces mediant convergents of Rosen continued fractions.
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3. Mediant Maps and Convergents

3.1. Full Mediant Map. For each fixed k, we define the mediant map S = Sk as
follows. We put J = Jk = [−λ, 1

λ ) and define S of J by

S(x) =



− 1
x
− λ, x ∈ [−λ

2 ,− 2
3λ ) ;

− x

λx + 1
, x ∈ [− 2

3λ , 0) ;

0, x = 0 ;

x

−λx + 1
, x ∈ (0, 2

3λ ] ;

1
x
− λ, x ∈ ( 2

3λ , 2
λ ) .

In the case of k = 3, T3 is the classical nearest integer continued fraction map,
and S3 is the mediant map as defined by R. Natsui in [15]. In the sequel we always
assume that k ≥ 4. To describe the relationship between the mediant map and the
Rosen map, we consider matrix actions. The following two lemmas are trivially
verified.

Lemma 1. The Rosen map Tk can be expressed in the following manner.

Tk(x) =



(
λ 1
−1 0

)
(x), x ∈ [−λ

2 ,− 2
3λ );

(
tλ 1
−1 0

)
(x), x ∈ [− 2

(2t−1)λ ,− 2
(2t+1)λ ), t ∈ N≥2;

(
−tλ 1
1 0

)
(x), x ∈ ( 2

(2t+1)λ , 2
(2t−1)λ ], t ∈ N≥2;

(
−λ 1
1 0

)
(x), x ∈ ( 2

3λ , λ
2 ).

Definition 1. We define the following matrices.

U− =
(

0 −1
1 λ

)
; U+ =

(
0 1
1 λ

)
; V− =

(
−1 0
λ 1

)
; V+ =

(
1 0
λ 1

)
.

The inverses of these are of course:

U−1
− =

(
λ 1
−1 0

)
; U−1

+ =
(
−λ 1
1 0

)
; V −1

− =
(
−1 0
λ 1

)
,

and

V −1
+ =

(
1 0
−λ 1

)
.
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Lemma 2. The mediant map S can be expressed in the following terms.

S(x) =



U−1
− (x), x ∈ [−λ

2 ,− 2
3λ ) ;

V −1
− (x), x ∈ [− 2

3λ , 0) ;

V −1
+ (x), x ∈ (0, 2

3λ ] ;

U−1
+ (x), x ∈ ( 2

3λ , 2
λ ) .

The next lemma is verified by direct computation.

Lemma 3. The following equalities hold:(
tλ 1
−1 0

)
= U−1

+ · V −(t−2)
+ · V −1

− and
(
−tλ 1
1 0

)
= U−1

+ · V −(t−1)
+ .

Direct calculation also shows the following.

Lemma 4. Viewed as a linear fractional transformation, the matrix V −1
− is a

bijective map from
(
− 2

(2l−1)λ ,− 2
(2l+1)λ

)
to

(
2

(2l−1)λ , 2
(2l−3)λ

)
, with

− 2
(2l + 1)λ

7→ 2
(2l − 1)λ

and − 2
(2l − 1)λ

7→ 2
(2l − 3)λ

.

Furthermore, the linear fractional transformation V −1
+ maps

(
2

(2l+1)λ , 2
(2l−1)λ

)
bi-

jectively to
(

2
(2l−1)λ , 2

(2l−3)λ

)
, with

2
(2l + 1)λ

7→ 2
(2l − 1)λ

and
2

(2l − 1)λ
7→ 2

(2l − 3)λ
.

Lemma 5. For each x ∈ Ik, let `(x) be defined as follows.

`(x) := min
{

` ≥ 0 : S`(x) ∈ [−λ

2
,− 2

3λ
) ∪ (

2
3λ

,
2
λ

)
}

.

Then for each x ∈ Ik, one has the following equality:

S`(x)+1(x) = T (x).

Proof. This follows from our definitions and an application of Lemma 3. �
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3.2. Mediant Convergents. For x ∈ Ik and i ∈ N, we let

Mi =



U− if Si−1(x) ∈ [−λ
2 ,− 2

3λ );

U+ if Si−1(x) ∈ ( 2
3λ , 2

λ );

V− if Si−1(x) ∈ [− 2
3λ , 0);

V+ if Si−1(x) ∈ (0, 2
3λ ];

Id if Si−1(x) = 0.

for i ≥ 1, where as usual Id denotes the identity.

Then we have a sequence of matrices from x which is denoted by

(4) x ∼ M1M2 · · ·Mj · · ·

Of course, the mediant map acts as a shift on each such sequence.

Definition 2. Fix x ∈ Ik and consider the above sequence of Mi. Let k1, k2, . . .
be the increasing sequence of indices for which Mki

∈ {U− , U+ }.

The following lemma records the fact that the sequence of Rosen convergents
pn/qn of x ∈ Ik is a subsequence of the sequence un,l/vn,vl, n ≥ 1, of mediant
convergents of x.

Lemma 6. For each x ∈ Ik, consider the corresponding sequence of Equation (4).
Then, for each km as above, one has the following equality.

M1M2 · · ·Mkm
=

(
pm−1 pm

qm−1 qm

)
.

Furthermore, km+1 = km + rm+1 where (εm : rm) is the m-th coefficient of the
Rosen continued fraction expansion of x.

We have the following result.

Proposition 1. With notation as above, we have

M1 · · ·Mkm · · ·Mkm+l =
(

um,l pm

vm,l qm

)
for 1 ≤ l < rm+1.

By this proposition, we see that the sequence (M1 · · ·Mi(∞) : i ≥ 1) is
u0,1

v0,1
,

u0,2

v0,2
, · · · , u0,r1−1

v0,r1−1
,

p0

q0
,

u1,1

v1,1
,

u1,2

v1,2
, · · · ,

u1,r2−1

v1,r2−1
,

p1

q1
, · · ·

· · · ,
un,1

vn,1
,

un,2

vn,2
, · · · ,

un,rn+1−1

v1,rn+1−1
,

pn

qn
, · · ·

It is easy to see that

x =
(

um,l pm

vm,l qm

)
(Sn(x)) ,
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for n = km + l. We put xn = Sn(x). It follows that

(5)
∣∣∣∣x − um,l

vm,l

∣∣∣∣ =
∣∣∣∣um,lxn + pm

vm,lxn + qm
− um,l

vm,l

∣∣∣∣ =
1

v2
m,l(xn − (− qm

vm,l
) )

,

where − qm

vm,l
= (M1 · · ·Mn)−1(∞). We recall that (M1 · · ·Mn)−1 is the linear

fractional transformation which defines Sn. It also follows that

(6)
∣∣∣∣x− pm−1

qm−1

∣∣∣∣ =
1

q2
m−1(xkm

− (− qm

qm−1
))

where −qm/qm−1 = (M1 · · ·Mkm
)−1(∞). Consequently, the distribution of(

(M1 · · ·Mn)−1(x) − (M1 · · ·Mn)−1(∞) : n ≥ 1
)

determines the distribution of the error (after normalization by the square of the
denominator) of the principal and the mediant convergents.

If k = 3, since λ3 = 1, it is easy to see that(
um,1

vm,1

)
=

(
um−1,rm−1

vm−1,rm−1

)
when εm+1 = −1. This equality never holds for k ≥ 4. Indeed, since λk > 1 for
k ≥ 4, we have—due to (3),

vm,1 = λqm − qm−1 > qm − λqm−1 = vm−1,rm−1.

This implies that all values in {
um,l

vm,l
,

pm

qm

}
m≥0

are different from each other.

4. Natural extensions

Since the work of [12], planar natural extensions of continued fractions maps have
provided a significant tool in the study of ergodic properties of number theoretic
transformations.

In this section we construct planar natural extensions of the Rosen mediant maps.
Here “natural extension” means (i) one-to-one onto (a.e.) and (ii) the projection
map to the first coordinate coincides with S. Because of the different behavior
of the orbit of ±λ

2 by S, we discuss the even index case and the odd index case
separately.

In our construction, we rely on [2]. However, we proceed slightly differently.
There the invariant measure for the natural extension of the Rosen maps are dx dy

(1+xy)2 ,
up to normalizing constants. Indeed, this is the invariant measure for the action of
the determinant ±1

M =
(

a b
c d

)
sending (x, y) to

(
ax + b

cx + d
,

dy − c

−by + a

)
.

Here, we use the more natural action directly related to hyperbolic geometry:

(x, y) 7→
(

ax + b

cx + d
,

ay + b

cy + d

)
with invariant measure dx dy

(x−y)2 . These maps are conjugate, thus there is no loss in
proceeding in our manner. As in the regular mediant case (cf. [6]), the mediant
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Rosen maps have σ-finite, infinite absolutely continuous invariant measures. Thus,
we cannot directly apply the classical Birkhoff’s individual ergodic theorem.

4.1. Even index case: k = 2`. Because we apply (5) and (6) in the subsequent
section, our construction of the region of the natural extension differs from [2].
However, it is easy to recover one region from the other by use of the conjugating
map (x, y) 7→ (x,−1/y). First we recall some notations from [2].

φ0 = −λ

2
, φj = T j

(
−λ

2

)
, 0 ≤ j ≤ `− 1, and φ`−1 = 0,

and

L1 =
1

λ + 1
, Lj =

1
λ− Lj−1

, 2 ≤ j ≤ `− 1, and 1 =
1

λ− L`−1
.

With the various φi and Li the natural extension Ω of the ergodic system under-
lying the Rosen fraction was defined in [2]. As stated before, we consider here an
isomorphic copy Ω0 of this system, which will be a subset of the region of natural
extension Ω∗ of the ergodic system underlying the mediant map S. Setting for
1 ≤ j ≤ `− 1,

Jj = [φj−1, φj)
J` = [0, λ

2 )
J`+1 = [λ

2 , 2
λ )

and


K̄j = [−∞, − 1

Lj
]

K̄` = [−∞, 0 ]
K̄`+1 = [−1, 0],

we define the region of the natural extension by

Ω∗ =
l+1⋃
j=1

(
Jj × K̄j

)
,

see Figure 1. The map Ŝ : Ω∗ → Ω∗ is given by

Ŝ(x, y) =
(
M−1

1 (x), M−1
1 (y)

)
,

for (x, y) ∈ Ω∗. We will call this map the natural extension of S; indeed we show
below that it has the requisite properties. From the definition of M1 = M1(x), it
follows that M−1

1 (x) = S(x).

Theorem 1. The map Ŝ is surjective from Ω∗ onto itself and is injective off of the
boundaries of Jj × K̄j, 1 ≤ j ≤ l + 1. Moreover, dx dy

|x−y|2 is an invariant measure for

Ŝ.

Remark. Note that ∫∫
Ω∗

dxdy

|x− y|2
= ∞.

Proof. We must simply check that, up to measure zero niceties, the map Ŝ(x, y)
does indeed act bijectively on Ω∗. This is a matter of elementary calculations,
which we now outline.

• x ∈ [−λ
2 , − 2

3λ ); On this interval, S(x) = − 1
x − λ. Recall that the φi are

in fact the orbit of φ0 = −λ
2 under iteration of this map; in particular,

φ`−1 = 0. Then Ŝ sends ∪`−1
i=1 [φi−1, φi) × [−∞, − 1

Li
] to ∪`−1

i=1 [φi, φi+1) ×
[−λq, −1/Li+1 ]. Also [φ`−1, − 2

3λ ) × [−∞,− 1
L`−1

] is now sent to [0, λ
2 ) ×

[−λ,−1].
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Ω0

Figure 1. The region Ω∗ contains Ω0, here k = 8.

• x ∈ [− 2
3λ , 0); On this interval, Ŝ(x, y) =

(
−x

λx+1 , −y
λy+1

)
for (x, y) ∈ Ω∗.

Since L`−1 = λ− 1, we easily find that Ŝ sends [− 2
3λ , 0)× [−∞, − 1

Ll−1
] to

[0, 2
λ )× [−1, − 1

λ ].

• x ∈ [0, 2
3λ ); On this interval, Ŝ(x, y) =

(
x

1−λx , y
1−λy

)
for (x, y) ∈ Ω∗. One

immediately finds that [0, 2
3λ )× [−∞, 0] is sent to [0, 2

λ )× [− 1
λ , 0].

• x ∈ [ 2
3λ , λ

2 ); On this interval, Ŝ(x, y) = ( 1
x − λ, 1

y − λ) for (x, y) ∈ Ω∗. One
finds that [ 2

3λ , λ
2 )× [−∞, 0) is sent to [φ1,

λ
2 )× [−∞, −λ].

• x ∈ [ λ
2 , 2

λ ); On this interval, also Ŝ(x, y) = ( 1
x − λ, 1

y − λ) for (x, y) ∈ Ω∗.
Hence [ 2

3λ , λ
2 )× [−1, 0] is sent to [−λ

2 , φ1)× [−∞, −λ− 1].

Consequently, we see that Ŝ is bijective except for failing to be injective on the
(measure zero) boundaries. The invariance of the measure follows from

h(Ŝ(x, y)) ·
∣∣∣ det DŜ(x, y)

∣∣∣ · h−1(x, y) = 1 for h(x, y) =
1

(x− y)2

Indeed, this invariance holds for any linear fractional transformation (x, y) 7→

(Ax, Ay), A =
(

a b
c d

)
∈ GL(2, R) :

1(
ax+b
cx+d −

ay+b
cy+d

)2 ·
1

(cx + d)2(cy + d)2
· (x − y)2 = 1.

�
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4.2. Odd index case: k = 2` + 3. We recycle notation, now using φj and Lj as
follows (all necessary calculations are in [2]):

φ0 = −λ

2
, and φj = T j

(
−λ

2

)
, 0 ≤ j ≤ 2` + 1.

We recall that
−λ

2 ≤ φj < − 2
3λ for j ∈ {0, 1, . . . , `− 1} ∪ {` + 1, . . . , 2`}

− 2
3λ < φ` < − 2

5λ

φ2`+1 = 0.

Also we put, with R the positive root of R2 + (2− λ)R− 1 = 0,
L2` = λ− 1/R

L2`+1 = λ−R
L1 = 1

2λ−L2`

L2 = 1
2λ−L2`+1

Lj = 1
λ−Lj−2

, 2 < j ≤ 2` + 2 ,

which are well-defined (see Subsection 3.2 of [2]). Then we define

Ω∗ =
2`+4⋃
j=1

Jj × K̄j :

where 
J2j = [φ`+j , φj), 1 ≤ j ≤ `

J2j−1 = [φj−1, φj+l), 1 ≤ j ≤ ` + 1
J2`+2 = [0, λ

2 ),
J2`+3 = [λ

2 , 1)
J2`+4 = [1, 2

λ ),

1 = − φ`

λφ`+1 , and 
K̄j = [−∞, − 1

Lj
], 1 ≤ j ≤ 2` + 1

K̄2`+2 = [−∞, 0, ],
K̄2`+3 = [− 1

λ−L2`+1
, 0] = [− 1

R , 0]
K̄2`+4 = [− 1

λ−L2`
, 0] = [−R, 0];

see Figure 2.

Theorem 2. The map Ŝ(x, y) =
(
M−1

1 (x), M−1
1 (y)

)
of Ω∗ is bijective off of the

boundaries of Jj × K̄j, 1 ≤ j ≤ 2l + 2. Moreover, dx dy
|x−y|2 is an invariant measure

for Ŝ.

Proof. The invariance of the measure has been given in the proof of Theorem 1.
The first part of the assertion also follows similarly:

• x ∈ [−λ
2 , − 2

3λ ); Here, Ŝ(x, y) =
(
− 1

x − λ, − 1
y − λ

)
. Thus, the corre-

sponding image of Ω∗ is fibred below [φ1,
λ
2 ), with y values in [−λ, − 1

Lj
]

for S(x) negative, with the appropriate value of of Lj , and y ∈ [−λ, − 1
R ]

for S(x) non-negative.
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Figure 2. The region Ω∗ contains Ω0, here k = 9.

• x ∈ [− 2
3λ , 0); Here Ŝ(x, y) =

(
−x

λx+1 , −y
λy+1

)
for (x, y) ∈ Ω∗. Thus [− 2

3λ , 0)×
[−∞, − 1

L2`+1
] is sent to [0, 2

λ )× [− 1
λ−L2`+1

, − 1
λ ].

• x ∈ [0, 2
3λ ); For these values of x, Ŝ(x, y) =

(
x

1−λx , y
1−λy

)
for (x, y) ∈ Ω∗.

Thus [0, 2
3λ )× [−∞, 0] is sent to [0, 2

λ )× [− 1
λ , 0].

• x ∈ [ 2
3λ , λ

2 ); Here Ŝ(x, y) = ( 1
x − λ, 1

y − λ) for (x, y) ∈ Ω∗. Thus [ 2
3λ , λ

2 )×
[−∞, 0) is sent to [φ1,

λ
2 )× [−∞, −λ].

• x ∈ [λ
2 , α); Here again Ŝ(x, y) = ( 1

x − λ, 1
y − λ) for (x, y) ∈ Ω∗. Then

[ 2
3λ , α) × [− 1

R , 0] is sent to [φ`+1, φ1) × [−∞, −R − λ] = [φ`+1, φ1) ×
[−∞, − 1

L2
].

• x ∈ [α, 2
λ ); Once again, Ŝ(x, y) = ( 1

x − λ, 1
y − λ) for (x, y) ∈ Ω∗ and

[α, 2
λ )× [− 1

λ−L2`
, 0] is sent to [−λ

2 , φ`+1)× [−∞, −λ− 1
L1

].
Combining the above, we get the first part of the assertion of the theorem. �

4.3. Ergodicity. We denote by µ̂ the measure defined by 1
(x−y)2 as its density

function and by µ its marginal distribution on the first coordinate.

Theorem 3. The dynamical system (Ω∗, Ŝ, µ̂) is ergodic, and its entropy h(Ŝ, µ̂)
is equal to (k−2)π2

2k .

Proof. An easy calculation shows that

Ŝkm(x, y) =
(
(M1 · · ·Mkm

)−1(x), (M1 · · ·Mkm
)−1(y)

)
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and
(M1 · · ·Mkm)−1(x) = Tm(x).

Now we define

(7) Ω0 = {(x, y) : (x,−1/y) ∈ Ω}

where Ω is the set defined in Theorem 3.1 and Theorem 3.2 of [2], i.e., Ω0 is an
isomorphic copy of the region of the natural extension of the Rosen map T . For
reasons which will become clear in a moment, we use Ω0 in this paper. Then Ŝkm

is the induced transformation ŜΩ0 of Ŝ to Ω0, which is conjugate to T by the
isomorphism (x, y) → (x,−1/y). Since T is ergodic (see also [2]), so is ŜΩ0 . This
also implies the ergodicity of Ŝ.

The entropy h(Ŝ, µ̂) of (Ŝ, µ̂) is given by the entropy of its induced transforma-
tion on the region Ω0, as

h(Ŝ, µ̂) = h(ŜΩ0 , µ̂Ω0) · µ̂(Ω0),

where µ̂Ω0 is the restricted normalized measure of µ̂ to Ω0; see [8]. Since (ŜΩ0 , µ̂Ω0)
is a natural extension of the Rosen map, and its entropy is

C · (k − 2)π2

2k
,

where C is the normalizing constant of the invariant measure, i.e.,

C−1 =
∫∫

Ω0

dxdy

|x− y|2
,

(see [14]), the result follows. �

The following result is an immediate consequence of Theorem 3.

Corollary 1. The dynamical system (S, µ) is ergodic, and its entropy h(S, µ) is
equal to (k−2)π2

2k .

Remark. The density function f of the measure µ is given by

f(x) =
∫
{y : (x,y)∈Ω∗}

dy

(x− y)2

which diverges at x = 0.

Corollary 2. For a.e. x ∈ Ik,
{

vm,l

∣∣∣x − um,l

vm,l

∣∣∣ : 1 ≤ l ≤ rm − 1,m ≥ 1
}

is un-
bounded.

Proof. From the ergodicity of Ŝ, for a.e. (x, y) ∈ Ω∗, its forward Ŝ-orbit is dense
in Ω∗. It follows that distance between the second coordinates of Ŝn(x, y) and
Ŝn(x,−∞) tends to 0. Thus we see that the forward Ŝ-orbit of (x,−∞) is also
dense in Ω∗. By Fubini’s theorem, this holds for a.e. x ∈ Ik. Because

Ŝn(x,−∞) =
(

Sn(x),− qm

vm,s

)
for n = km + s and by (4), we have the assertion. �
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5. A Hurwitz-type result

In this section we use the natural extensions to find the analog for the Rosen
fraction of a classical result of Hurwitz on the quality of Diophantine approximations
by continued fraction approximates.

For the regular continued fraction expansion we have the following classical Borel
result (cf. [3]): if x has SCF-expansion x = [0; a1, a2, . . . ], and convergents Pn/Qn,
n ≥ 0, and if the approximation coefficients ϑn = ϑn(x), n ≥ 0, are defined by

ϑn = ϑn(x) = Q2
n

∣∣∣∣ x− Pn

Qn

∣∣∣∣ , n ≥ 0,

then for every n ≥ 1 and every irrational x we have

min(ϑn−1, ϑn, ϑn+1) < 1/
√

5,

and the constant 1/
√

5 is ‘best possible,’ in the sense that it cannot be replaced
by a smaller constant. Borel’s result, together with the yet older Legendre result,
which states that if p, q ∈ Z, q > 0, gcd(p, q) = 1, then∣∣∣∣x− p

q

∣∣∣∣ <
1

2q2
⇒

(
p
q

)
=

(
pn

qn

)
, for some n ≥ 0,

implies the also classical Hurwitz result: for every irrational x there are infinitely
many rationals p/q, such that ∣∣∣∣x− p

q

∣∣∣∣ <
1√
5q2

.

In our setting, we put

Θ
(
x,

a

c

)
= c2

∣∣∣ x − a

c

∣∣∣
for

(
a ·
c ·

)
∈ Gk. Hereafter, when we write a/c we assume that there exists a

matrix
(

a ·
c ·

)
∈ Gk. The set of these real numbers a/c is called the Gk-rationals,

denoted Gk(∞). In case a/c is equal to the nth mediant convergent of x — with
indexing as for Equation (5) —, we write Θn(x) instead of Θ (x, a/c). These num-
bers Θn(x), n ≥ 1, are the approximation coefficients of x, and express the ‘quality
of approximation’ of x by these convergents.

In this section, we use continued fraction methods to prove the analogue of
Hurwitz’ result for λk-irrationals. This was first proved obtained by Haas and
Series using hyperbolic geometry see [5], after continued fractions based work of
Lehner [10, 11].

Theorem 4. (Haas and Series) For x ∈ R \Gk(∞), let

µk(x) = inf{h ;
∣∣∣ x− a

c

∣∣∣ <
h

c2
has infinitely many solutions

a

c
∈ Gk(∞)},

and set C(k) = sup{µk(x) ; x ∈ R \Gk(∞)} . Then

C(k) =


1/2 if k is even

1

2
√

(1− λk/2)2 + 1
if k is odd.
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One could imagine that a continued fractions proof proceeds by way of analogs
of Borel and Legendre results. And, [9] gives a Borel-type result: for x ∈ R\Gk(∞)
and (pn/qn)n≥1 the λk-Rosen convergents of x, one has that

θn(x) := q2
n

∣∣∣∣ x− pn

qn

∣∣∣∣ < C(k) infinitely often,

and the constant C(k) is optimal. Furthermore, due to results of Nakada ([13]),
a Legendre-result exists for the Rosen fractions. Unfortunately, this analog of
the Legendre constant is strictly less than C(k), so the Borel-type result from [9]
does not immediately imply the Hurwitz analog. That is, one cannot rule out the
existence of some constant D, with D < C(k), such that for some Gk-irrational x
there exist infinitely many Gk-rationals a/c, which are not Rosen convergents of x,
but do satisfy ∣∣∣x− a

c

∣∣∣ <
D

c2
.

To address this difficulty, one turns to our Section 7: the Legendre constant `k for
the Rosen mediant transformation is larger that C(k). Therefore, any Gk-rational
a/c satisfying ∣∣∣ x− a

c

∣∣∣ <
C(k)
c2

,

which is not a Rosen convergent must be a mediant convergent of x. Finally, in
order to show that the Borel-type result from [9] implies Theorem 4, it suffices to
exhibit a Gk-irrational number x (a witness), for which the statement

Θn(x) < C, for at most finitely many n

holds for any C < C(k). For each k > 3, we call our witness τ0; this value is
suggested by the geometry of our planar natural extension. The approach in both
the even and odd index cases is quite similar, the odd case is –as usual– a little bit
more complicated. We give full detail of the even case, and outline the odd case.

5.1. Even index case: k = 2`. One of the main ingredients of the aforementioned
Borel-type result from [9] is the fact that if we set

τ0 := [ (−1 : 1)`−2, (−1 : 2) ] = 1− λ = −L`−1, η0 := L1 =
1

λ + 1
(here the bar indicates periodicity), the sequence

(τi, ηi) := T i(τ0, η0), for i ≥ 0,

is purely periodic, with period-length `−1. Here T : Ω → Ω is the natural extension
map from [2], given by

T (x, y) =
(

T (x),
1

λb| 1
λx |+

1
2c+ sign(x)y

)
.

Note that τ`−2 = −1
λ+1 = −L1, η`−2 = λ − 1 = L`−1, and that T (τ`−2, η`−2) =

(τ0, η0). Furthermore, in [2] it was shown that if

(tn, vn) = T n(x, 0), for x ∈ [−λ/2, λ/2), and n ≥ 0,

one has that

θn−1(x) =
vn

1 + tnvn
, and θn(x) =

|tn|
1 + tnvn

, n ≥ 1.
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Due to this

θ(τi, ηi) :=
ηi

1 + τiηi
≥ C(k) =

1
2

for i ≥ 0 (with equality if i ≡ 0 (mod ` − 1) or i ≡ ` − 2 (mod ` − 1)), and since
θi−1+n(`−1)(τ0) ↑ θ(τi, ηi), as n →∞, it follows that for any C < C(k) = 1/2,

θn(τ0) < C, for at most finitely many n ≥ 0.

Recall that Ω0 is an isomorphic copy of Ω; for i = 0, 1, . . . , ` − 2, the points
(τi, ηi) ∈ Ω correspond to the points (τi,Ki+1) ∈ Ω0. Since the isomorphic copy of
the system (Ω0, T ) is induced from (Ω∗, Ŝ), the Ŝ-orbit of (τ0,K1) has cardinality
at least ` − 1. In fact, this Ŝ-orbit is also purely periodic, but is of cardinality `:
since τi < −2/3λ, for i = 0, 1, . . . , `− 3, and τ`−2 > −2/3λ, we have that

Ŝ(τ`−2,K`−1) = Ŝ

(
−1

λ + 1
,

1
λ− 1

)
= (1,−1),

and

Ŝ(1,−1) =
(

1
1
− λ,

1
−1

− λ

)
= (1− λ,−1− λ) = (τ0,K1) .

Setting

(Tn, Vn) = Ŝn(τ0,−∞), n ≥ 0,

it follows from (6), and the fact that (an isomorphic copy of) T is an induced
transformation of Ŝ, that (θn(τ0))n≥0 is a subsequence of (Θn(τ0))n≥0. In fact
the only points in the latter sequence which are not in the former are among the
numbers Θ(1, y), with −1 < y < 0. For these numbers we have that Θ(1, y) =

1
1−y > Θ(1,−1) = 1

2 . Consequently, we find for any C < C(k) = 1/2,

Θn(τ0) < C, for at most finitely many n ≥ 0.

5.2. Odd index case: k = 2` + 3. Analogous to the even index case, we set τ0

equal to the “left-top height” of Ω, and η0 equal to the lowest “height” of Ω, i.e.,

τ0 := −L2`+1 = R− λ, η0 := L1 =
1

λ + 1
R

,

and we set

(τi, ηi) := T i(τ0, η0), for i ≥ 0.

Again the sequence (τi, ηi)i≥0 is purely periodic, with period-length 2`; see [9].
Contrary to the even case, this sequence is more “complicated,” with a kind of
“double loop.” On Ω0 the sequence corresponding with (τi, ηi)i≥0 is the (purely
periodic) sequence (τi,Ki+1)i≥0; see Figure 3.

As in the even case, S̄ “picks up” a few extra points in the orbit of (τ0,K1),
since both τ` = −L1 and τ2` = −L2 are larger than − 2

3λ . Similar to the even case,

we find for any C < C(k) = 1/(2
√

(1− λk/2)2 + 1),

Θn(τ0) < C, for at most finitely many n ≥ 0.
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Figure 3. The sequence (τi,Ki+1)i≥0 in Ω0 for k = 9.

6. Equality of Legendre and Lenstra constants

We define each of the Legendre and Lenstra constants for the Rosen mediant
maps. The first of these is the exact analog of the value 1/2 in the aforementioned
classical Legendre result. The second is the analog of the value 1/2 in a conjecture of
H. W. Lenstra, Jr., for the setting of the simple continued fraction map, confirmed
by Bosma et al [1], on the value of the endpoint of the linearity in the average value
of small approximation coefficients (for almost every x). Haas [4] has recently shown
that Lenstra constants are related to universal behavior of geodesic excursions into
cusps of hyperbolic surfaces. Nakada [14] has proved that whenever a continued
fraction map has a Legendre constant, then it also has a Lenstra constant, which
is at least as large as the Legendre constant. For the Rosen fraction maps and the
Rosen mediant maps, we show equality of these constants.

6.1. Definitions. Fix an index k, and suppose that there exists `k > 0 such that
(i) for any Gk-irrational x and any finite Gk-rational a/c,∣∣∣x − a

c

∣∣∣ <
`k

c2

implies a/c is either a Rosen convergent pn/qn for some n ≥ 0, or a mediant Rosen
convergent un,l/vn,l of x; and, (ii) for any C > `k, there exist x and a/c such that∣∣∣x − a

c

∣∣∣ <
C

c2

and a/c is neither a Rosen convergent nor a mediant Rosen convergent. Then we
call `k > 0 the Legendre constant for mediant Rosen convergents (of index k). The
Legendre constant certainly exists for any index k ≥ 4 because the Legendre con-
stant for the Rosen continued fractions exists (see [17]), and the mediant Legendre
constant is certainly larger than or equal to it.

We again fix an index k, and now suppose that there exists Lk > 0 such that
both: for any 0 < t1, t2 < Lk,

(8) lim
N→∞

]{1 ≤ n ≤ N : Θ(M1M2 · · ·Mn(∞), x) < t1}
]{1 ≤ n ≤ N : Θ(M1M2 · · ·Mn(∞), x) < t2}

=
t1
t2
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holds for a.e. x ∈ J ; and, for any 0 < t2 < Lk < t1,

(9) lim
N→∞

]{1 ≤ n ≤ N : Θ(M1M2 · · ·Mn(∞), x) < t1}
]{1 ≤ n ≤ N : Θ(M1M2 · · ·Mn(∞), x) < t2}

<
t1
t2

for a.a. x ∈ J. We call Lk the Lenstra constant for the mediant Rosen convergents
(of index k).

6.2. Legendre ≤ Lenstra. The following is a direct consequence of the corollary
of Section 2 in [14].

Theorem 5. Fix any t0 > 0, then for any t > 0 we have

(10) lim
Q→∞

#{a
c ∈ Gk(∞) : Θ(a

c , x) < t, 0 < c ≤ Q}
#{a

c ∈ Gk(∞) : Θ(a
c , x) < t0, 0 < c ≤ Q}

=
t

t0

for a.e. x. Here we note that Gk(∞) is the set of parabolic points of the Hecke
group Gk.

From this, we have the following result.

Proposition 2. The Legendre constant is less than or equal to the Lenstra constant,
i.e., `k ≤ Lk.

Proof. Let

(11) C(n, x, t) = #{j : 1 ≤ j ≤ n, Θ(M1 · · ·Mj(∞), x) < t}.

If t is smaller than `k, then we have

lim
N→∞

#{a
c ∈ Gk(∞) : Θ(a

c , x) < t, 0 < c ≤ qN}
#{a

c ∈ Gk(∞) : Θ(a
c , x) < t0, 0 < c ≤ qN}

= lim
n→∞

C(n, x, t)
C(n, x, t0)

,

for almost every x ∈ I. But this implies that for each such t and for each of these x,
the limit as N tends to infinity of the average of the counting function, C(n, x, t)/N ,
is a linear function in t. That is, Lk ≥ `k. �

6.3. Harder Inequality. The idea of the following proof is to begin with an x0

which is fairly well approximated by some Gk-rational not arising as a mediant
map convergent. We then identify, in terms of the Rosen fraction expansion of this
x0, a whole cylinder set of x all of which are fairly well approximated by such Gk-
rationals. There is then a deficit in the numerator of the fraction of the fundamental
Equation (10). This then gives the desired inequality. We fix t0 > 0 sufficiently
small so that it is smaller than the Legendre constant associated to Rosen continued
fractions.

Proposition 3. Let C(n, x, t) be defined as in (11). For t > `k and a.e. x ∈ Ik,
one has

lim
n→∞

C(n, x, t)
C(n, x, t0)

<
t

t0
.

In particular, one has Lk ≤ `k.
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Proof. Fix t such that t > `q. Then there exist x0 ∈ I and p
q ∈ Gk(∞) such that

Θ
(

x0,
p

q

)
< t , with

p

q
6= am

bm
for any m ≥ 1 .

Consider the Rosen fraction expansions:

x0 = [ ε1 : c1, ε2 : c2, · · · , εn : cn, · · · ] ,

and
p

q
= [ ε′1 : d1, ε′2 : d2, · · · , ε′l : dl] .

Since p
q is not a mediant convergent, at least one of the following does not hold:

εj = ε′j for 1 ≤ j ≤ l ; cj = dj for 1 ≤ j ≤ l − 1 ; and, 1 ≤ dl ≤ cl − 1 .

We can choose a large integer L such that∣∣∣∣ y − p

q

∣∣∣∣ <
t

q2
( equivalently, such thatΘ

(
y,

p

q

)
< t )

holds whenever

y = [ ε1 : c1, ε2 : c2, · · · , εL : cL, ε′′L+1 : c′′L+1, ε′′L+2 : c′′L+2, · · · ] .

We consider all such y. Now suppose that

z =
η1

a1

+
η2

a2

+ · · ·+
ηN

aN + y

and
P

Q
=

η1

a1

+
η2

a2

+ · · ·+
ηN

aN

+
p

q
.

For any such pair (z, P
Q ) we have ∣∣∣∣z − P

Q

∣∣∣∣ <
t

Q2

if aN is large enough, where the choice of aN depends only on x0, p/q, and L. One
checks that P/Q is not a mediant convergent of z (and thus in particular not a
Rosen convergent). Fix some such aN and denote it by a and ηN by η.

Let C be the cylinder set of all x such that the initial segment of the Rosen
expansion of x matches these:

C := {x ∈ I : x = [ η : a, ε1 : c1, ε2 : c2, . . . εL : cL, . . . ] } .

By the above discussion, whenever Tn(x) ∈ C there exists a Gk-rational P
Q such

that ∣∣∣∣x− P

Q

∣∣∣∣ <
t

Q2
and qn−c ≤ Q < qn+c ,

where c is a constant independent of n. Since the Rosen map is ergodic with respect
to the invariant probability measure given in [2], the Ergodic Theorem applies and
shows that for a.e. x ∈ Ik, we have

lim
N→∞

#{n ≤ N : Tn(x) ∈ C}
N

= δ ,

where δ is the measure of C with respect to the invariant ergodic measure. In
particular, this limit is positive.



METRIC AND ARITHMETIC PROPERTIES OF MEDIANT-ROSEN MAPS 19

Now let ΞN (x) be the number of P
Q ∈ Gk(∞) such that∣∣∣∣x− P

Q

∣∣∣∣ <
t

Q2
, Q < qN ,

and P/Q is neither convergent nor mediant convergent of x. From the above, we
conclude that

lim inf
N→∞

ΞN

C0(N,x, t)
> 0

for a.e. x ∈ Ik, where C0(N,x, t) = #{1 ≤ n ≤ N : Θ (M1 · · ·Mkn
(∞), x) < t}.

Now,

lim sup
n→∞

C(n, x, t)
C(n, x, t0)

≤ lim sup
N→∞

#{a
c ∈ Gk(∞) : Θ(x, a

c ) < t, 0 < c ≤ qn} − ΞN (x)
#{a

c ∈ Gk(∞) : Θ(x, a
c ) < t0, 0 < c ≤ qN}

=
t

t0
− lim inf

N→∞

ΞN (x)
#{a

c ∈ Gk(∞) : Θ(x, a
c ) < t0, 0 < c ≤ qN}

≤ t

t0
− lim inf

N→∞

C0(N,x, t)
C0(N,x, t0)

≤ t

t0
− δ <

t

t0
.

Consequently, the Lenstra constant of the mediant map cannot be larger than its
Legendre constant. �

We have thus demonstrated the equality of the Legendre and Lenstra constants
for the mediant convergents.

7. Evaluating the Lenstra constant

In this section, we determine the exact value of the Lenstra constant, and hence
of the Legendre also, for the mediant and the principal Rosen convergents. Note
that for the principal Rosen convergents, the value of the Lenstra constant was
stated—without proof—in Corollary 4.1 of [2].

7.1. Reduction to Geometry of Natural Extension. First we consider the
natural extension T̂ of the Rosen continued fraction map T , defined as follows: the
region of the natural extension Ω0 is given by (7), and for (x, y) ∈ Ω0, we define

T̂ (x, y) =
((

−r(x)λ sgn(x)
1 0

)
(x),

(
−r(x)λ sgn(x)

1 0

)
(y)

)
.

This is bijective on Ω0 a.e., and the absolutely continuous invariant probability
measure is given by

C · dxdy

|x− y|2
where C is the normalizing constant (see [2] for the exact value of C in both even
and odd cases).

For (x, y) ∈ Ω0, we set (xn, yn) = T̂n(x, y). In all that follows, we can extend to
the setting of y = −∞. In this case, (6) implies that θn−1(x) = 1/(xn − yn). (The
similarity of the denominator of this last with the denominator in the expression
for our invariant measure facilitates the following ergodic theoretic approach.)
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As we observed in Section 4.3, the measure is ergodic. By the individual ergodic
theorem and the standard approximation method (see say Chapter 4 in [7]), we
have

(12) lim
N→∞

1
N

]{n : 1 ≤ n ≤ N, xn − yn > t} = C

∫∫
{(x,y)∈Ω0:x−y>t}

dxdy

|x− y|2

for any t > 0 (a.e. (x, y) ∈ Ω0). Elementary calculus applies to show that that the
right hand side is equal to Cλ · 1

t if t is sufficiently large. By a simple calculation,
we see that |yn − y′n| → 0 as n → ∞ whenever (x, y), (x, y′) ∈ Ω0. This implies
that if (12) holds for (x, y), then it holds for (x, y′) too. Thus we get (12) for a.e.
x ∈ Ik and any y such that (x, y) ∈ Ω0; from this, we also have that the property
holds also for these values of x and with y = −∞. Therefore, we have

(13) lim
N→∞

1
N

]{n : 1 ≤ n ≤ N, θn(x) < c} = C · c

if c is sufficiently small (a.e. x). Thus to determine the Lenstra constant, we only
need to find the infimum of those t > 0, for which

(14)
∫∫

{(x,y)∈Ω0:x−y>t}

dxdy

|x− y|2
=

λ

t

holds. It is easily seen, compare with Figures 1 and 2, that this can be determined
by the infimum t0 of those t > 0, for which the points on the line segment

(15) y = x + t, x ∈ Ik,

are all in Ω0.
Now for the mediant Rosen convergents, analogous arguments apply. We use the

ratio ergodic theorem, instead of the individual ergodic theorem, and we obtain the
same conclusion, i.e., finding the infimum t1 of t such that

(16)
∫∫

{(x,y)∈Ω∗:x−y>t}

dxdy

|x− y|2
=

λ

t

holds. We consider the even and the odd indices cases separately.

7.2. Even index case: k = 2`. First we show that the Lenstra constant for the
Rosen convergent is λ

λ+2 , confirming Corollary 4.1 of [2].
To find t0 with property (15), it is enough to check the lines of slope 1 passing

through the interior corners of Ω0. The associated equations are{
y = x− ( 1

Lj
+ φj) 1 ≤ j ≤ `− 1

y = x− (1− λ
2 ).

From these, we see that t0 = max{ 1
Lj

+ φj (1 ≤ j ≤ `− 1), 1− λ
2 }. Since

Lj =
1

λ− Lj−1
and φj = − 1

φj−1
− λ,

it follows that
1
Lj

+ φj =
1

Lj−1
+ φj−1∣∣∣ 1

Lj−1
φj−1

∣∣∣
for 2 ≤ j ≤ ` − 1. Because (1/Lj)

`−1
j=0 and (|φj |)`−1

j=0 are monotonically decreasing
sequences, the maximum is either 1

L1
+ φ1, 1

L`−1
+ φ`−1, or 1 − λ/2. Now recall
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that φ`−1 = 0 and L`−1 = λ − 1 and λ ≥
√

2. These yield the estimate λ+2
λ =

1
L1

+ φ1 ≥ 1
L`−1

+ φ`−1. Note that it is easy to show that λ+2
λ = 1

L1
+ φ1 > 1− λ

2 .
Consequently, we have that t0 = 1

L1
+ φ1 = λ+2

λ . And, the result holds.
The result for the mediant Rosen convergents is the following.

Proposition 4. The Lenstra constant for the mediant Rosen convergent is λ − 1
when the index is even and not equal to 4. If k = 4, then the Lenstra constant is
equal to

√
2/2.

Proof. It is obvious that the measure dx dy
|x−y|2 is invariant under the translation

(x, y) 7→ (x + z, y + z) for any real number z. We translate the set Jl+1 × K̄l+1 by
−λ. Then the image is [φ0, φ1) × [− 1

L1
,− 1

L1
+ 1) = [φ0, φ1) × [−λ − 1, −λ) and

we see that −λ < − 1
L2

= −λ + 1
λ+R . This shows that for the mediant case, we can

get t1 by max{−λ + φ1,
1

Lj
+ φj , (2 ≤ j ≤ ` − 1), λ

2 }. Similarly to the above, the
maximum is given by either λ + φ1,

1
L2

+ φ2, 1
L`−1

+ φ`−1 = 1
λ−1 , or λ

2 . Thus we
get t1 = 1

λ−1 when ` ≥ 3; see Figure 4. If l = 2, a simple calculation shows that
t1 =

√
2 + 1. �
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Figure 4. The translation of the set Jl+1 × K̄l+1 by −λ. Here k = 8.

7.3. Odd index case: k = 2` + 3. Here also we first confirm Corollary 4.1 of [2]:
the Lenstra constant of the Rosen convergents equals R

R+1 .
The idea of the calculation is the same as the even case. Considering the slope

1 lines through the corners of Ω0, we find that

t0 = max
{

1
L2j

+ φj (1 ≤ j ≤ `),
1

L2j−1
+ φ`+j , (1 ≤ j ≤ ` + 1),

1
R

+
λ

2

}
.

Since
φj+1 = − 1

φj
− λ for 0 ≤ j < `, ` + 1 ≤ j < 2` + 1
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and

Lj+2 =
1

λj − Lj
for 1 ≤ j ≤ 2`− 1,

we have

φj+1 +
1

L2(j+1)
=

φj + 1
L2j

−φj · 1
L2j

and φ`+j+1 +
1

L2j+)
=

φ`+j + 1
L2j−1

−φl+j · 1
L2j−1

for 1 ≤ j ≤ `− 1. Moreover, φ`+1(= 1− λ) = − 1
φl
− 2λ and L1 = 1

2λ−L`
implies

φ` +
1

L2`
=

φ` + 1
L2`

−φ` · 1
L2

.

Again, (|φj | : 1 ≤ j ≤ ` + 1), (|φ`+j | : 1 ≤ j ≤ ` + 1), and
(

1
Lj

: 1 ≤ j ≤ 2`− 1
)

are decreasing sequences. So the above maximum is equal to

max
{

φ1 +
1
L2

, φ`+1 +
1
L1

, φ2`+1 +
1

L2`+1
,

1
R

+
λ

2

}
= max

{
2
λ

+ R,
R + 1

R
,

1
λ−R

,
1
R

+
λ

2

}
.

Due to the facts that R2 + (2 − λ)R − 1 = 0 and λ/2 < R < 1, we see that the
maximum is equal to R+1

R , and the result follows.

For the mediant Rosen convergents, we have the following.

Proposition 5. In case of odd index k, the Lenstra constant for the mediant Rosen
convergents is λ−R.

Proof. We translate (J2`+3 × K̄2`+3) ∪ (J2`+4 × K̄2`+4) by −λ; see Figure 5. Then
its image is

[−λ

2
, φ`+1)× [− 1

R
− λ, −λ) ∪ [φ`+1,

2
λ
− λ)× [−R− λ, −λ)

This just fits on

J1× K̂1 ∪J2× K̂2 = [−λ

2
, φ`+1)× [−∞, − 1

R
−λ)∪ [φ`+1,

2
λ
−λ)× [−∞, −R−λ),

(note that φ`+1 = 1 − λ). Now we find that the maximum t0 in the above is
cancelled by this justification and have the new value φ1 + λ = 2

λ because −λ <

− 1
L3

= −λ + 1
λ+ 1

R

. Then we have

t1 = max
{

2
λ

,
1

L2j
+ φj (2 ≤ j ≤ `),

1
L2j−1

+ φ`+j (2 ≤ j ≤ ` + 1),
λ

2

}
.

This is the same as

max
{

2
λ

,
1
L4

+ φ2,
1

L2`
+ φ`,

1
L3

+ φ`+2,
1

L2`+1
+ φ2`+1,

λ

2

}
.
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Figure 5. The translation of the set (J2l+3 × K̄2l+3) ∪ (J2l+4 ×
K̄2l+4) by −λ. Here k = 9.

One has the following relations,
1

L4
+ φ2 = 1

λ− 2
λ

− 1
λ+R

1
L2`

+ φ` = R
λR−1 −

1
λ+1

1
L3

+ φ`+2 = 1
λ−1 −

R
λR+1

1
L2`+1

+ φ2`+1 = 1
λ−R

Here 1
L4

+ φ2 and 1
L2`

+ φ` do not appear in the above when k = 5. After some
calculation, we see the maximum is 1

λ−R . In order to see that this is indeed the
case, note that we obviously have that λ/2 < 2/λ, and that

2
λ

<
1

λ−R

follows from λ/2 < R. Since R2 + (2− λ)R− 1 = 0 and λ ≥ 1+
√

5
2 , we have

1
λ− 1

− R

λR + 1
≤ 1

λ−R
.
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We see
1

λ− 2
λ

− 1
λ + R

<
1

λ−R
,

when k > 5. Here we used the fact that λ2 > 4 − R2 for k > 5, which has to be
checked somehow. Because λ and R is increasing as k increases, it is sufficient to
prove it for k = 7.

Finally we show that

R

λR− 1
− 1

λ + 1
<

1
λ− 2

λ

− 1
λ + R

.

for k ≥ 7. This inequality is equivalent to

1
λ− 1

R

+
1

λ + R
<

λ

λ2 − 2
+

1
λ + 1

Since R− 1/R = λ− 2, this is equivalent to

3λ− 1
λ2 + (λ− 2)λ− 1

<
2λ2 + λ− 2

λ3 + λ2 − 2λ− 2
.

Note that both denominators are positive (for λ >
√

3). The last inequality follows
from

λ4 − 3λ3 + 5λ− 2 > 0 for λ >
√

3.

�
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to appear in the J. de Théorie des Nombres de Bordeaux 2007. arXiv:0708.3257v1
[10] J. Lehner, Diophantine approximation on Hecke groups, Glasgow Math. J. 27 (1985), 117–

127.

[11] , The local Hurwitz constant and diophantine approximation on Hecke groups, Math.
Comp. 55 (1990), 765–781.

[12] H. Nakada, S. Ito, and S. Tanaka, On the invariant measure for the transformations associ-

ated with some real continued-fractions, Keio Engrg. Rep. 30 (1977), no. 13, 159–175.
[13] H. Nakada, Continued fractions, geodesic flows and Ford circles, in Algorithms, Fractals and

Dynamics edited by Y. Takahashi, 179–191, Plenum, 1995.

[14] , On the Lenstra constant associated to the Rosen continued fractions, preprint:
arXiv:0705.3756.



METRIC AND ARITHMETIC PROPERTIES OF MEDIANT-ROSEN MAPS 25

[15] R. Natsui, On the interval maps associated to the α-mediant convergents, Tokyo J. Math. 27
(2004), 87–106.

[16] D. Rosen, A class of continued fractions associated with certain properly discontinuous
groups, Duke Math. J. 21 (1954), 549–563.

[17] D. Rosen, and T. Schmidt, Hecke groups and continued fractions, Bull. Austral. Math. Soc.

46 (1992), 459–474.

Technische Universiteit Delft and Thomas Stieltjes Institute of Mathematics, EWI,
Mekelweg 4, 2628 CD Delft, the Netherlands

E-mail address: c.kraaikamp@tudelft.nl

Department of Mathematics, Keio University, Yokohama, Japan

E-mail address: nakada@math.keio.ac.jp

Oregon State University, Corvallis, OR 97331, USA
E-mail address: toms@math.orst.edu


