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Abstract. We de�ne invariants of translation surfaces which re�ne Veech groups.
These aid in exact determination of Veech groups. We give examples where two
surfaces of isomorphic Veech group cannot even share a common tree of balanced
a�ne coverings. We also show that there exist translation surfaces of isomorphic
Veech groups which cannot a�nely cover any common surface.

We also extend a result of Gutkin and Judge and thereby give the �rst examples
of noncocompact Fuchsian groups which cannot appear as Veech groups. We give an
in�nite family of these.

0. Introduction

A translation surface is a real 2-dimensional manifold with conical singularities
equipped with an atlas for which transition functions are translations. The study
of Euclidean billiards, the straight-line ow within subsets of the Euclidean plane,
quickly leads to translation surfaces. Indeed, each holomorphic 1-form on a Rie-
mann surface induces a translation structure on the surface. There is a classic con-
struction [KZ] which passes from a Euclidean polygon to an associated translation
surface, determining a complex structure on the surface along with a holomorphic
1-form.

The study of billiards leads rather naturally to the more technical ground of
quadratic di�erentials and Teichm�uller theory. The use of this theory has resulted
in deep results on the metric theory of the billiard ow. Fundamental results
obtained in this manner include those of Kerckho�-Masur-Smillie [KMS], H. Masur
[M] and Eskin-Masur [EM]. The surfaces associated to quadratic di�erentials are
naturally 1=2-translation surfaces, see [GJ2] for a discussion of these. Each such
surface admits a translation surface as a double cover. Thus the restriction to the
translation surfaces loses virtually none of this rich theory, but it does allow fairly
signi�cant simpli�cation of language.

Interest in translation surfaces has been greatly increased by the deep results of
W. Veech [Ve1]. Veech introduced the study of the di�eomorphisms of translation
surfaces (punctured at the singularities) which are locally a�ne with respect to
the translation structure. The di�erentials of these di�eomorphisms form a group,
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now called the Veech group. Veech showed that this group has discrete image in
PSL(2;R). He also showed that if the image is a lattice (i.e., if the group has �nite
covolume), then the billiard ow on the surface is particularly attractive, one has
what has become to be known as the Veech alternative: In each direction this ow
is either periodic, or it is uniquely ergodic.

There are a few examples of translation surfaces with lattice Veech groups, in-
cluding those found by Veech himself, see [Vo], [EG], [Wa], [KS]. There are also
several results indicating that the lattice property is rare amongst Veech groups.
Surfaces with lattice Veech groups are of measure zero with respect to a natural
measure on the space of these surfaces (of each �xed type) [GJ1] and amongst the
translation surfaces given by the [KZ] construction applied to acute nonisosceles tri-
angles, there only three within reasonable computability bounds which have lattice
Veech groups [KS]. On the other hand, the translation surfaces having arithmetic
lattice Veech groups are dense amongst all translation surfaces (of each �xed type).
(We discuss arithmeticity in x1.11.)

The question of which Fuchsian groups can be realized as Veech groups seems
completely open, other than a restriction that such a group cannot be cocompact.
By extending results of E. Gutkin and C. Judge on arithmetic Veech groups [GJ2]
we will show that there are groups which can never occur as Veech groups: Any
arithmetic Fuchsian group which is not conjugate to a subgroup of PSL(2;Q)
cannot be realized as a Veech group. Thus, for example, whereas each of the Hecke
triangle groups of odd index were shown by Veech [Ve1] to occur as Veech groups,
we have the following result.

Theorem 1. The Hecke triangle groups of index 4 and 6 are not realizable as
Veech groups. Furthermore, for each nonsquare natural number N , the PSL(2;R)
normalizer of the congruence group �0(N) is not realizable as a Veech group.

By way of a simple example given in section 2, we show that, with minor acces-
sory information (in our case, the genus of the surface), the isomorphism class of
the Veech group of a translation surface can uniquely determine the surface. This
determination is a priori up to a�ne equivalence, i.e. up to a standard SL(2;R)
action. In a general setting one can hope for no better, as any two a�nely equiva-
lent surfaces have isomorphic Veech groups. In our example there are distinguished
elements, and hence one can determine that surface up to translation equivalence.
We will show by example that, in general, Veech groups are far from su�cient to
uniquely determine translation surfaces.

It is natural to study maps between translation surfaces. There are two notions
of coverings of translation surfaces in the literature. The �rst of these is that for
which E. Gutkin [G] has suggested the name balanced translation covering. Here,
not only does the covering map respect the translation structures of the surfaces,
but furthermore it is restricted such that the singularities of the two surfaces are
\aligned" | the map sends singularities to singularities and the inverse images of
singularities are singularities. In the more general translation covering, one simply
requires that singularities be sent to singularities. Balanced coverings are better
adjusted to questions of Veech groups, as Ya. Vorobets [Vo] and Gutkin and Judge
[GJ1, GJ2] have shown that commensurability classes of Veech groups are preserved



INVARIANT OF BALANCED COVERINGS 3

by such coverings. This implies in particular that Veech's fundamental lattice
property is preserved in this setting. This is not true under general translation
coverings, as various examples in the literature show, see say [Vo] or [HS].

It is frequently desirable to mark points on translation surfaces other than true
cone singularities | already with the case of genus one it is in some sense nec-
essary to mark at least one point. One then considers Veech groups arising from
a�ne di�eomorphisms on the surfaces with all of the marked points removed. We
show that the marking of additional points preserves the lattice property if and
only if these points are contained in �nite orbits under the original group of a�ne
di�eomorphisms. This allows us to point out the dramatic fact that if a translation
surface has a lattice Veech group, then the marking at random of an additional
point will, with probability one, result in a nonlattice Veech group.

We are particularly interested in the e�cacy of lattice Veech groups in identifying
translation surfaces in the setting of balanced coverings of translation surfaces.
As we have already stated, the commensurability class of the Veech group is an
invariant in this setting. By re�ning the information in the parabolic directions (see
De�nition 3 below), we de�ne new invariants of these coverings. Our invariants are
based upon the connections between singularities of a translation surface, thus are
not far from the Veech group itself, nor from such notions as the holonomy �eld
as used by [KS] nor the very related cross-ratio and trace �elds as used by [GJ2].
These other invariants are weaker than the Veech group | two surfaces having the
same Veech group must have the same holonomy, cross-ratio and trace �elds. In
their construction, these other invariants emphasize two-dimensional aspects of the
surfaces. Our invariants are closer to techniques used by Vorobets [Vo] in that their
main ingredient is the comparison of connections in a single direction. However,
we take a union over the parabolic directions. This allows a global nature to the
construction, and indeed our invariants re�ne the invariant which is the Veech
group, whenever the Veech group has parabolic elements. As our examples will
show, our invariants are in practice quite easy to evaluate. In fact, one of our
invariants is simply a set of integral vectors.

We �rst use the invariants to show there are a�nely inequivalent translation
surfaces which have isomorphic Veech groups. In order to do this, we apply our
invariants to exactly determine certain Veech groups | each of the Veech groups
in question were shown to contain lattice groups, but their discoverers [Vo], [KS]
did not show equality of the Veech group and their indicated lattice subgroup. Our
invariants allow us to very easily show these equalities.

As we have already stated, results of Vorobets and of Gutkin-Judge show that
the commensurability class of Veech groups is an invariant of balanced coverings.
We apply our invariants to certain examples to conclude that, in contrast to the
arithmetic case, in general there is no \�nal object" amongst translation surfaces
having Veech groups of the same commensurability class | that is, we show that
there are translation surfaces with commensurable lattice Veech groups which are
each minimal with respect to balanced coverings and yet are not a�nely equivalent
surfaces.

Having seen that balanced coverings taken singly are insu�cient to account for
all translations surfaces of a commensurability class of Veech groups, we turn to
trees of such coverings, see the de�nition of x5. Our invariant allows us to show



4 PASCAL HUBERT, THOMAS A. SCHMIDT

that there exist translation surfaces which have isomorphic Veech groups but which
cannot lie in any common tree of balanced a�ne coverings.

One then must ask if perhaps at least each tree of balanced coverings is identi�ed
by a Veech group which is a maximal Fuchsian group (this is the case for the setting
of arithmetic surfaces). Here again, our invariant applied to particular examples
shows that not even this is true.

Thus, we have the following theorems.

Theorem 2. The translation surface arising from the Euclidean triangle of angles
(�=2n; �=2n; (n� 1)�=n ) cannot share a common tree of balanced a�ne coverings
with any surface which has a maximal Fuchsian group as Veech group.

Theorem 3. The translation surfaces arising from the Euclidean triangles of an-
gles (�=18; �=18; 8�=9 ) and ( 2�=9; �=3; 4�=9 ) have isomorphic Veech groups but
cannot share a common lattice of balanced a�ne coverings.

In our study of balanced coverings, we naturally discovered certain facts about
non-balanced coverings. Indeed, the aforementioned exclusion of certain Fuchsian
groups as Veech groups arose from studying various coverings. As well, we show
that there exist translation surfaces which cover no translation surface whose Veech
group is a maximal Fuchsian group. Again, this is in contrast to the arithmetic
setting.

In this introduction, we have mentioned the arithmetic Veech groups several
times. Here we briey and very roughly indicate the state of knowledge about
them, see also x1.11. A noncocompact Fuchsian group is called arithmetic if it
admits a �nite index subgroup which is PSL(2;R) conjugate to a subgroup of
PSL(2;Z). The fundamental result is that of Gutkin and Judge [GJ2, Theorem
5.5]: A translation surface has an arithmetic Veech group if and only if the surface
is a translation covering of a torus with one marked point.

One can think of this result of Gutkin and Judge as an analog of an unpublished
but rather famous result of J. Franks (see say, [F]): A pseudo-Anosov di�eomor-
phism which has quadratic eigenvalue is the rami�ed covering of a linear Anosov
automorphism of a torus; see [BC] for related results. There is an example of P.
Arnoux and A. Fathi [AF] which shows the failure of the natural generalization of
this to the setting of eigenvalues of degree greater than two. Our results in the
non-balanced case can be seen as analogs of their example.

We wish to thank P. Arnoux for various comments and questions as well as M.
Schmoll for various discussions about Veech groups and coverings. The second-
named author also thanks T. Drumm for discussions of the geometry of translation
surfaces, as well as the Institut de Math�ematiques de Luminy and the CNRS for
providing a very pleasurable and stimulating environment while this research was
undertaken.

1. Background

For convenience, we collect in this section various basic notions, notation and
background results. We repeat here some of [HS; x1].
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1.1 Translation surfaces from billiards.
A surface is said to be a translation surface if it is equipped with an atlas for

which the transition functions are translations in R2 .
A construction apparently due to [KZ] associates to each polygon in R2 a trans-

lation surface. Briey, one follows the straight line trajectory of a billiard on the
polygon, reecting the polygon when the billiard reaches an edge. If the polygon is
rational angled, that is with all angles being rational multiples of �, of say with least
common denominatorN , then 2N copies of the polygon su�ce to follow any billiard
(whose trajectory does not end in a vertex) by straight line path segments | one
must identify certain pairs of parallel edges by translation. This [KZ]-construction
then gives a �nite genus translation surface possibly with singularities amongst the
vertices of the copies of the original polygon. The total angle about each singularity
is an integral multiple of 2�.

As this construction takes place on R2 , the natural 1-form dz induces a 1-form on
the translation surface. There is a unique complex structure for which this 1-form
is holomorphic.

1.2 Translation surfaces from 1-forms.
One can as well begin with a holomorphic 1-form on a Riemann surface. Inte-

gration gives local coordinates o� of the zeros of the 1-form. The charts so de�ned
have translations for transition functions; one obtains a translation surface. At a
zero of the 1-form which is of multiplicity m�1, there is a singularity of angle 2m�.

Multiplying a given 1-form by a nonzero complex constant has negligible e�ect.
Multiplication by a real constant simply scales the area of the the translation sur-
face; multiplication by a complex constant of norm one merely rotates the charts,
in e�ect inducing a di�erent choice of the standard, say vertical, direction.

Note also that there is no canonical direction in the [KZ] process | dividing out
by at least the natural action of the rotation group SO(2;R) is completely natural
here. Again, real constant scaling of a �xed polygon clearly lead to scaled versions
of the same translation surface.

Thus, we will actually work in projective spaces of holomorphic 1-forms, identi-
fying all nonzero complex multiples of a 1-form.

1.3 Near Teichm�uller theory.
As mentioned in the introduction, our topic is closely allied with Teichm�uller

theory. Each holomorphic quadratic di�erential on a Riemann surface induces
local coordinates; if the quadratic form is the square of a holomorphic 1-form, then
these coordinates are simply given in the aforementioned manner: integration of
the 1-form. Any real surface admits an action of SL(2;R) on the set of its atlases |
given an atlas, post composition of its local coordinate functions with A 2 SL(2;R)
de�nes a new atlas. Note that this action preserves the set of translation atlases.

Any given holomorphic 1-form determines a translation atlas; the SL(2;R)-orbit
of this translation atlas is comprised of translation atlases arising from 1-forms.
(This last |and much more| may be precisely proven by combining results of
[KMS] and of I. Kra [Kr].) In fact, [KMS] show that the set of the squares of these
1-forms gives a Teichm�uller disk of quadratic di�erentials. Now, a Teichm�uller disk
admits a hyperbolic metric; with respect to this metric, PSL(2;R) acts faithfully
as the oriented isometry group.
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1.4 Fuchsian groups | discrete subgroups of PSL(2;R).
We have just seen a hint that PSL(2;R) plays a fundamental role in the theory

of our topic. Let us review some of the basics of the theory of Fuchsian groups,
the set of discrete subgroups of PSL(2;R). Recall that PSL(2;R) acts as ori-
ented isometries on the hyperbolic plane in its Poincar�e half-plane model by way
of fractional linear transformations.

Of fundamental importance for us will be the class of lattices. A Fuchsian group
is a lattice if it is of �nite covolume (that is, the quotient of the hyperbolic plane
by the group has �nite area).

Amongst the lattices are (Schwarz) triangle groups. We �x a triangle of angles
�=p, �=q and �=r in the (extended) hyperbolic plane and consider the reections
through the sides of the triangle. Each reection is orientation reversing; the group
generated by the words of even length in these reections forms a Fuchsian group,
see say, [B]. We call (p; q; r) the signature of the triangle group. In fact, any two
triangle groups of the same signature are PSL(2;R)-conjugate. This being the case,
we will sometimes speak loosely and say the triangle group �(p; q; r) to mean some
group of this signature. ( Indeed, in the theory of Veech groups it is conjugation
classes of Fuchsian groups which naturally arise.) Another important fact is that
triangle groups are maximal amongst Fuchsian groups: A triangle group can only
be contained in triangle (Fuchsian) groups, see say [B].

A particular class of triangle groups arises quite frequently. These are the Hecke
groups, of signature (2; q;1). The Hecke group of index q = 3 is nothing other than
the modular group PSL(2;Z). Each Hecke group is a maximal Fuchsian group.

Recall from the introduction that a noncocompact Fuchsian group is called arith-
metic if it admits a �nite index subgroup which is PSL(2;R) conjugate to a �nite
index subgroup of PSL(2;Z). It is a result of A. Leutbecher [L] that the Hecke
groups are arithmetic for exactly the indices q = 3; 4; 6.

Fuchsian groups are said to be commensurate or strictly commensurable if they
share a common subgroup of �nite index in each. They are said to be commensurable
if a �nite index subgroup of one conjugates within PSL(2;R) to give a �nite index
subgroup in the other.

Warning | we follow the de�nitions of [GJ2] here. It is also common to use
the term commensurable to denote what they call commensurate!

A deep result of G. Margulis [M] see also [MR], implies that within the strict
commensurability class of a nonarithmetic triangle group there is a single maximal
group. (Note that this does not hold in the arithmetic setting: Each of the Hecke
groups of index q = 3; 4; 6 is maximal.) Since we will often identify groups only
up to PSL(2;R)-conjugacy, let us note that the Margulis result clearly extends to
hold for any triangle group conjugate to a nonarithmetic group.

We also will need to consider some aspects of the internal structure of Fuchsian
groups. Given an element A of PSL(2;R), we will simply represent A by one of its
corresponding elements in SL(2;R). Naturally, the trace is then only de�ned up to
absolute value. Recall that PSL(2;R) acts upon the hyperbolic plane in its Poincar�e

half-plane model by way of fractional linear transformations:

�
a b
c d

�
� z = az+b

cz+d .



INVARIANT OF BALANCED COVERINGS 7

One solves for �xed points to �nd that an element A �xes exactly one point on the
boundary R [ f1g if and only if A has absolute value of trace equal to 2. Such
elements are called parabolic. We say that a direction vector � in R2 is �xed by a
parabolic element if one of the corresponding elements of SL(2;R) �xes �. Each
parabolic element is PSL(2;R) conjugate to a translation. Parabolicity is de�ned
by trace, thus the conjugacy class within any given Fuchsian group of a parabolic
element is comprised of parabolic elements. Furthermore, if an element is parabolic,
then so is any power of it. A primitive element of a group is one which is not the
positive power of any other element of the group. A maximal parabolic conjugacy
class of a Fuchsian group is a conjugacy class of primitive parabolic elements. Of
importance here is that each lattice group has a �nite number of maximal parabolic
conjugacy classes. Furthermore, a result of C. Siegel, see say [K], gives that any
lattice is �nitely generated.

1.5 A�ne functions and Veech groups.
Let us �x a holomorphic 1-form ! on a Riemann surfaceM and let Z(!) denote

the set of the zeros of !. Let M 0 := M n Z(!). A di�eomorphism f : M 0 ! M 0

which extends to a homeomorphism from M to itself is called a�ne with respect
to the translation structure on M induced by ! if the derivative of f is constant in
the charts of ! and is given by some �xed element A 2 SL(2;R). Note that this
de�nition requires that the extension of f and that of its inverse send Z(!) to itself
(permutation of this set is allowed).

Away from zeros of !, locally f(z) = Az + ci, where the ci depend only on the
chart of z. The set of all such functions is called the a�ne group of !, A�(!).
The Veech group, �(!), is the subgroup of SL(2;R) representing the derivatives of
the a�ne functions. In fact, Veech [V1] shows that the object of main interest is
this group taken up to projective equivalence; that is, we need only consider the
image of � in PSL(2;R). In what follows, we will indeed simply write �(!) for this
corresponding subgroup of PSL(2;R).

This projective group �(!) acts on the Teichm�uller disk given by the quadratic
di�erentials which are the squares of the 1-forms associated (by way of the var-
ious a�nely related translation structures) to !2. Veech showed that �(!) acts
discontinuously on this hyperbolic disk; that is, �(!) is a Fuchsian group.

The quotient of the disk by �(!) is a Riemann surface (its hyperbolic structure
identi�es a complex structure) inside the Riemann moduli space of M . It is a
remark of Veech [Ve1], see also [Vo; Proposition 3.3], that this surface cannot be
compact; in other words, �(!) must be noncocompact. See [Ha1, Ha2] for some
remarks on the possible relationship of this new Riemann surface to M .

The fundamental Veech alternative states that if the Veech group of a translation
surface is a lattice, then in each direction the billiard ow is either periodic, or it
is uniquely ergodic.

A fundamental open problem is to characterize which Fuchsian groups are Veech
groups.

1.6 Veech groups and automorphisms.
Given a rational angled polygon, the 2N (as in x1.1) copies which comprise its

associated translation surface are given by an action of the dihedral group of order
2N . That is, one takes an original copy of the polygon and a copy which is a
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reection about an edge. One creates N copies of this doubled polygon by applying
the powers of the rotation of angle 2�=N . These are all glued together to give
the translation surface. Thus there is an oriented self-map on the surface whose
di�erential is a rotation of order N . Now, if N is odd then there is an element of
order N in the Veech group of the translation surface; if N = 2k is even, then there
is an element of order k in the (projective) Veech group.

In fact, self-maps of the type above induce automorphisms of the underlying
Riemann surface. Indeed, these are di�eomorphisms which are locally rotations (up
to translation); they are isometries. They clearly preserve the conformal structure,
and hence the complex structure of the underlying Riemann surface.

1.7 Results on Veech groups from rational triangles.
We establish some notation to be used in the remainder of this paper.

Notation. Let T (p; q; r) be the rational Euclidean triangle whose angles are p�=n,
q�=n, r�=n, where n = p+ q + r and 1=gcd(p; q; r).

Let X(p; q; r) and !(p; q; r) be the Riemann surface and its holomorphic 1-form
associated to the billiard ow on the Euclidean triangle T (p; q; r). Furthermore, let
�(p; q; r) be the Veech group of !(p; q; r). Let �(p; q; r) be the Fuchsian triangle
group for the angles �=p; �=q; �=r ( see say, [B]).

W. Veech [V1] showed that

Theorem A (Veech). For each n � 5,

�(1; 1; n� 2) =

8><
>:

�(2; n;1) odd n;

�(m;1;1) n = 2m:

Earle and Gardiner [EG] show, in our notation, that �(2; 2; 1) = �(5;1;1).
Indeed, by inspection of their examples, they actually show the following theorem.

Theorem B (Earle-Gardiner ). Let the integer k � 2. Then

8><
>:

�(2k � 1; 2k � 1; 2) = �(2k;1;1);

�(k; k; 1) = �(2k + 1;1;1):

There are various results indicating that Veech groups are rarely lattices. Per-
haps the most striking is the following.

Theorem C (Kenyon{Smillie ). Let T = T (p; q; r) be an acute nonisosceles
triangle with p+ q + r � 10; 000. Then �(p; q; r) is a lattice group if and only if T
is one of the following:

(a) T (3; 4; 5); (b) T (3; 5; 7); or (c) T (2; 3; 4):
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The �rst of these two cases were shown to give lattice groups by Vorobets.

Lemma D (Vorobets ). One has that

�(3; 4; 5) � �(6;1;1) and �(3; 5; 7) � �(15;1;1).

Kenyon and Smillie proved that the third of these gives a lattice group.

Lemma E (Kenyon{Smillie ). One has that �(2; 3; 4) � �(9;1;1).

1.8 Marking extra points.
It is convenient to consider translation structures with some removable singular-

ities marked. We introduce notation for this purpose.

Notation. Let P(!; fp1; : : : ; png) denote the translation structure on a surface M
given by the 1-form ! and having marked points p1 through pn in addition to the
zeros of !. Given P of this sort, letM 00 beM (having the structure of !) with both
Z(!) and the set of the pi removed. The a�ne group, Aff(P), for such a marked
translation structure is the group of the a�ne di�eomorphisms which restrict so as
to take M 00 to itself. The Veech group, �(P), is then the (projective image of the)
derivatives of these a�ne di�eomorphisms.

For a �xed surface M , and marked structures P and Q, we write P � Q if the
marked structures have the same underlying 1-form, and the marked points of P
are amongst those of Q.
Lemma F [HS]. Let P and Q, P � Q, be as above. Then both �(P) and �(Q)
are subgroups of �(!). Furthermore, there is a �nite index subgroup of �(Q) which
is contained in �(P). If �(Q) is a lattice, then so are �(P) and �(!).

1.9 Translation and a�ne coverings, equivalence.
We say that a map f :M ! N gives a translation covering of (N;Q) by (M;P)

if the restriction f :M 00 ! N 00 is such that  �f ���1 are translations where  and
� are the (various appropriate choices of the) local coordinates for the atlases of P
and Q respectively. Note that a translation covering is in particular a holomorphic
(rami�ed) covering of the corresponding Riemann surfaces.

Similarly, we say that a map f gives an a�ne covering of (N;Q) by (M;P) if
the restriction f : M 00 ! N 00 is such that the aforementioned compositions are of
the form Az+ci;j where A is a �xed matrix in SL(2;R), but the translation vectors
ci;j may vary with the choice of charts. Note that an a�ne covering is in particular
a quasi-conformal (rami�ed) covering of the corresponding Riemann surfaces.

Let B be any matrix in SL(2;R). We de�ne (M;B � P) by replacing the coor-
dinate functions of the translation structure of (M;P) by their post-composition
with B. Let f give an a�ne covering of (N;Q) by (M;P). If A is the matrix of
the derivative of f , then we de�ne fA to be the covering of (N;Q) by (M;A � P).
Similarly, we de�ne fA to be the covering of (N;A�1 �Q) by (M;P). The following
can be found in [Vo].

Lemma G (Vorobets). Let f give an a�ne covering of (N;Q) by (M;P). Let A
be the matrix of the derivative of f . Then both fA and fA are translation coverings.
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If there is a degree one translation covering of one translation surface by another,
then the covering map admits an inverse, and we say that the translation surfaces
are translation equivalent. Similarly a degree one a�ne covering gives an a�ne
equivalence of translation surfaces.

1.10 Commensurability results.

Given a general translation or a�ne covering of (N;Q) by (M;P), it seems
unclear as to exactly how �(P) and �(Q) are related. There is, however, some
vague knowledge of their relationship.

Theorem H (Vorobets; Gutkin-Judge). If there is a translation covering of
(N;Q) by (M;P), then �(P) and �(Q) are commensurate.

Corollary I (Gutkin-Judge). If there is an a�ne covering of (N;Q) by (M;P),
then �(P) and �(Q) are commensurable.

In particular settings, these results can be strengthened. The following observa-
tion of [AH] will be of use.

Lemma J (Arnoux{Hubert). The translation surface M2n formed by identify-
ing opposite sides of a regular planar 2n-gon is balanced translation double covered
by T (1; 1; 2n� 2). The Veech groups of these surfaces are isomorphic.

1.11 Arithmetic groups.
The fundamental result for arithmetic Veech groups is that of Gutkin and Judge

[GJ2, Theorem 5.5].

Theorem K (Gutkin{Judge ). A translation surface has an arithmetic Veech
group if and only if the surface is a translation covering of a torus with one marked
point.

Note that the translation coverings of Theorem K are not necessarily balanced.

We will show that there are arithmetic Fuchsian groups which can never occur
as the Veech group of any translation surface. For this the following notions will

be helpful. Fix a N 2 N, then �0(N) = f
�
a b
c d

�
2 PSL(2;Z) jN jc g. Let �B(N)

be the PSL(2;R) normalizer of �0(N). Each conjugacy class of arithmetic groups
has a representative inside some �B(N), as shown by H. Helling [He], see also [C].

Theorem L (Helling). Given a noncocompact arithmetic Fuchsian group, there
exists N 2 N such that �B(N) contains a PSL(2;R)-conjugate of the given group.

Given a natural number N , let � =

�
0 �1=pNp
N 0

�
. It is easy to see that �

is in �B(N). But then one also notices that say

�
0 �1=pNp
N �pN

�
is in �B(N).

Thus if N is nonsquare, �B(N) is not a subgroup of PSL(2;Q).
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2. Identifying translation surfaces by Veech groups

We start with a rather special example to motivate our discussion of the e�cacy
of the Veech group in identifying translation surfaces.

For various reasons most of the examples in the literature of translation surfaces
are the [KZ] surfaces of triangles. The following type of construction seems well-
known to the experts in the �eld, but has yet to appear in the literature.

De�nition 1. The translation surface formed by taking a symmetric rectangu-
lar cross of minor side length 1 and of internal length � � 1 (see Figure 1) and
identifying opposite sides is called the cross of translation �.

1 λ

1

I

I

II

II

III

III

IVIV

Figure 1. The cross of translation �

Lemma 1. For each positive real � � 1, the cross of translation � is a genus two
translation surface with a unique singular point. The surface has an element of

order two, T =

�
0 �1
1 0

�
, in its (projective) Veech group; the corresponding a�ne

di�eomorphism �xes the surface.

Proof. One easily �nds that the internal vertices (again, see Figure 1) are identi�ed
to give a single point of angle 6�. There are no other singular points, hence the
genus is indeed two. The visible symmetry of the cross gives the element of order
two in PSL(2;R). �

Lemma 2. The cross of translation �5 = (1 +
p
5)=2 has as its Veech group a

triangle group �(2; 5;1).
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Proof. Whenever �(�� 1) is rational, one easily succeeds with the Veech construc-
tion of parabolic elements, see [Ve1; Prop. 2.4], for the vertical direction of the

cross. Since �5(�5 � 1) = 1, one �nds the parabolic element S =

�
1 0
�5 1

�
.

But, S and T generate the Hecke group of index q = 5, see say [B]. Since
each Hecke group is a maximal Fuchsian group, we have indeed determined the
Veech group. Finally, this Hecke group is indeed a triangle group of the indicated
signature. �

The following is well-known, see say [S], or for a textbook discussion [BL, p.
347].

Lemma 3. Up to isomorphism there is exactly one nonsingular compact Riemann
surface of genus two which admits an automorphism of order 5. This is the Riemann
surface of equation y2 = 1� x5.

Recall that Veech [Ve1] showed (in particular) that the Veech group of the trans-
lation surface X(1; 1; 3) is (up to PSL(2;R)-conjugation) the Hecke group of index
q = 5. In that group there is a unique conjugacy class of elements of order two.
Thus, there is up to translation equivalence a unique translation surface which is
�xed by an a�ne di�eomorphism whose derivative is (projectively) an element of
order two. For ease of statement, let us say that this surface is �xed by the element
of order two in the Veech group of X(1; 1; 3).

Lemma 4. The cross of translation � = (1+
p
5)=2 is translation equivalent to the

surface �xed by the element of order two in the Veech group of X(1; 1; 3).

Proof. There is an element of order �ve in the Hecke group of index q = 5. The
subgroup generated by this element is unique up to conjugation in the group. Now,
the element of order �ve in the Veech group of the cross of translation � = (1+

p
5)=2

�xes a translation surface.
By Lemma 3, this new �xed translation surface has as its underlying Riemann

surface that of equation y2 = 1 � x5. Automorphisms of Riemann surfaces act
linearly on the vector space of holomorphic 1-forms of the surface. In this case,
a generator for the subgroup of automorphisms of order 5 sends (x; y) to (�5x; y),
where �5 is a primitive �fth root of unity. Clearly, the forms dx=y and xdx=y are
eigenvectors of distinct eigenvalues for the action of these automorphisms. Hence,
up to negligible constants, the only 1-forms �xed by an automorphism of order �ve
are these two. (Recall the discussion of x1.2 of such negligible constants.) Therefore,
our apparently new �xed translation surface must in fact be translation equivalent
to the translation surface de�ned by one of these 1-forms.

Now, [EG] have shown that the Veech group of xdx=y is isomorphic to a triangle
group �(5;1;1). Since the Hecke group of index �ve is a �(2; 5;1), our transla-
tion surface cannot be translation equivalent to its surface. Veech [Ve1] showed that
the Veech group of X(1; 1; 3) is a �(2; 5;1), and furthermore, that this translation
surface is exactly that given by the holomorphic 1-form dx=y.

We have identi�ed the Teichm�uller disk of the cross of translation � = (1+
p
5)=2.

Up to translation equivalence there is exactly one translation structure in this disk
which is �xed by the element of order two. �
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Remark 1. There are various ways to simplify the above proof. In particular, one
could simply give the passage from the cross to X(1; 1; 3) as an explicit a�ne map.
We prefer the present proof, as it hints at some of the algebraic aspects of Veech
groups.

Remark 2. The Riemann surface of equation y2 = 1�xn admits an automorphism
of order n which has distinct eigenvalues. This automorphism is the exact analog
of that mentioned in the proof of the preceding lemma. Furthermore, for n odd
Veech [Ve2] gives a geometric property which indicates that these Riemann surfaces
are quite special amongst all those of the same genus. Could it be that any genus
g = b(n � 1)=2c translation surface which has Veech group isomorphic to that of
X(1; 1; n) | recall that the underlying Riemann surface of X(1; 1; n) is indeed of
equation y2 = 1� xn | must actually be a�nely equivalent to X(1; 1; n)?

3. Refining the Veech group | affine

invariants of parabolic directions

The commensurability class of Veech groups is preserved under balanced a�ne
coverings, see [Vo], [GJ1], [GJ2] and for some related discussion [HS]. We ask for
additional invariants in this setting.

We introduce the ingredients for our invariants, see [Vo] for related notions. Until
stated otherwise, we �x a translation surface (M;!) and a markingP(!; fp1; : : : ; png).

De�nition 2. A simple geodesic connecting two marked points (passing through
no others) is called a connection. (Recall that the zeros of ! are always amongst
the marked points. Simple geodesics connecting these are traditionally known as
saddle connections.)

A direction vector � in R2 is a connection direction if there is a connection in
this direction on (M;!). (Note that each connection thus de�nes two connection
directions, � and ��.)

The atlas of (M;!) allows one to associate to each connection a ~v 2 R2 (one uses
the so-called holonomy of (M;!), see [KS] for discussion of this notion). We call
~v 2 R2 a connection vector if there is a connection whose vector is ~v. Let V(P ; �) be
the ordered n-tuple of all connection vectors in the direction �, where the ordering
is by length. Let �V(P ; �) be the set formed by these vectors.

For each ~v in �V(P ; �), let n(~v) be the number of occurrences of ~v in V(P ; �). Let
N(P ; �) be the sum of these n(~v). Let ~v0 be a shortest vector in �V(P ; �), and for

each ~v in �V(P ; �), let ~l(~v) := jj~vjj =jj~v0jj be the scaled length of ~v. We de�ne R(P ; �),
the scaling vector, to be the ordered N(P ; �)-tuple of the real numbers ~l(~v). Here
for each ~v in �V(P ; �), ~l(~v) occurs n(~v) times, and the ordering is by size of positive
real numbers. Finally, we de�ne N (P ; �), the counting vector, to be the ordered
n-tuple of natural numbers which, for each ~v in �V(P ; �), reports the multiplicity

n(~v) with ordering again by the size of the ~l(~v).
Note that since P has only �nitely many marked points, both R(P ; �) and

N (P ; �) are indeed �nite.

Remark 3. To summarize the above de�nition, the scaling vector R(P ; �) is the N -
tuple of reals by which one must scale a shortest connection vector in the direction
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� to obtain all of the connection vectors in this direction. The counting vector
N (P ; �) gives the number of connection vectors in this direction which are of each
possible length.

As shown by [Vo] and [GJ1], the two Veech groups involved in any given balanced
translation covering are commensurate | there is a common subgroup of �nite
index in each. The following restatement of a result of [Vo] is easily proved with
the above ideas and de�nitions.

Lemma 5 (Vorobets). Let M , P and � as above. If there exists ~v 2 �V(P ; �) such
that n(~v) = 1, then any balanced translation covering f : (N;Q) ! (M;P) is such
that �(Q) � �(P).

Proof. This is [Vo; Proposition 5.3] restated in the present vocabulary. �

Notation. Recall that for all A 2 SL(2;R), whereas Aff(P) is exactly equal to
Aff(A � P), one has that the corresponding Veech groups are conjugate. Let us
denote general conjugation by A, AGA�1, with A �G, then �(A � P) = A � �(P).

Notation. There is a natural linear action of SL(2;R) on ordered n-tuples of 2-
vectors given by extending the action on the individual vectors. Let us denote this
in our context by A ? V(P ; �).

The following lemma shows that SL(2;R) acts equivariantly on the vectors of
connections, V(P ; �).

Lemma 6. Let (M;P) be a translation surface and � some direction on this sur-
face. Let A 2 SL(2;R). Then A� is a connection direction on (M;A�P). Further-
more, V(A � P ; A�) = A ? V(P ; �). As well, the equalities N (A � P ; A�) = N (P ; �)
and R(A � P ; A�) = R(P ; �) hold.

Proof. That  = A� is a connection direction and the equality of V(A � P ; A�) =
A ? V(P ; �) follow directly from the linearity of the action of SL(2;R) on R2 . The
other equalities follow from this �rst one. �

Lemma 7. Let M and P be as above. Let P be a parabolic conjugacy class of
the Veech group �(P). Suppose that � and  are connection directions for P �xed
by corresponding elements of P. Then there exists A 2 �(P) such that V(P ;  ) =
A?V(P ; �). Furthermore, the equalities N (P ;  ) = N (P ; �) and R(P ;  ) = R(P ; �)
hold.

Proof. Conjugate elements inP �x � and  respectively. Thus, there is an A 2 �(P)
such that  = A�. Hence,  is a connection direction for A � P . By the previous
lemma V(A � P ;  ) = A ? V(P ; �). Thus our conclusion holds once we have shown
that V(A � P ;  ) = V(P ;  ).

There is at least one f 2 Aff(P) whose derivative gives A�1. From Lemma G,
any such f gives a degree one balanced translation covering of (M;A�P) by (M;P).
Hence, the set of connection vectors is the same for both surfaces. Furthermore, the



INVARIANT OF BALANCED COVERINGS 15

n-tuples of connection vectors in any �xed direction is the same for both surfaces.
In particular, they are the same for the direction  and therefore V(A � P ;  ) =
V(P ;  ). �

De�nition 3. Suppose that M and P are as above and P is a parabolic conju-
gacy class of the Veech group �(P). A connection direction � is called a parabolic
direction for P if � is �xed by some element of this conjugacy class. Choose any
such �. Using the previous lemma, we have the de�nitions N (P;P) := N (P ; �)
and R(P;P) := R(P ; �).

Proposition 1. Let P be a parabolic conjugacy class of the Veech group of a trans-
lation surface (M;P). Then for any A 2 SL(2;R), N (P;P) = N (A �P; A�P) and
R(P;P) = R(A �P; A � P).

Proof. By the previous lemma, we can choose connection directions � for P and
 = A� for A � P which are �xed by elements of P and A � P, respectively and
such that one has N (P;P) = N (P ; �) and N (A � P; A � P) = N (A � P ;  ); and
also R(P;P) = R(P ; �) and R(A �P; A � P) = R(A � P ;  ). Therefore, Lemma 7
applies. �

De�nition 4. Suppose thatM and P are as above. Let fPig be the set of maximal
parabolic conjugacy classes of the Veech group �(P). De�ne R(P) to be the set of
the R(Pi;P) and N (P) to be the set of the counting vectors N (Pi;P). We call
R(P) the set of scaling vectors and N (P) the set of counting vectors.

Now, let f �ig be corresponding parabolic directions and let c(P) be the greatest
common divisor of the multiplicities of vectors in these directions. That is, let
c(P) = gcd(fn(~v) j~v 2 �V(�); � parabolic direction forPg). For each i and each
~v 2 �V(�i), let ~n(~v) = n(~v)=c(P).

For each i, we de�ne ~R(Pi), the weighted scaling vector, to be the ordered

N(P)=c(P)-tuple of the ~l(~v), ordering by size of positive real numbers. We de-

�ne ~N (Pi), the weighted counting vector similarly. Note that ~R(Pi) di�ers from
R(Pi) only in that a common repetition of values has been suppressed and similarly

for ~N (Pi) and N (Pi).

Finally, let ~R(P) be the set of the ~R(Pi). De�ne ~N (P) similarly. We call ~R(P)
the set of weighted scaling vectors and ~N (P) the set of weighted counting vectors.

From the preceding Lemmas, it is clear that each of ~R(P), R(P), ~N (P) and
N (P) is well-de�ned.

Remark 4. To summarize the above de�nition, given a marking P on M , R(P) is
the set of the scaling vectors for the parabolic directions of P and ~R(P) is the set of
these except that common repetition, counted by c(P), is eliminated. In particular,
R(P) is a �ner invariant of the \disk" of (M;P). However, we will show that ~R(P)
is an invariant of balanced coverings. Similarly for ~N (P) and N (P). Note also that
our invariants are independent of multiplication of 1-forms (giving the underlying
structure of the surface) by nonzero complex constants.
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Theorem 4. If f : (M;P) ! (N;Q) is a balanced a�ne covering, then both
~R(P) = ~R(Q) and ~N (P) = ~N (Q).

Proof. By Proposition 1 and Lemma G, we may conjugate either P or Q so as to
assume that f is a balanced translation covering.

Now, if f : (M;P)! (N;Q) is a balanced translation covering, then in particular
f takes the marked points of P to those of Q, and the pre-images of the marked
points of Q are contained within those of P . Thus, f gives an unrami�ed covering,
of say degree d, of N 00 by M 00. Here double primes are used to denote the same
translation surfaces, but with all marked points deleted. Let ~v be a connection
vector for Q. The preimage under f of each connection for Q of vector ~v is exactly
d connections for P . Since f is a translation covering, each of these preimages is
also of vector ~v.

The translation structures P and Q clearly share the same set of connection
directions. They also have the same set of parabolic directions. Now, again since f
is a balanced translation covering, the Veech groups �(P) and �(Q) are commensu-
rate, see [Vo] or [GJ1]. Thus given p an element in some parabolic conjugacy class
P of �(P), there exists n = n(p) 2 N such that pn 2 �(Q); similarly for q parabolic
in �(Q). Since pn �xes a direction � if and only if p does, one indeed deduces that
the sets of parabolic directions for P and Q are one and the same. (The proofs of
the commensurateness of the Veech groups also are based upon use of the d-sheeted
unrami�ed cover of the punctured surfaces.)

From the preceding paragraph, the set of parabolic directions for P is exactly the
set of parabolic directions for Q. Furthermore, in each direction, each connection
vector ~v occurs exactly d times as often as a connection vector for P as it does
for Q. However, ~R(Q), is de�ned such that each ~l(~v) occurs only ~n(~v) times;
thus, the possibly complicating multiple d has been factored out. Finally, each
parabolic direction is a parabolic direction for some maximal parabolic class. Since
the invariant ~R is de�ned as a union over these maximal parabolic classes, we �nd
that the sets ~R(Q) and ~R(P) are indeed equal.

Of course, the same is true for ~N (P) and ~N (Q). �

Remark 5.

The maximal parabolic conjugacy classes of commensurate Fuchsian groups are
in general in many-to-many correspondence. Indeed, a parabolic class of some
group � may well split into several classes in the �nite index subgroup which is
common with a commensurate ~�. These parabolic classes may then unite amongst
themselves (or even with other parabolic classes) to form one or more parabolic

classes in ~�.

In terms of Veech groups, given a balanced translation covering f : (M;P) !
(N;Q), �(Q) and �(P) are commensurate. We have shown that the two sets of
parabolic directions are the same. The respective maximal parabolic conjugacy
classes of the groups partition the parabolic directions by way of the equivalence
relation of being a parabolic direction for a particular maximal parabolic conjugacy
class. These two partitions may be quite di�erent; however, the invariants ~R(P)
and ~R(Q) are indeed equal.
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De�nition 5. We call a translation surface (M;P)minimal with respect to balanced
a�ne coverings if the existence of a balanced a�ne covering f : (M;P) ! (N;Q)
implies that f is of degree one and hence that (M;P) and (N;Q) are a�nely
equivalent.

Lemma 8. If (M;P) is a translation surface such that c(P) = 1, then (M;P) is
minimal with respect to balanced a�ne coverings.

Proof. If f : (M;P)! (N;Q) is a balanced a�ne covering, then f is a topological
covering for the surfaces with the marked points removed. Thus, if f is of degree d,
then d divides c(P). Hence, if c(P) = 1, then f must indeed be of degree one. �

4. Applications to the arithmetic setting

Recall that a Fuchsian group with parabolic elements is called arithmetic if it is
commensurable with PSL(2;Z). Gutkin and Judge [GJ2; Theorem 5.5] have shown
that a translation surface (M;P) has an arithmetic Veech group if and only if there
is a covering of translation surfaces of some torus with one marked point by the
(M;P). Their result does not require that this covering be balanced, but simply
that the marked points of P be sent to the marked point on the torus. The inverse
image of the marked point of the torus may strictly contain the marked points of
P .

De�nition 6. We call a translation surface (M;P) balanced arithmetic if it admits
a balanced covering to a torus with one marked point.

With this de�nition in hand, Lemma 5 with Theorem K implies the following.

Corollary 1. The Veech group of any balanced arithmetic translation surface is
conjugate to a subgroup of PSL(2;Z).

Proof. By the Gutkin-Judge result (Theorem K) and Lemma 5 (or simply Vorobets'
own [Vo; Proposition 5.3] ), the Veech group of any balanced arithmetic translation
surface is contained in that of its corresponding torus with one marked point. But,
each such torus has its Veech group conjugate to PSL(2;Z). �

Which arithmetic groups might arise as Veech groups in the non-balanced case?
An easy calculation shows that the arithmetic Hecke groupsG4 andG6 cannot. This
leads to the following characterization. A fairly direct consequence of the result of
Gutkin and Judge, this gives the �rst obstruction to noncocompact Fuchsian groups
appearing as Veech groups.

Theorem 10. The Veech group of any arithmetic translation surface is PSL(2;R)
conjugate to a subgroup of PSL(2;Q). In particular, the Hecke groups G4 and G6

never occur as Veech groups. Furthermore, if N is a nonsquare natural number,
then �B(N) (as de�ned in x1.11) can never occur as a Veech group.
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Proof. By an a�ne change and thus a conjugation of the Veech group, we may
assume that we have an arithmetic translation surface (M;P) which covers the
square torus. Consider the marking Q which contains P and such that (M;Q) is
a balanced arithmetic translation surface. By Corollary 1, �(Q) is a �nite index
subgroup of PSL(2;Z). Furthermore, �(Q) admits a �nite index subgroup which
is also a subgroup of �(P). Thus, of course, �(P) is an arithmetic group.

Now, the lattice �0(P) in R2 generated by the connection vectors of P is clearly
a �nite index sublattice of the corresponding �0(Q), see [KS] for the notion of �0.
Due to the translation covering, both �0(P) and �0(Q) are of �nite index in Z2.
Since the Veech group �(P) sends �0(P) to itself, �(P) � PSL(2;Q).

The elements

�p
2 �1
1 0

�
and

�p
3 �1
1 0

�
belong to G4 and G6, respectively.

Since conjugation preserves traces, neither of these groups can be conjugate to
subgroups of PSL(2;Q). However, G4 and G6 are arithmetic [L], see [K] for a
textbook discussion. The Gutkin-Judge result implies that these groups can only
appear as the Veech group of arithmetic translation surfaces. We conclude that
they do not in fact ever occur as Veech groups.

Recall that when N is a nonsquare natural number �B(N) is not contained in
PSL(2;Q). Thus, the Theorem follows. �

Remark 6. From Helling's result, Theorem L, we have virtually located all of
the arithmetic groups which can fail to be Veech groups due to their traces being
nonrational. To obtain this explicitly, one need determine exactly which subgroups
of the �B(N) fail to have rational traces.

Remark 7. After completing this work, we noticed that an application of Theorem
28 of [KS] easily shows that if A is a hyperbolic element of PSL(2;R) such that
the �eld Q(trA2 ) does not contain trA (where tr indicates the absolute value of the
standard trace), then A cannot be an element of any Veech group.

Each Hecke group of even index has such an element: let A =

�
3� �1
1 0

�
, where

� = 2 cos�=q. One checks that A is a hyperbolic element of the Hecke group of
index q. The �eld extension degree [Q(trA) : Q(trA2 )] = 2 if and only if the index
q is even. We conclude that no Hecke group of even index can be realized as a
Veech group. Of course, Veech [Ve1] showed that every Hecke group of odd index
is realized as a Veech group.

5. Trees of balanced coverings

A tree of balanced coverings gives a way to pass from one translation surface to
another, without requiring that there be a map between these two surfaces.

De�nition 7. A tree of balanced a�ne coverings is a lattice of morphisms con-
necting objects in the category of �nite genus translation surfaces with morphisms
being balanced a�ne coverings. That is, it is a collection of translation surfaces
(Mi;Pi) and of balanced a�ne coverings f�;� : (M�;P�)! (M�;P�) such that for
each pair of consecutive integers (i; i+ 1) in the index set, one has exactly one of
fi;i+1 or fi+1;i.
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Corollary 2. Both the set of weighted scaling vectors, ~R(P), and the set of weighted
counting vectors, ~N(P), are invariants of lattices of balanced a�ne coverings.

The following lemma follows directly from the case of a single covering, [Vo],
[GJ1].

Lemma 9. Both the property of having a Veech group which is a lattice Fuchsian
group and that of having a Veech group with parabolic elements is preserved within
trees of balanced a�ne coverings.

Corollary 3. Suppose that the marked translation surface (M;P) lies within a
tree of balanced a�ne coverings which includes a marked translation surface whose
Veech group is a Fuchsian group with exactly one maximal parabolic conjugacy class.
Then each of the sets R(P), ~R(P), N (P), and ~N (P) is a singleton set.

Proof. If (N;Q) is such that �(Q) has a single maximal parabolic conjugacy class,
then ~R(Q) is a singleton set. If (N;Q) shares a common tree with (M;P), then
by Theorem 4, ~R(P) is also a singleton set. But then even the R(P) must be the
same for all maximal parabolic conjugacy classes P of the Veech group �(P). �

De�nition 8. Given n � 2, let M2n be the translation surface formed by identi-
fying opposite sides of a regular planar 2n-gon.

Theorem B, �rst given in [EG], shows in particular that the Veech group of each
M2n has two parabolic conjugacy classes. The following result on N -invariants
is then obtained by a simple induction with respect to quantities from elementary
plane geometry, see Figure 2 and Figure 3.

Lemma 10. The translation surface M2n, with its natural marked structure, has
set of counting vectors

N (M2n) =

8>>>><
>>>>:

f (1; 2; � � � ; 2| {z }
k�1 times

); (2; � � � ; 2| {z }
k�1 times

; 1)g if n = 2k;

f (1; 2; � � � ; 2| {z }
k�1 times

; 1); (2; � � � ; 2| {z }
k times

)g if n = 2k + 2:
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Figure 2. ComputingN (!) for surfaces of regular 4k-gons; here k = 2.
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Figure 3. Computing N (!) for regular 4k + 2-gons; here k = 2.

Theorem 20. The translation surface X(1; 1; n� 2) with n = 2m cannot share a
common tree of balanced a�ne coverings with any surface which has as its Veech
group a maximal Fuchsian group.
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Proof. Theorem A gives Veech's result: If n = 2m is even, then the Veech group of
X(1; 1; n� 2) is a �(m;1;1). This is an index 2 subgroup of a �(2; 2m;1), it is
thus not a maximal Fuchsian group.

Now, X(1; 1; 2m� 2) is a translation double cover of M2m, as Lemma J states.
But, Lemma 10 shows that the set of weighted scaling vectors for theM2m are not
singletons. Hence, the same is true for the maximal parabolic weighted relation
vectors for these X(1; 1; n� 2). Corollary 3 now applies to �nish our proof. �

Recall that there are three exceptional acute nonisosceles triangle translation
surfaces within reasonable computability bounds [KS]. Vorobets [Vo] determined
that the Veech groups of two of these were contained in certain maximal triangle
Fuchsian groups, Kenyon and Smillie determined that the third of these has Veech
group also contained in some maximal triangle Fuchsian group. In fact, in all three
cases it was shown that the Veech group in question is either of index two or is
the maximal triangle Fuchsian group. It turns out that the index two subgroups in
question all have more than one (in fact two) maximal parabolic conjugacy class,
but each corresponding maximal triangle Fuchsian group only has exactly one such
class. Thus, we are able to apply Corollary 3 and show that in all of these cases,
the Veech group is actually of index two in its (unique due to nonarithmeticity)
maximal Fuchsian group.

Lemma 11. The translation surfaces X(2; 3; 4), X(3; 4; 5) and X(3; 5; 7) have
Veech groups �(9;1;1), �(6;1;1) and �(15;1;1) respectively. Each of these
is a non-maximal Fuchsian group.

Proof. The proof for each of these three cases is virtually the same. Let us treat
X(3; 5; 7) in detail.

Vorobets showed that the Veech group �(3; 5; 7) contains the triangle group
�(15;1;1). This group is an index 2 subgroup of a maximal triangle group, a
�(2; 30;1). Since the nonarithmetic Hecke group of index q = 30 is of signature
(2; 30;1), any �(15;1;1) can be strictly contained in at most one Fuchsian group,
thus in a �(2; 30;1).

Since a �(2; 30;1) group contains exactly one maximal parabolic conjugacy
class, it su�ces to show that the Veech group of X(3; 5; 7) contains two distinct
maximal parabolic conjugacy classes (or as [Ve1] writes, two noncommuting idem-
potents). For then this Veech group must in fact be a �(15;1;1).

Now, Vorobets has already determined the connection vectors (and more) in a
certain direction. For the convenience of the reader, we have copied [Vo; Figure 5]
as our Figure 4, adding in labels for vertical connection vectors. The determination
of the cylinders in the vertical direction by Vorobets allows one to conclude that
the corresponding N (P ; �) is (1; 1; 2; 3).
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Figure 4. X(3; 5; 7), from [Vo]; N (P ; �) = (1; 1; 2; 3).

We now consider the horizontal direction, see Figure 5. It is su�cient to notice
that there are two shortest connection vectors in this direction to conclude that the
counting vectors for these two directions are not equal. This implies the desired
result for the case of X(3; 5; 7).
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Figure 5. X(3; 5; 7), the horizontal connections. N (P ; �0) = (2; 2; 1; 2).

For the case of X(2; 3; 4), we use [KS, Figure 7] and the related discussion of
[KS] to �nd that in the vertical direction the counting vector is (1; 2; 3). Study of
the horizontal direction gives that both shortest vector and second shortest vectors
are singletons. Therefore, we have found a distinct counting vector.

For the remaining case, that of X(3; 4; 5), we use [Vo, Figure 4] and �nd that in
the vertical direction there, the counting vector is (2; 3). In the horizontal direction
we will certainly �nd the same (there is a rotation of �=2 in the group already
determined). However, we consider the direction angle �=4 from the horizontal and
�nd (1; 4). �

The following gives an example of two translation surfaces of isomorphic Veech
groups but which cannot be placed in a common lattice of balanced coverings.

Theorem 30. The translation surfaces X(2; 3; 4) and X(1; 1; 16) have isomorphic
Veech groups but cannot share a common tree of balanced coverings. The same is
true for X(3; 4; 5) and X(1; 1; 10) as well as for X(3; 5; 7) and X(1; 1; 28).

Proof. The isomorphisms of the groups follows from the preceding lemma and The-
orem A.

It now su�ces to note that the ~N -invariants are unequal for each of the indicated
pairs. Again by Lemma J, each of the X(1; 1; 2n) is a balanced covering of the

correspondingM2m(n). The ~N -invariants for the X(1; 1; 2n) are thus deduced from

Lemma 10. On the other hand, the N - and hence ~N -invariants for the exceptional
acute triangles' surfaces are determined in the proof of Lemma 11. These invariants
are easily compared and seen to be distinct. Therefore, an application of Corollary
2 proves our result. �
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6. Nonminimality in general translation coverings

If a translation surface has an arithmetic Veech group, then the Gutkin-Judge
result states that this surface admits a translation covering of a marked torus. We
now show that there are two translation surfaces both of which are minimal with
respect to translation coverings, but which have isomorphic Veech groups. We use
the following two lemmas.

Lemma 12. If (M;P) is a translation surface with exactly one marked point and
whose Veech group is nonarithmetic, then (M;P) cannot be the translation cover
of a translation torus (T;Q) with any number of marked points.

Proof. Suppose that a general translation surface (M;P) translation covers a torus
(T;Q). Since all marked points on the torus are removable singularities, this (M;P)
also translation covers the torus (T;Q0) for every marking Q0 � Q of T which
contains all of the images of the marked points of (M;P). In the case that (M;P)
is a translation surface with exactly one marked point, this implies that (M;P)
can in fact translation cover a translation torus with a single marked point. But,
by Theorem K, the Veech group of such an (M;P) would then be arithmetic. We
have reached a contradiction: There can be no torus translation covered by our
(M;P). �

Lemma 13. Let (M;P) be a translation surface of genus 3. If the angles of the
singularities of (M;!) are not equal in pairs, then (M;P) can be a translation cover
of no translation surface of genus 2.

Proof. By the Riemann-Hurwitz formula, a Riemann surface of genus 3 can only
cover a Riemann surface of genus 2 by a degree 2 unrami�ed map. Now, the pull-
back of singularities under such a map doubles the number of the singularities but
preserves the angles. (For an earlier use of these arguments, see [AF].) �

Theorem 5. The translation surfaces X(3; 4; 5) and M10 are each of genus 3 and
of a single singularity, have isomorphic Veech groups, are not a�nely equivalent
and each is minimal with respect to a�ne coverings.

Proof. Theorem B and Lemma 11 show that the Veech groups are indeed isomor-
phic. The respective N -invariants are given in Lemma 10 and in the proof of
Lemma 11; they are easily seen to be distinct. Theorem 4 hence shows that these
translation surfaces are not a�ne equivalent.

The translation surface X(3; 4; 5) is one of the exceptional examples of [Vo].
Vorobets already pointed out that it has one singularity. An easy angle calculation
shows that the surface is of genus 3. Thus Lemma 13 shows that it can cover no
genus two translation surface. Its Veech group is nonarithmetic and hence Lemma
12 shows that it can cover no genus one translation surface.

Lemma J states that M10 is balanced translation double covered by X(1; 1; 10)
and has the same Veech group. Thus in particular it has a nonarithmetic Veech
group. Furthermore, an easy calculation shows that M10 is a genus 3 surface with
one singularity. Again, Lemmas 12 and 13 show that it is minimal with respect to
a�ne coverings. �
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7. Preserving the lattice property

In attempting to force an arbitrary covering of translation surfaces to be bal-
anced, one may well need to add points to the covered structure. Suppose one is
in the most interesting case, where the Veech groups are lattices. What are the
possible sets of additional points which one can mark on a surface while preserving
the property of having a lattice Veech group?

Theorem 6. If (M;P) is a translation surface of genus at least 2 such that �(P)
is a lattice and Q is a marking of M containing P, then �(Q) is a lattice if and
only if no marked point of Q lies in an in�nite Aff(P)-orbit.

Proof. By de�nition, the marked points of Q form a �nite set. If none of these lies
in an in�nite Aff(P)-orbit, then the union S of all of their Aff(P)-orbits is still
a �nite set and Aff(P) clearly acts on this �nite set S. The subgroup of Aff(P)
which acts trivially on S then has �nite index in Aff(P). But this subgroup is also
a subgroup of Aff(Q). As the derivatives of this �nite index subgroup of Aff(P)
form a �nite index subgroup of the lattice �(P), these derivatives form a lattice
group. Thus we have found a subgroup of �(Q) which is a lattice. Therefore, �(Q)
itself must be a lattice.

Now, suppose that �(Q) is a lattice. Since the marked points of P form a �nite
subset of those of Q, the subgroup StabAff(Q) P of Aff(Q) which stabilizes the
marked points of P has �nite index in Aff(Q). Hence the corresponding derivatives
form a �nite index subgroup of �(Q). Since �(Q) is a lattice, so is this subgroup.
But, StabAff(Q) P is also a subgroup of Aff(P). Therefore the lattice group of its
derivatives is a subgroup of �(P); it must be of �nite index, as any noncocompact
lattice group must be of �nite index in any Fuchsian group containing it.

We would like to use the �niteness of the index of the derivatives of StabAff(Q) P
in �(P) to show that StabAff(Q) P itself is of �nite index in Aff(P). In order to do
this we need to contemplate the group homomorphism from Aff(P) to PSL(2;R)
which is given by taking derivatives (and then projectivizing). The kernel of this
homomorphism is a subgroup of the automorphism group of the underlying Rie-
mann surface ofM | if an a�ne di�eomorphism has trivial derivative, it certainly
preserves angles, thus is a conformal map. But, since the genus of M is at least 2,
M has a �nite automorphism group. Hence, the kernel of the map from Aff(Q)
to PSL(2;R) is �nite. (For an earlier use of this argument, see [Ve1].) Therefore,
the index of StabAff(Q) P in Aff(P) must also be �nite.

Now choose in Aff(P) �nitely many StabAff(Q) P coset representatives. The
Aff(P)-image of the set of marked points of Q is simply the union of its images
under the coset representatives. But the set of coset representatives is �nite. There-
fore, this image is a �nite set. But, it contains the Aff(P)-orbit of each marked
point and thus each of these orbits is �nite. �

Remark 8. Note that in the above the restriction on the genus was only used
to ensure that the number of automorphisms of the surface be �nite. This is true
under the hypothesis of the surface haivng su�cently many marked points in the
genus g = 0 and 1 cases.
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As a corollary to the above, we have the dramatic fact that adding almost any
point to a marking which has a lattice Veech group will cause the loss of the lattice
property.

Corollary 4. Given (M;P) a translation surface with lattice Veech group �(P),
scale the natural measure given by the area form of M so as to obtain a probability
measure on M . Choose a point q at random with respect to this measure and let
Q be the marking containing P and with the added marked point q. Then with
probability one with respect to q, �(Q) is not a lattice.

Proof. Recall that any Veech group is noncocompact, thus a lattice Veech group
must have parabolic elements. We �x a maximal parabolic element of �(P). By the
fundamental Veech criterion [Ve1], there is a decomposition of M into cylinders in
the �xed direction of the parabolic element such that the appropriate powers of the
linear Dehn twists in the cylinders patch together to give an element of Aff(P).

By a transformation of �nite Jacobian, we can bring any cylinder to the form
of the square. Hence, consider the linear Dehn twist on a single square cylinder of
side length one: T (x; y) = (x; x + ymod 1). The twist �xes the vertical sides and
has �nite orbits along the line segments of equation y = mx+ b with m; b rational
numbers. The union of these countably many line segments is of course of measure
zero. We thus �nd that the points of �nite orbits for any of our linear Dehn twists
form a set of zero area. Taking the sum over �nitely many cylinders still gives area
zero.

Therefore, the set of points of M which have �nite Aff(P)-orbits is clearly of
measure zero. �

The following underlines this di�culty of marking points and preserving the
lattice property.

Lemma 14. Let (M;P) be a translation surface such that �(P) is a lattice and let
Q be a marking of M containing P. If �(Q) is a lattice then the set of connection
directions of (M;P) equals that of (M;Q).

Proof. Let � be a connection direction for Q. Thus there is a parabolic element, say
T , of �(Q) �xing �. By Lemma H, �(Q) has a �nite index subgroup contained in
�(P). But, this means in particular that some power of T must be in �(P). Powers
of parabolic elements of course �x the same directions as the original parabolic
elements. Therefore, � is a connection direction for P .

Now suppose that  is a connection direction for P . Since �(Q) is a lattice, the
�nite index subgroup of it which is also a subgroup of �(P) must also be a lattice.
This implies that this subgroup must also be of �nite index in �(P). Let U 2 �(P)
�x the direction  . There is a �nite power of U in �(Q). Since this power also �xes
the direction  , we conclude that  is a connection direction for Q. �

9. Final comments and further questions

The main open questions about Veech groups are: (1) Which Fuchsian groups
appear as Veech groups? and: (2) How do Veech groups change under a�ne cover-
ings?
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We have shown that (conjugacy classes of) Veech groups do not uniquely deter-
mine trees of balanced a�ne coverings. Could they possibly uniquely determine
trees of general a�ne coverings? We doubt this; we view the example given in
Theorem 5 as reason for our doubts. Does the Veech group with the additional
information of our invariants uniquely determine such trees?

Is the Veech group of any covering surface actually a subgroup of the Veech
group of a surface which is minimal for that tree? We have no counterexamples to
this, and of course the answer is a�rmative for generic balanced covers, as one will
generically have some connection vector which is a singleton (see Lemma 5).

We would like to see further results on exactly which points can be marked
on a translation surface of lattice Veech group and still preserve this property. In
particular, it would be interesting to have algebraic characterizations of these points
as well as an algorithm for determining them.

The relationship between uniformization of a surface by a Fuchsian group and
related Veech groups remains mysterious. Remarks of [Ha1], [Ha2] clearly indicate
that there are deep arithmetic connections.

Similarly, it would be interesting to see if one could characterize the points of
the (usual, say) boundary of Riemann moduli space which can arise as cusps of
quotients of Teichm�uller disks by (lattice) Veech groups.
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