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Abstract.

We discuss branch points of a�ne coverings and their e�ects on Veech groups.
In particular, this allows us to show that even if one polygon tiles another, the
respective Veech groups are not necessarily commensurable. We also show that there
is no universal bound on the number of Teichm�uller disks passing through the same
point of Teichm�uller space and having incommensurable lattice Veech groups.

0. Introduction

One of the most accessible problems in physics and mathematics would seem
to be that of the dynamics of a particle elastically reected by the walls of a
euclidean polygon. This seemingly innocuous problem, generically called billiards,
o�ers interest already in the case of rational polygons, where all angles are rational
multiples of �. Here the phase space decomposes into invariant surfaces for the
natural billiard ow.

The study of this billiard ow leads to quadratic di�erentials and Teichm�uller
space; for a survey on these matters, see [MT]. This machinery has allowed such
beautiful results as Masur's [Mas] density of periodic geodesics and the Kercko�-
Masur-Smillie result [KMS], see also [A], on unique ergodicity of the ow (on each
invariant surface). These results are in general true for almost every direction. W.
Veech [V1, V2] gave explicit examples for which the billiard ow behaves like the
linear ow on the torus: in each direction the ow is either periodic or it is uniquely
ergodic.

The passage from billiards on a rational polygon to quadratic di�erentials is
fairly natural. Speaking loosely, instead of following the trajectory of a particle as
it reects o� a wall (i.e., edge), one can instead ip the polygon about the edge.
This process de�nes a surface (in fact a Riemann surface, see below for references),
and a quadratic di�erential on the surface. Actually, the quadratic di�erential that
one �nds is the square of a holomorphic 1-form. The surface being constructed
from pieces of the plane has a locally at structure with singularities. Veech had
the insight to emphasize self-maps of such surfaces which are locally a�ne with
respect to the at structure. The matrices which are the derivatives of these a�ne
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maps form a group, the Veech group. Veech showed that whenever this group is of
�nite covolume, one has the above dichotomy for the directions of ow: the ow in
each direction is either periodic or it is uniquely ergodic.

There are various examples known of Veech groups which are lattices [Ve],
[Vo],[EG],[Wa], [KS]; that is, of �nite covolume. There are also various results,
especially of E. Gutkin and C. Judge [GJ1, GJ2] and R. Kenyon and J. Smillie
[KS], indicating that these are rare.

Here we emphasize coverings of surfaces and pull-backs of forms in order to
study relationships between Veech groups. The use of coverings in the study of
Veech groups is already well established, especially by Ya. B. Vorobets [Vo] and
by Gutkin and Judge. We use an algebraic approach for which the results and
techniques of E. Aurell and C. Itzykson [AI] are quite helpful.

Our main results are given as Theorems 1 and 2. We show that there is no
universal upper bound on the number of non-commensurable lattice Veech groups
that can be associated to a single Riemann surface. To this date, explicit examples
only showed that this number could be as large as two, see [EG]. We also give both
algebraic and geometric proofs showing that tiling of rational polygons by way of
ips does not necessarily preserve commensurability of Veech groups of the related
surfaces. We thank J. Smillie for pointing out to us that a remark in passing of
Vorobets [Vo] already points to such counterexamples.

Our techniques are a clear use of rami�cation in coverings of the type treated by
Gutkin{Judge and Vorobets. We combine this with fundamental work of Gutkin{
Judge and Vorobets (see Theorem A), all eventually based upon the pioneering
work of Veech (see Theorem B).

We thank Pierre Arnoux for helpful discussions, C. Judge for an elucidating
e-mail message, and J. Smillie for comments on an earlier version. We thank E.
Gutkin for numerous remarks on this work. We also thank the referee for sug-
gestions improving the presentation. The second author thanks the Max-Planck-
Institut and the Institut de Math�ematiques de Luminy for providing stimulating
atmospheres.

1. Background: Translation structures and Veech groups

A surface is said to have a translation structure if it is equipped with a �xed atlas
for which the transition functions are translations in R2 . Translation structures are
most naturally discussed in terms of holomorphic 1-forms.

There is a natural construction, apparently due to [KZ], of a surface with trans-
lation (also called at or euclidean) structure and conical singularities (see [Tr] for
these terms) directly related to the billiard ow on a table formed by a rational
polygon. Let us discuss the case of rational triangles.

Notation. Let T (p; q; r) be the rational euclidean triangle whose angles are p�=n,
q�=n, r�=n, where n = p+ q + r and 1=gcd(p; q; r). (See Figure 4.)

By an unfolding process, one follows the straight line paths on 2 � (p + q + r)
copies of the triangle. The free edges can be identi�ed so as to obtain a surface
with a translation structure. This construction allows one to pull-back dz from
the plane and thus identify a 1-form on the surface, and thereby the holomorphic
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structure such that the form is holomorphic, see say [Ta]. The actual equation
of the surface and the identi�cation of the form were apparently not given until
[AI], see also [Wa]. The surface is the smooth Riemann surface associated to the
equation yp+q+r = xp+r(1� x)q+r , and the form there is dx=y. This follows from
an application of the Schwarz triangle function.

In the other direction, by integrating a holomorphic 1-form on a Riemann surface,
one obtains charts of local coordinates which give the surface a translation structure
with conical singularities at the zeros of the 1-form, again see [Tr]. Of course, the
group SL(2;R) has its usual action on R2 ; by composing this action with the local
coordinate functions, one obtains an action of SL(2;R) on the set of atlases on the
surface. Each of the atlases so found also corresponds to a 1-form. [KMS] showed
that the SL(2;R) orbit of a holomorphic 1-form is the unit cotangent space to the
so-called Teichm�uller disk of the 1-form. See [EG] for a very clear exposition of
these matters.

1.1 A�ne functions and Veech groups.

Let us �x a form ! on a Riemann surface M and let Z(!) denote the set of the
zeros of !. Let M 0 :=M nZ(!). A di�eomorphism f :M 0 !M 0 which extends to
a homeomorphism from M to itself is called a�ne with respect to the translation
structure on M induced by ! if the derivative of f is constant in the charts of !
and is given by some �xed element A 2 SL(2;R). Note that this de�nition requires
that the extension of f and its inverse send Z(!) to itself (permutation of this set
is allowed).

Away from zeros of !, locally f(z) = Az + ci, where the ci depend only on the
chart of z. The set of all such functions is called the a�ne group of !, A�(!).
The Veech group, �(!), is the group of matrices representing the derivatives of
the a�ne functions. In fact, Veech [V1] shows that the object of main interest is
this group taken up to projective equivalence; that is, we need only consider the
image of � in PSL(2;R). In what follows, we will indeed simply write �(!) for this
corresponding subgroup of PSL(2;R).

Each Teichm�uller disk with its so-called Teichm�uller metric is isometric to the
hyperbolic plane, thus has PSL(2;R) as full isometry group, see say [EG]. Veech
also showed that by way of the isometry �(!) acts discontinuously on the disk of !,
D!. (In fact, Veech gave his results in the general setting of quadratic di�erentials.
Now, the square of a 1-form is indeed a quadratic di�erential and, see say work of
I. Kra [K], all quadratic di�erentials in the Teichm�uller disk of a square quadratic
di�erential are of this same type. By tacitly using the squares of our holomorphic
1-forms where necessary, we continue in our slightly simpli�ed setting.)

As �(!) is a subgroup of PSL(2;R) which acts discontinuously on the hyperbolic
plane, �(!) is a Fuchsian group. The quotient of the disk D! by �(!) is a Riemann
surface (with hyperbolic structure induced by the Teichm�uller metric) inside the
Riemann moduli space ofM . A result of H. Masur implies that this surface cannot
be compact. See [H1, H2] for some remarks on the possible relationship of this new
surface to M .

In the setting of polygonal billiards, Veech demonstrated a direct relationship
between a certain dynamical zeta function of the system and the hyperbolic metric
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of the new surface. He also calculated the Veech groups for a particular set of
examples. In the ensuing decade, there have been some more examples discovered
and various results obtained which indicate that the Veech group is rarely non-
trivial.

1.2 Marking extra points.
It is convenient to consider translation structures with some removable singular-

ities marked. We introduce notation for this purpose.

Notation. Let P(!; fp1; : : : ; png) denote the translation structure on a surface M
given by the 1-form ! and having marked points p1 through pn as well as the zeros
of !. Given P of this sort, let M 00 be M (having the structure of !) with both
Z(!) and the set of the pi removed. The a�ne group, Aff(P), for such a marked
translation structure is the group of the a�ne di�eomorphisms which restrict so as
to take M 00 to itself. The Veech group, �(P), is then the derivatives of these a�ne
di�eomorphisms.

For a �xed surface M , and marked structures P and Q, we write P � Q if the
marked structures have the same underlying 1-form, and the marked points of P
are amongst those of Q.

Recall that a subgroup of PSL(2;R) is called a lattice if it acts discontinuously
on the hyperbolic plane and the corresponding quotient is of �nite volume. The
following lemma was implied in a message from C. Judge.

Lemma 1. Let P and Q, P � Q, be as above. Then both �(P) and �(Q) are
subgroups of �(!). Furthermore, there is a �nite index subgroup of �(Q) which is
contained in �(P). If �(Q) is a lattice, then so are �(P) and �(!).

Proof. We show that Aff(P) � Aff(!). For this, it su�ces that any a�ne dif-
feomorphism taking M n fp1; : : : ; png to itself can be extended so as to take the
set of the pi to itself. The di�eomorphism on M clearly acts as a permutation on
Z(!) [ fpig.

A di�eomorphism cannot remove any singularity of the translation structure
which arises as an element of Z(!). (Indeed, the order of a zero of the 1-form is
invariant.) Thus, it in fact permutes the pi. That is, the restriction to M 0 gives an
element of Aff(!). These arguments clearly show that Aff(Q) � Aff(!) as well.

Suppose that the marked points of Q, in addition to those of P , comprise the set
fq1; : : : ; qmg. The previous paragraph shows that each f 2 Aff(Q) naturally gives
a permutation �f on fp1; : : : ; png[fq1; : : : ; qmg. This de�nes a group homomorphism
from Aff(Q) to the symmetric group Sym(fp1; : : : ; png [ fq1; : : : ; qmg). The ker-
nel of this homorphism is a �nite index subgroup of Aff(Q) which acts as the
trivial permutation on fp1; : : : ; png. Hence, this �nite index subgroup of Aff(Q)
is contained in Aff(P). Therefore, �(Q) has a �nite index subgroup contained in
�(P).

If a Fuchsian group has �nite covolume, then so does any of its �nite index
subgroups. Also if any subgroup of a Fuchsian group has �nite covolume, then the
group itself does. Hence, we conclude that if �(Q) is a lattice, then so are �(P)
and �(!). �
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1.3 Translation and a�ne coverings.
We say that a map f :M ! N gives a translation covering of (N;Q) by (M;P)

if the restriction f :M 00 ! N 00 is such that  �f ���1 are translations where  and
� are the (various appropriate choices of the) local coordinates for the atlases of P
and Q respectively. Note that a translation covering is in particular a holomorphic
(rami�ed) covering of the corresponding Riemann surfaces.

Similarly, we say that a map f gives an a�ne covering of (N;Q) by (M;P) if
the restriction f : M 00 ! N 00 is such that the aforementioned compositions are of
the form Az+ci;j where A is a �xed matrix in SL(2;R), but the translation vectors
ci;j may vary with the choice of charts. Note that an a�ne covering is in particular
a quasi-conformal (rami�ed) covering of the corresponding Riemann surfaces.

Let B be any matrix in SL(2;R). We de�ne (M;B � P) by replacing the coor-
dinate functions of the translation structure of (M;P) by their post-composition
with B. Let f give an a�ne covering of (N;Q) by (M;P). If A is the matrix of
the derivative of f , then we de�ne fA to be the covering of (N;Q) by (M;A � P).
Similarly, we de�ne fA to be the covering of (N;A�1 �Q) by (M;P). The following
can be found in [Vo].

Lemma 2. Let f give an a�ne covering of (N;Q) by (M;P). Let A be the matrix
of the derivative of f . Then both fA and fA are translation coverings.

Proof. This follows by simply writing out the compositions which occur in the
de�nition of an a�ne covering. �

Remark. As indicated in x1 Background, there is of course a precise technical
de�nition of the term \Teichm�uller disk," again see say [EG]. More immediate in
our setting is the idea of the unit cotangent space of a Teichm�uller disk. This is
the set of translation surfaces which admit an a�ne covering of degree one to some
�xed translation surface. This is, it is the set of surfaces given by the action of
SL(2;R) on the atlas of the �xed translation surface. Each translation surface has
a natural marked vertical direction, given by the pull-back of the vertical lines of R2 .
The Teichm�uller disk corresponding to our cotangent space is given by forgetting
these marked directions | this indeed allows one to pass from cotangent vector to
basepoint in the disk. Note that this is morally equivalent to identifying points in
the cotangent space in the same SO(2;R)-orbit.

Remark. From Lemma 2, by a change of surface in either the Teichm�uller disk of
M or in that of N , we can replace an a�ne covering f : M ! N by a translation
covering. Thus, we may assume that f is a (rami�ed) covering of Riemann surfaces.

1.4 Pulling-back 1-forms.

Let f : M ! N be a holomorphic map of Riemann surfaces and � a 1-form
on N . Then the pull-back, f�� is a 1-form on M . The following is related to a
discussion in [GJ1]. Recall that the rami�cation points of f are those points of M
where the derivative of f vanishes, let us denote these by Z(f 0). The branch points
of f are the images under f of the rami�cation points, let us denote them by Br(f).
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Lemma 3. Let f : M ! N be a holomorphic map of Riemann surfaces and �
a 1-form on N . Let S be the union of Br(f) and any set of points of N ; let
T = f�1(S ). If A = P(�;S ) and B = P(f��; T ), then the map f gives a
translation covering of (N;A) by (M;B).

Proof. To be a translation covering, f must in particular send the marked points of
(M;B) to those of (N;A). Now, the zeros of f�� are f�1Z(�) [Z(f 0). Indeed, an
easy calculation shows that if f is locally of the form t 7! tr =: z and � is locally
of the form zedz, then f�� is of the form rt(e+1)r�1dt. Thus, f sends Z(f��) to
Z(�) [Br(f). And, by de�nition, f sends T to S.

As well, the marked points of (N;A) must have as pre-image those of (M;B).
Now, f�1(Z(�) ) is clearly contained in Z(f��). Again by de�nition, the inverse
image of S is T .

Recall that the local coordinates for the atlas induced by � are given by inte-
gration of � on N . Those of f�� are given by a change of variables in the same
manner. That is, �xing t0, not a zero of f�� on M , local coordinates are given

by �(t) =
R t
t0
f��. But, then �(t) =

R f(t)
f(t0)

�. Hence, the images of the coordinate

functions for the atlas of f�� equal those of the corresponding coordinate functions
of the atlas of �. Hence, f gives a covering of N 00 by M 00 which preserves transla-
tion structure. As we have already shown that the marked points have appropriate
images under f and its inverse, f does give a translation covering. �

Remark. In the above lemma, one can remove the set f�1(S ) \ Z(f��) from T .
This is as for any U , the zeroes of f�� are marked points for P(f��;U).

1.5 Commensurability results.
Given a general translation or a�ne covering of (N;Q) by (M;P), it seems

unclear as to exactly how �(P) and �(Q) are related. There is, however, some
vague knowledge of their relationship. Recall that subgroups of PSL(2;R) are said
to be commensurate if they share a common subgroup of �nite index in each. They
are said to be commensurable if a �nite index subgroup of one conjugates within
PSL(2;R) to give a �nite index subgroup in the other.

Warning | we follow the de�nitions of [GJ2] here. It is also common to use
the term commensurable to denote what they call commensurate!

Theorem A (Vorobets; Gutkin-Judge). If there is a translation covering of
(N;Q) by (M;P), then �(P) and �(Q) are commensurate.

Corollary A (Gutkin-Judge). If there is an a�ne covering of (N;Q) by (M;P),
then �(P) and �(Q) are commensurable.

In Lemma 1, we stated that marking extra points on a surface gives rise to
subgroups of the Veech group of the 1-form corresponding to the structure. Here
we give a criterion for when such a structure is no longer commensurable with the
original. Recall that a cylinder on a translation surface is a maximal connected
collection of homotopic closed geodesics which have the same direction (by way of
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the local coordinates from R2 ). The modulus of a cylinder is the ratio of its height
(length in the �xed direction) to its width.

The fundamental Veech criterion states that a direction on a translation surface
is preserved by a parabolic element of the Veech group if and only if the cylinders in
the direction have their moduli all rationally related (see [V1], [Vo] and also [KS]).
We call such a direction a parabolic direction.

We say that a point of a translation surface splits a cylinder if there is a direction
on the surface for which the ow decomposes into cylinders such that the point is
located in the interior of some cylinder. Note that if a point splits a cylinder, then
it does so by creating two new (sub)cylinders, each of the same height. We say
that a point of a translation surface irrationally splits a cylinder if the point splits
the cylinder such that the widths of the new subcylinders are irrational multiples
of that of the original cylinder.

Lemma 4. Let P be a given marked translation structure on a surface M and let
Q, with P � Q, be given by marking a point q which irrationally splits a cylinder
in a parabolic direction of P. Then �(Q) is incommensurate with �(P).

Proof. By Lemma 1, �(Q) has a �nite index subgroup which is contained in �(P).
We show that any such subgroup must be of in�nite index in �(P).

Note that the cylinder lies in some parabolic direction for P . Let S be a parabolic
element in �(P) which �xes this direction. It is easily seen that the Veech criterion
fails in our direction for Q. Thus no power of S can be contained in �(Q). But,
each �nite index subgroup of �(P) contains some power of S. Therefore, �(P) and
�(Q) can have no common subgroup of �nite index in each. �

2. Polygonal coverings

In the study of properties of Veech groups, one is quickly led to contemplate
translation covers which are related to the paving of one polygon by another. We
thus loosely use the term polygonal coverings to refer to such translation covers. The
fact that one has the explicit algebraic expressions of [AI] for the translation surfaces
associated to euclidean triangles allows for a combination of algebraic and geometric
techniques to be applied for poygonal coverings which involve only triangles. (In
the generic rational polygon setting there is still an algebraic approach, but the so-
called accessory parameters in the Schwarz-Christo�el map prevent this from being
explicit. On the other hand, see [Wa] for the use of this map in certain symmetric
cases.)

We establish some notation to be used in the remainder of this paper.

Notation. Let X(p; q; r) and !(p; q; r) be the Riemann surface and its holomorphic
1-form associated to the billiard ow on the euclidean triangle T (p; q; r). Further-
more, let �(p; q; r) be the Veech group of !(p; q; r). Let �(p; q; r) be the Fuchsian
triangle group for the angles �=p; �=q; �=r ( see say, [B]).

W. Veech [V1] showed that
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Theorem B (Veech). For each n � 5,

�(1; 1; n� 2) =

8><
>:

�(2; n;1) odd n;

�(m;1;1) n = 2m:

The following generalizes an example of [AI].

Proposition 1. Fix n � 5 and k with 1 � k � b(n � 1)=2c and (k; n) = 1. Let
Xn := X(1; 1; n� 2) and Y := X(k; k; n� 2k). Then Xn and Y are biholomorphi-
cally equivalent. Furthermore, Xn is the non-singular Riemann surface associated
to the equation y2 = 1 � xn; the pull-back to Xn from Y of !(k; k; n � 2k) is
c � xk�1 dx=y for a constant c = c(n; k).

Proof. Recall that [AI] gave the equation tn = [s(1 � s)]n�k for Y ; in these coor-
dinates, the 1-form !(k; k; n� 2k) is simply ds=t. Of course, one so �nds a similar
equation for Xn, but [V1] determined that Xn is of the equation announced.

Fix a choice of an n-th root of 4, which we denote by 41=n. Let g : Xn ! Y
be given by (x; y) 7! ( (1 � y)=2; (x=41=n)n�k ) = (s; t). Since (k; n) = 1, there
exists r; l 2 Z such that (r + l)n � lk = 1. Let f : Y ! X be given by (s; t) 7!
( 41=n tl [s(1 � s)]r; 1 � 2s ) = (x; y). One checks that f and g are inverses; they
give the necessary biholomorphisms.

On Xn, we have 2ydy = �nxn�1dx, hence dy=xn = (�n=2)x�1dx=y. Thus,
d( (1 � y)=2 )xn�k = cxk�1dx=y, for an appropriate c. Therefore, the pull-back
from Y by g of !(k; k; n� 2k) = ds=t is of the stated form. �

Remark. The translation surfaces de�ned by some 1-form ! and its multiple
by a nonzero complex constant c are virtually the same. The action of SL(2;R)
on translation surfaces by way of charts clearly preserves area. Scaling by a real
nonzero constant to achieve a surface of area 1 changes no intrinsic aspect of the
surface | in particular, Veech groups are preserved under this scaling.

As well, rotation by arg(c) (of the charts of an atlas) imposes no intrinsic change
| one merely gives a di�erent choice of standard (vertical) direction. In particu-
lar, conjugacy classes of Veech groups are preserved under such rotation. In fact,
such rotation preserves the point in Teichm�uller space corresponding to the 1-form,
cotangent vectors are rotated.

Thus, we will actually work in the projective space of 1-forms, identifying all
nonzero complex multiples of a 1-form.

Remark. In fact, there is no canonical vertical direction in the construction of
[KZ]. The translation surface constructed allows one to follow the billiard ow in
any direction (which does not encounter a singularity). That is, dividing by the
action of the rotation group SO(2;R) is completely natural here.

Earle and Gardiner [EG] show, in our notation, that �(2; 2; 1) = �(5;1;1).
Indeed, by inspection of their examples, they actually show the following theorem.
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Theorem C (Earle-Gardiner ). Let the integer k � 2. Then

8><
>:

�(2k � 1; 2k � 1; 2) = �(2k;1;1);

�(k; k; 1) = �(2k + 1;1;1):

Thus, for odd n = 2k+1 the 1-forms !(1; 1; n�2) and !(k; k; 1) on Xn both give
lattices. [EG] remark that the case of n = 5 gives two linearly independent 1-forms
on X5 which have lattices for Veech groups and note that this is an interesting
phenomenon. W. Harvey [H1, H2] points out that this phenomenon may exist for
other surfaces. Here we show that in fact there is no universal bound on the number
of 1-forms on a Riemann surface which have incommensurable lattice Veech groups.

We �rst determine the Veech group of a certain family of marked translation
structures.

Proposition 2. Let j 2 N; j � 2 and n = 2j + 1. Let Xn be the nonsingular
Riemann surface of a�ne equation y2 = 1 � xn and let 1 be the unique point at
in�nity on Xn. Then �(xj�1dx=y; 1 ) = �(j; j; 1).

Proof.

It is easily calculated that the genus of Xn is j, and that all of the zeros of
xj�1dx=y on that surface occur at (0;�1).

In order to establish our result, we wish to locate the zeros and 1 on a geo-
metric realization of Xn. But, Xn is X(j; j; 1), the Riemann surface associated to
T (j; j; 1); furthermore, by Proposition 1, !(j; j; 1) is the 1-form (up to a negligible
constant) xj�1dx=y on Xn. Earle and Gardiner's proof of Theorem C begins with
the construction of what one recognizes as the surface X(j; j; 1). This is a 2n-gon
with opposite faces identi�ed; it can be tiled by 2n copies of T (j; j; 1). Zeroes for
the associated 1-form are found at the external vertices of this regular �gure.

We need now locate the point 1 on the 2n-gon. To this end, we turn to the
Aurell-Itzykson approach. The Aurell-Itzykson equation for this Xn is tn = [s(1�
s)]j+1: The appropriate map g of the proof of Proposition 1 sends (x; y) = (0;�1)
to the points where s = 0 and s = 1. We continue to call the single point at in�nity
in both coordinate systems simply 1.

Aurell and Itzykson [AI] determine the equation for Xn (indeed, for any surface
associated to a rational triangular billiard table) by using the Schwarz triangle func-
tion: the upper half-plane is mapped to the interior of the triangle. Normalization
is such that 0, 1 and 1 (on the Riemann sphere) are sent to the vertices of the
triangle. Schwarz reection allows one to extend the inverse of the triangle map
to all of the associated surface. (In particular, by the famed result of Belyi, every
such surface has an equation de�ned over �Q { see [Wo].)

The Aurell-Itzykson determination of the equation implies that the vertices of
the tiling of Xn by T (j; j; 1) occur where s 2 f0; 1;1g. But, we already know that
our zeros occur where s 2 f0; 1g and lie at the external vertices of the regular �gure
of Earle and Gardiner. Hence, the point 1 is at the center. (See Figure 1.)
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Figure 1. Case of j = 2: X(2; 2; 1); horizontal cylinders marked.

We now show that the Veech group �(!(j; j; 1);1) equals �(j; j; 1). Following
Veech, Earle and Gardiner identify a generating pair of elements for �(j; j; 1): the
central rotation and a parabolic element in the horizontal direction. The �rst of
these clearly �xes the center of the 2n-gon. The center lies on the boundary of
a cylinder for the parabolic element. One easily checks that this element �xes
each point of this boundary. Thus all of �(j; j; 1) �xes the center. (Hence, the
Veech group of the surface punctured at the center is exactly the same as that of
the unpunctured surface.) Since this center is indeed the point 1, we have our
equality of Veech groups. �

Remark. Earle and Gardiner [EG] also treat the case of 4n-gons with opposite
sides identi�ed. For further treatment of these surfaces, see [AH].

We pull-back various of the marked structures of Proposition 2 to �nd Riemann
surfaces which have numerous 1-forms with non-trivial Veech groups.

Theorem 1. Let L 2 N, then there exists a Riemann surface with 1-forms !1, : : : ,
!L, such that the �(!i) are pairwise incommensurable lattices.

Proof. Let m be the product of the �rst L odd numbers, starting with 5. Thus, let

m(j) = 2j +1 and m =
QL+1

j=2 m(j). We use Veech's equations for the various Xn:

y2 = 1 � xn. For odd n, the nonsingular Riemann surface Xn has a single point
at in�nity (with respect to these coordinates). There are maps fj : Xm ! Xm(j)
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given by (x; y) 7! (xm=m(j); y). Note that fj has its branch points at (0;�1) and
at the single point of Xm(j) at in�nity (which we simply denote by 1). Note that
Xm also has a single point at in�nity, this is the sole pre-image of 1 under fj .

Let !j be the pull-back by fj of x
j�1dx=y on Xm(j). As Z(x

j�1dx=y) = (0;�1),

Lemma 3 and Theorem A show that �(!j) is commensurate with �(x
j�1dx=y; 1 ).

By Proposition 2, this is �(j; j; 1). Thus, by Theorem C, �(!j) is commensurable
with �(m(j);1;1). But, the group �(m(j);1;1) is a subgroup of index 2 in the
triangle group �(2; 2m(j);1). Such triangle groups are lattices; since this property
is shared by �nite index subgroups, the �(!j) are indeed lattices.

Triangle groups are unique up to PSL(2;R) conjugation. Any �(2; k;1) is hence
conjugate to the so-called Hecke group of index k, see say [B]. Now, A. Leutbecher
[L] showed that (except for k 2 f3; 4; 6g) these are all pairwise incommensurable.
That is, the �(!j) are also pairwise incommensurable. �

Remark. The aforementioned result of A. Leutbecher has since been greatly gen-
eralized by G. Margulis [Mar], see also [MR]. Briey, the commensurability class of
a nonarithmetic triangle Fuchsian group possesses a unique maximal element (up
to conjugation).

We have just used pull-backs of 1-forms to �nd many 1-forms on a single Riemann
surface which have lattice Veech groups. We will soon pull-back 1-forms such that
the original 1-form has a lattice Veech group, but the pulled-back 1-form does not.
We use the following proposition in this construction. Note that Xn continues to
denote the non-singular Riemann surface associated to the equation y2 = 1� xn.

Proposition 3. Let n � 5 be an odd integer and let Pn = P(!(1; 1; n�2); p1; p2 ),
where the pi are the points (x; y) = (0;�1) on Xn. Then, the Veech group �(Pn)
is not a lattice.

Proof. We apply Lemma 4. As Theorem B states, Veech [V1] showed that �(1; 1; n�
2) is a lattice. We show that �(Pn) is of in�nite index, and thus cannot be a lattice.

In fact, we also return to calculations of [V1]. Veech constructs the surfaces Xn

by taking two copies of the regular n-gon and gluing them appropriately. While
�nding his equation for Xn, he shows (by a use of the symmetry group of the
surface) that the centers of these correspond to the points of coordinates (0;�1),
[V1; x4.4].

By the symmetry of his construction, we may choose one of the n-gons, with its
vertices at the n-th roots of unity. Consider the vertical foliation and its cylinders.
Veech [V1; x5] shows that there are cylinders whose vertical boundaries pass through
the various xj = cos 2�j=n. Fix that j which is such that xj+1 < 0 < xj . It is
easily seen that j = bn=4c.
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Figure 2. Case of n=5: a single regular pentagon, with vertical cylin-
ders and center marked.

The marked point of our n-gon splits the cylinder whose boundaries pass through
xj and xj+1. By Lemma 4, it su�ces to show that xj is not a rational multiple of
xj � xj+1. Of course, this is the same as showing that xj and xj+1 are rationally
independent. Up to the same constant factor which we simply suppress, these are
�j + ��j and �j+1 + ��j�1, where � = e(2�i)=n.

Were (�j+1 + ��j�1)=(�j + ��j) rational, then it would be invariant under ev-
ery element of the Galois group of the �eld extension Q(�)=Q . For all n we are
considering, we have the non-trivial element � : � 7! �2. Thus, we will show that
(�2j+2 + ��2j�2)=(�2j + ��2j) = (�j+1 + ��j�1)=(�j + ��j) is impossible for our
value of j. We clear denominators, and have �3j+1 + ��3j�1 + �j�1 + ��j+1 being
equal to �3j+2 + ��3j�2 + �j+2 + ��j�2.

If n = 4j + 1, then 3j + 2 � �j + 1modn and similarly for 3j + 1. Hence if
�3j+1 + ��3j�1 + �j�1 + ��j+1 is equal to �3j+2 + ��3j�2 + �j+2 + ��j�2, then
�j + ��j = �j+2 + ��j�2. However, by our choice of j, the �rst of these is negative
and the second positive. The analogous argument leads to a similar contradiction
when n = 4j + 3. �

Corollary. Let k; l and m be natural numbers, such that k � 2, l � 5 is odd and
m = kl. If � = xk�1dx=y on the surface Xm, then �(�) is not a lattice.

Proof. Let f : Xm ! Xl be given by (x; y) ! (xk; y). Then f is branched at
the points of coordinates (0;�1) and (depending upon k) possibly at the single
point at in�nity. Let ! = !(1; 1; l � 2); recall that ! has its sole zero at the



VEECH GROUPS AND POLYGONAL COVERINGS 13

point at in�nity. By Lemma 3, f : (Xm; f
�!)! (Xl;Pl) is a translation covering.

Therefore by Theorem A, �(f�!) is commensurable with �(Pl). But, up to a
constant, f�! = xk�1dx=y. Thus, the proposition completes the proof. �

Let us use the term Veech group of a (rational angled) polygon to denote the
Veech group of the translation surface de�ned in the standard, [KZ], manner. We
now give an in�nite family of triangles whose Veech groups are not lattices.

Proposition 4. Let n � 5 be an odd natural number. Then �(n � 2; n � 2; 4) is
not a lattice.

Proof. We give two proofs. Although closely related, these emphasize di�erent
aspects of the surfaces involved.

algebraic proof. By Proposition 1, !(n� 2; n� 2; 4) is xn�3dx=y on X2n. Consider
the map h from X2n to itself which maps (x; y) to (1=x; iy=xn). Let � = xdx=y on
X2n. Then, pull-back by h of � is (up to constants):

h�� = h�xdx=y = x�1(x�2dx)=x�ny = xn�3dx=y:

Since h is injective, it is clearly unrami�ed. Therefore, �(n� 2; n� 2; 4) = �(�).
By the above Corollary (with k = 2 and l = n), �(�) is not a lattice. Therefore
our Proposition is proved. �

constructive proof. We begin with the triangle T (n�2; n�2; 4). The corresponding
translation surface, M := X(n � 2; n � 2; 4), will be tiled by 4n copies of this
triangle. We can begin by developing about the vertex of angle 2�=n. That is, we
consecutively ip copies of T (n� 2; n� 2; 4) about this vertex. Consecutive copies
under these ips have opposite orientations. Since n is odd, after completing an
angle of 2�, the next ip gives a copy which has the opposite orientation from that
of the initial copy. Thus this ensuing copy cannot be identi�ed with the initial copy
of the triangle. In fact, one needs an angle of 4� to complete this conical singular
point onM . First, we may take n more copies of the triangle and place them along
the edges of these �rst n so as to make a regular stellated n-gon. To complete the
development about the conical point, we take a second stellated regular n-gon and
glue the two along a slit running (straight) from the center to an exterior vertex of
the stellated n-gon. See Figure 3.
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Figure 3. X(3; 3; 4) tiled by T (3; 3; 4).

The single point represented by the centers of these two stellated regular n-gons
is a conical singularity on M of angle 4�; the point represented by the exterior
vertices is also singular of angle 4�. There are two other singular points, each of
angle (n � 4 � (n� 2)�=2n =) (n� 2) � 2�.

Now, we consider the triangle T (1; 1; n� 2). Let N := X(1; 1; n� 2). Then we
can obtain N by developing 2n copies of the triangle about one of the vertices of
angle �=n. The regular stellar �gure for N so given is, up to identi�cations on its
exterior edges, exactly of the form of each of those found for M .

Thus, in terms of Riemann surfaces,M is a double cover of N , which is branched
at the points corresponding to the center and to the exterior vertices. We can
either argue with the Aurell-Itzykson determination of equations (as in the proof
of Proposition 2), or take Veech's [V1] �gure for N and cut, translate and paste to
�nd that these branch points are indeed (x; y) = (0;�1). Thus, by Lemma 3, we
have that �(n� 2; n� 2; 4) = �(Pn). Therefore, by Proposition 3, �(n� 2; n� 2; 4)
is not a lattice. �

The above corollary and Proposition lead to an in�nite family of counterexam-
ples to the naive intuition that if a polygon tiles another (where one admits both
translations and ips across a boundary edge as tiling \moves"), then the Veech
groups of these polygons are commensurable. We thank J. Smillie for pointing out
that a remark in passing in [Vo] already mentions this aspect of our polygons.
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Theorem 2 (Vorobets). There exist polygons P and Q such that P tiles Q by
ips and the Veech groups of the corresponding translation surfaces are not com-
mensurable.

Proof. Fix an odd integer n � 5. Consider the the right triangle T (2; n � 2; n).
The associated surface is formed by 4n copies of this triangle. If we ip the triangle
about its right angle, we �nd T (4; n� 2; n� 2) and T (1; 1; n� 2). See Figure 4.
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Figure 4. Case of n=5: T (2; 3; 5), T (4; 3; 3) and T (1; 1; 3)

As explained in the constructive proof of Proposition 4, the surface of X(1; 1; n�
2) is tiled by 2n copies of T (1; 1; n� 2). Indeed, again because n is odd, one easily
veri�es that the surface for this and for the right triangle are translation isomorphic
| they can be formed by taking the same region of R2 and identifying sides in
exactly the same way. By Theorem B, the Veech group �(1; 1; n � 2) is a lattice;
it follows that the Veech group �(2; n � 2; n) is also a lattice. But, Proposition 4
shows that the Veech group of T (4; n � 2; n � 2) is not a lattice. Thus, although
the triangle T (2; n� 2; n) tiles T (4; n� 2; n� 2), we �nd that their Veech groups
are not commensurable. �

There are similar tilings of triangles by triangles where Veech groups are pre-
served, as we now show.

Example. Let n = 2m be an even integer, n � 6. Consider the right trian-
gle T (2; n � 2; n). Just as in the above proof, we have the two related triangles
T (2; 2; 2(n� 2) ) = T (1; 1; n� 2) and T (4; n� 2; n� 2) = T (2;m� 1;m� 1). By
Theorem B, the �rst of these has Veech group �(m;1;1). By Theorem C, the
second has the same Veech group. Indeed, it is easily checked that the surface of
this second triangle is isomorphic to the surface of the right triangle.

This cutting, ipping and then translating, as in the passage from T (1; 1; n� 2)
to T (2;m � 1;m � 1) above, is an integral step in classi�cation of those acute
triangles which have lattice Veech groups, [KS].

We now show that Veech groups usually are preserved up to commensurability
under polygonal tiling by ips.
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Proposition 5. If a rational polygon has no angles of the form �=n for integer n,
then any polygon which it tiles by a single ip has a commensurable Veech group.
Furthermore, if a rational polygon has no angles of the form 2�=n for integer n,
then any polygon which it tiles by ips has a commensurable Veech group.

Proof. Let Q be a polygon tiled by the polygon P and letM(Q) andM(P ) be their
associated surfaces. That there is a covering of the Riemann surfaces determined
by M(Q) and M(P ) can be seen for instance by use of Proposition 5.1 of [Vo].
There it is already shown that the sole obstruction to the covering of M(P ) by
M(Q) being a translation cover is given by the restriction that the covering map
and its local inverse send the sets of singularities to one another.

The singularities of a translation surface of a polygon can only occur at points
which project to vertices of the polygon. We thus will discuss the set of such points
on each of M(Q) and M(P ).

Suppose that P has no angles of the form �=n. Then every point ofM(P ) which
projects to a vertex of P is singular. Since the vertices of Q lie at vertices of paving
copies of P , the covering map certainly sends the singularities of M(Q) to those of
M(P ).

Continuing with the assumption that P has no angles of the form �=n, none
of the vertices of Q can be of the form �=n for integer n. This follows by simply
writing each angle of P in the form l�=m with l;m relatively prime and 2 � l < 2m.
A vertex of Q has a multiple of such an angle; were this multiple to be 1=n, then
l;m would not be relatively prime. Thus, also every point of M(Q) which projects
to a vertex of Q is singular.

It now su�ces to show that the inverse images of the singularities of M(P ) are
the singularities of M(Q). Since every point of M(P ) which projects to a vertex of
P is singular, and similarly for M(Q), we need only show that the vertices of the
paving copies of P lie at the vertices of Q.

(i.) If Q is the union of P and a single ip of P , then each vertex of these two
copies of P on Q lies at some vertex of Q.

(ii.) Suppose now that P has no angles of the form 2�=n. Vertices of paving
copies of P meet at points of Q of angles which are integer multiples of the angles
of P ; these multiples are never equal to 2�, hence there no vertices of paving copies
of P lie at interior points of Q. Our argument showing that Q has no angles of the
form �=n shows that no paving copies of P can meet at the interior of an edge of
Q. Hence, the vertices of paving copies of P lie at the vertices of Q. �

Remark. Gutkin and Judge [GJ1, GJ2] have characterized those translation sur-
faces whose Veech groups are arithmetic (i.e. commensurable to PSL(2;Z) ): these
are the surfaces which can be tiled by translations of euclidean parallelograms.
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