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We give a gentle introduction to the basics of Veech surfaces, with an
emphasis on the Veech Dichotomy, followed by a sketch of the present state
of the literature. These notes arose from lectures for a summer school held
at the Institute de Mathématiques de Luminy in June 2003. We thank the
participants, especially Jayadev Athreya who prepared an initial set of notes,
and other speakers for various comments.
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Chapter 1

Introduction to Veech Surfaces

1.1 From Billiards to Flat Surfaces

1.1.1 Billiards

A seemingly innocuous problem is to analyze the billiard flow on rational-
angle Euclidean polygons. That is, given a polygon whose angles are rational
multiples of π, consider the trajectories of an ideal point mass, that moves
at a constant speed without friction in the interior of the polygon and enjoys
elastic collisions with the boundary — angles of incidence and reflection are
equal.

For more on billiards and related matters, see [T] and [MT] as well as the
sections of Eskin, Forni, Masur and Zorich.

1.1.2 Unfolding

We now describe the unfolding process for rational billiards. Given a billiard
trajectory (that avoids the vertices) beginning at a side of a rational angle
polygon, this yields a surface. The process has arisen in various guises, see
in particular Katok and Zemlyakov, [KZ].

Given a collision with a side we reflect the polygon along the side, ob-
taining a mirror image of the original polygon, on which the billiard now
continues in its original direction, instead of reflecting off the side. Contin-
uing this process ad infinitum, we would obtain a laundry line (a ray in the
plane), along which various copies of the polygon are strung. But, since our
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6 CHAPTER 1. INTRODUCTION TO VEECH SURFACES

polygon has rational angles, there are only finitely many possible angles of
incidence of our chosen trajectory with these copies. Thus, the billiard even-
tually exits a copy of the polygon in a side that is parallel with the initial
side. We now identify these sides by translation; we continue this process,
considering any unpaired side that the billiards meets as the new initial side.
The result is a new polygon with various ‘opposite’ sides identified; on this
‘flat surface’, the billiard moves along straight line segments, up to transla-
tion.

The 1-form dz on the complex plane induces a 1-form on our surface.
There is a unique complex structure on the surface such that this 1-form is
holomorphic. The process thus results in a Riemann surface with a distin-
guished abelian differential (that is, holomorphic 1-form). There is a close
relationship between the flows on the flat surface and various properties of
the 1-form.

Unfolding: Two Examples

First, let us consider billiards in the unit square, see Figure 1.1.2. Suppose
our billiard trajectory starts near the bottom left corner (the origin) and
has slope 1 > s > 0. Thus it collides initially with the right side. We reflect
about this side to get a mirror image of the square upon which our trajectory
continues with this slope. The next side it hits is the top of the new (right)
square; reflecting about that side we get a third square that sits above the
second (bottom right) square. Continuing this procedure, we eventually end
up with four copies of our original square; we can appropriately translate one
of the copies so as to form a larger square. As an exercise, the reader should
now check that we can follow all billiard paths within this larger square, if
we identify opposite sides by translation. Thus, a torus is formed. Each
trajectory of the billiard flow is mapped to a trajectory for the linear flow in
the same direction on the torus.

If we now take the isosceles triangle with angles (π/5, π/5, 3π/5) as our
initial table, the unfolding process yields a star-shaped polygon with opposite
sides identified, see Figure 1.1.2.

(The reader should note that differing billiard trajectories give apparently
different polygons, but should show that these differences are accounted for
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Figure 1.1: Unfolding; square table to torus surface.
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Figure 1.2: Surface from triangle; same translation surface. (Identify parallel
sides by translation.)
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by the translations of the various identified sides!) This is a compact, ori-
ented topological surface. An easy Euler characteristic calculation shows that
it has genus two.

The identifications of the sides lead to interesting identifications of the
vertices. While the “outside” vertices of the stellated pentagon collapse to
a point with angle 2π, the “inside” vertices yield a point with total angle
6π ! (This phenomenon did not arise in our first example — the large square
with its sides identified — as there the vertices are identified to a single point
of angle 2π.) Indeed, a Gauss-Bonnet calculation will now confirm that our
surface is of genus two.

This difference between our genus two and genus one examples reflects
the fact that while the torus is naturally flat (its universal cover is the Eu-
clidean plane R2), a genus 2 surface is naturally hyperbolic (universal cover
H2), and cannot be forced to be flat.

1.1.3 From 1-forms to Surfaces

Now consider a pair (X,ω), a Riemann surface X with a holomorphic 1-
form ω. Locally (i.e., in each coordinate patch) ω = f(w)dw. Given a point
p0 ∈ X, we define new coordinates by the map

z(p) =

∫ p

p0

ω .

In these coordinates, ω = dz locally.

If we change base points in some small patch, then our coordinates change
by a translation:

c :=

∫ p

p0

ω −
∫ p

p1

ω =

∫ p1

p0

ω .

Since c does not depend on p, our transition maps are of the form z 7→ z+ c.
Thus the pair (X,ω) gives a structure which is reasonably called a translation
surface.

We need to take care in the above discussion. At a zero of multiplicity
k, locally we have ω = zkdz, hence ω = d(zk+1/(k + 1)). That is, instead of
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the surface locally resembling the complex plane C (as it does away from the
zeros), at a zero the surface instead locally resembles the (k + 1)-fold cover
of C via the map z 7→ zk+1. Thus, the total angle around the zero is 2π(k+1).

By your favorite general theorem about Riemann surfaces (either Gauss-
Bonnet or Riemann-Roch), the total number of zeros (counting multiplicity)
of the abelian differential ω is 2g − 2, where g is the genus of the surface X.

Fixing the orders of all zeros, we call the associated subset of translation
surfaces a stratum. Thus, we have a stratum for each integer partition of
2g − 2. See [M] for more discussion of these matters.

1.1.4 SL(2,R)-action and Veech Groups

The group SL(2,R) acts on the space of translation surfaces: a pair (X,ω)
is given by its charts, with coordinate functions to the complex plane (and
all transition maps are translations). We’ll now consider C with its natural
structure as the real plane. Given a matrix A ∈ SL(2,R), the new point
A ◦ (X,ω) is the surface whose charts are the charts for (X,ω), with coordi-
nate functions post-composed with the linear action of A on R2. This action
preserves orders of zeros, it thus preserves each stratum. Note that an ele-
ment of SO(2,R) acts on a translation surface as a (piecewise) rotation; this
action corresponds to multiplying ω by a nonzero complex number of norm
one.

We denote the stabilizer of (X,ω) under the action of SL(2,R) by SL(X,ω).
Recall that SL(2,R) does not act faithfully on the upper half-plane; it is
the projective group PSL(2,R) that does so. We define the Veech Group,
PSL(X,ω), to be the image of SL(X,ω) in PSL(2,R) .

Examples Revisited

For the torus, we consider the maps

(x, y) 7→ (x, x+ y mod 1 )

and
(x, y) 7→ (x+ y mod 1 , y ) .
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These are Dehn twists about the curves corresponding to the x- and y-axes

respectively. Their derivatives are given by the matrices A1 =

(
1 0
1 1

)
and

A2 =

(
1 1
0 1

)
respectively. We have that Ai ∈ SL(C/Z2, dz) = SL(2,Z).

The reader should verify this last equality!

For our genus two example, we can decompose the surface into two vertical
cylinders of height and width (h1, w1) and (h2, w2), see Figure 1.1.4. On each
cylinder we can define a Dehn twist via

(x, y) 7→ (x, y + µ−1x mod h ) ,

where following tradition, the modulus of the cylinder is µ = w/h. Note
that each Dehn twist is constant on the vertical sides of the corresponding
cylinder; we can certainly glue them together to get a globally defined func-
tion. But, in order to preserve our flat structure, a diffeomorphism must
have its derivative (off of the singularities) constant in our coordinates. We
call such maps affine diffeomorphisms, and denote the group that they form
by Aff(X,ω) .

Thus, in order to construct an affine diffeomorphism of the surface from
these Dehn twists we must be able to take some power of each twist so that
the resulting derivatives agree. For this, we must have rµ1 = sµ2 for some
integers r and s; in words: the moduli of the cylinders must be rationally
related. In this example, we get very lucky and the moduli are in fact the
same. The reader is encouraged to check this trigonometry!

This stellated pentagon has its Veech group generated by an element of
order five — the obvious rotation — and an element of order two. Can you
find ‘the’ element of order two? On a related surface — the Golden Cross,
see say [HS2] or [Mc2] — it acts as a square root of the famous “hyperelliptic
involution” of the surface.

We must emphasize that it is very rare that the Dehn twists on cylinders
match up to give a global affine diffeomorphism!
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Figure 1.3: Vertical cylinders.

1.2 The Veech Dichotomy

Recall the theorem of Weyl for geodesic flow on the torus: in any rational
direction θ, all orbits are closed, whereas the flow in any irrational direction
is uniquely ergodic: it is ergodic with respect to a unique non-atomic mea-
sure, which is (induced by) Lebesgue measure. Veech proved an analogous
result for a class of particularly nice surfaces.

We can define directions θ of flow on a given translation surface (X,ω):
use the coordinate charts to pull-back from the real plane the straight lines
of direction θ. The directional flow Fθ is the map from X×R+ to X sending
pairs (x, t) to x′, where x′ is length t from x along a line segment in the di-
rection θ. Of course, the true definition of Fθ recognizes that the translation
surface has singularities! It is a theorem of Kerckhoff-Masur-Smillie [KMS]
that for a fixed translation surface (X,ω), for almost every direction θ the
flow Fθ is uniquely ergodic. See [M] for related discussion.

We say that Fθ is periodic if the surface decomposes into a finite number
of cylinders in the direction θ, and furthermore these cylinders have pairwise
commensurable moduli: µi/µj ∈ Q. Note that it is not necessary that the
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actual period lengths of the cylinders be the same, nor even commensurable
— as the vertical flow on our genus two example already shows!

Recall that the Veech group of (X,ω) is defined such that it acts on the
hyperbolic plane. We say that such a group is a lattice if the quotient space
under this action has finite (induced) hyperbolic area. In this setting, we
also say that SL(X,ω) is a lattice. (There are several ways of defining the
term lattice; this definition works in our setting.)

Theorem 1. Veech Dichotomy: 1 Let (X,ω) be a translation surface.
Suppose SL(X,ω) is a lattice in SL(2,R) . Then for each direction θ, the
flow Fθ is either periodic or uniquely ergodic.

If SL(X,ω) is a lattice, then (X,ω) is called a Veech surface. The the-
orem states that a Veech surface has dynamical properties similar to the
touchstone surface, the square torus. In what follows, we’ll sketch a proof —
coming from Veech’s original proof [Vch2], especially as adapted by Vorobets
[Vor].

1.3 Structure of Veech Groups

A separatrix is a geodesic line emanating from a singularity, a saddle con-
nection is a separatrix connecting singularities (with no singularities on its
interior). To each saddle connection we can associate a holonomy vector: we
‘develop’ the saddle connection to the plane by using local coordinates, the
difference vector defined by the planar line segment is the holonomy vector.

1.3.1 Discreteness

The following theorem seems to be in the folklore of the subject, our proof
is modeled on that of Proposition 3.1 of [Vor]. See [M] for a second proof of
this fundamental result.

Proposition 1. Let (X,ω) be a translation surface. Then the set of holon-
omy vectors of saddle connections, Vsc(X,ω), is discrete in R2.

1The authors of [MT] have asked us to point out that this clarifies their statement of
the Veech Dichotomy.
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Sketch of Proof: We assume that the surface does admit singularities.
Since there are only finitely many of these singularities, it is clear that every
point p of the surface admits some positive ε(p) such that there is a punctured
disk of radius ε(p) centered at p that is void of singularities.

Choose any vector v ∈ R2. At each singularity, form every geodesic ray of
holonomy v. Each ray is in general a sequence of saddle connections followed
by a separatrix. Since there are only finitely many singularities and the total
angle at any of these is finite, there are only finitely many of these geodesic
rays. Let ε = min( ε(p) ), where p runs over the endpoints of the paths of
these geodesic rays.

Clearly, there is no saddle connection ending within the punctured ε-disk
about the end point of any of our geodesic rays. But, this means that v
cannot be the limit of holonomy vectors of saddle connections. Since v was
arbitrary, we find that Vsc(X,ω) is discrete.

1.3.2 Non-cocompactness

Again following Vorobets, one has an easy proof of the following result, orig-
inally due to Veech [Vch2].

Lemma 2. Let (X,ω) be a translation surface. Then the group SL(X,ω) is
a discrete subgroup of SL(2,R)

Sketch of Proof: Any A ∈ SL(2,R) acts so as to send saddle connections
of (X,ω) to saddle connections of A ◦ (X,ω). Let {An} ⊂ SL(X,ω) be a
sequence approaching the identity (where SL(2,R) has its usual topology),
An → I. Let v, w,∈ Vsc(X,ω) be linearly independent. Then Anv → v and
Anw → w. By discreteness of Vsc(X,ω), for n sufficiently large, Anv = v and
Anw = w. But v and w are linearly independent; they form a basis for R2.
Hence, for all large n we have that An = I. We conclude that SL(X,ω) is
discrete.

Standard terminology: a discrete subgroup of SL(2,R) is a Fuchsian
group.

Similiarly, SL(X,ω) is never cocompact: SL(X,ω) being cocompact would
simply mean that in the natural quotient topology SL(X,R)/SL(X,ω) is
compact. We disprove this by finding a continuous (nonnegative) real valued
function on SL(2,R) that is constant on cosets, but has no minimum value.
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Consider the function Λ : SL(2,R) → R+, given by
A 7→ l(A ◦ (X,ω) ), where l(X,ω) denotes the length of the shortest sad-
dle connection. If SL(X,ω) were cocompact, the function Λ would have a
minimum, say α > 0.

But, take any saddle connection. We can normalize by rotating (X,ω) so
that this saddle connection is in the vertical direction; we can send the length

to zero via the geodesic flow: gt :=

(
et/2 0
0 e−t/2

)
. Since both rotation and

geodesic flow are realized in SL(2,R), we clearly have a contradiction to the
minimality of α. We conclude that SL(X,ω) is not cocompact.

1.3.3 Parabolic Elements

It is a well-known fact for Fuchsian groups that any non-cocompact lattice
must have a parabolic element; see, say, [K]. Conjugating the group, the
parabolic fixed point may be taken to be infinity, the parabolic then acts as a
translation; the quotient can be informally envisioned as having a cone with
missing point at infinity, a cusp.

The following is a restatement of Lemma 3.7 of [Vor].

Lemma 3. Let Γ ⊂ SL(2,R) be a non-cocompact lattice, such that gtΓ is
divergent (i.e., leaves every compact set) in SL(2,R)/Γ. Then there is a

α 6= 0 with hα =

(
1 0
α 1

)
∈ Γ.

Thus, if Γ is a lattice, the only way a trajectory of the geodesic flow on
SL(2,R)/Γ can escape to infinity is via a cusp.

1.3.4 Affine Diffeomorphisms and Veech Groups

In fact, SL(X,ω) is the group of derivatives of orientation-preserving affine
diffeomorphisms. To sketch a proof of this, we take (X,ω) normalized such
that X has area one with respect to the area form, dλ, induced by ω. Let φ
be an orientation-preserving affine diffeomorphism of (X,ω). The derivative
of φ is its Jacobian derivative in the usual sense. With the real structure of
the translation surface, this derivative is a constant (off of the singularities)
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2× 2 real matrix. Thus

1 =

∫
X

dλ =

∫
φ−1(X)

|Jac(φ )| dλ = | Jac(φ) | .

Thus, the derivative of φ is of determinant one. In brief: Area preserving
implies determinant one. (By the way, it is a significant fact that the “deriva-
tive” map has finite kernel in Aff(X,ω) , [Vch2]: any φ whose derivative is
the identity is certainly an automorphism of the complex structure of X, in
genus greater than one, there are only finitely many of these.)

1.4 Proof of the Veech Dichotomy

Rotations leave the underlying structure unchanged, we can thus suppose
that the vertical direction is non-uniquely ergodic. This is only possible if
gtω is divergent, that is if gtSL(X,ω) leaves every compact set of the quotient
SL(2,R)/SL(X,ω); this follows from Masur’s Criterion , see Theorem 3 of
[M] and the sketch of its proof, given in §3 there. This criterion is key to
the proof; it is closely related to a combinatorial criterion of Boshernitzan
for non-unique ergodicity of an interval exchange transformation [B], [Vch]
and the discussion in [M].

By hypothesis, SL(X,ω) is a lattice; by our basic facts, it has a parabolic
element. In fact, since the vertical direction is divergent, there is a parabolic
element of the type given in Lemma 3. The next lemma shows that the
existence of a parabolic element implies important geometric information
about the translation surface (X,ω).

Lemma 4. Let hα be as above. If hα ∈ SL(X,ω), then X decomposes into a
finite number of vertical cylinders of moduli µi = pi

qi
α, pi, qi ∈ Z.

Proof. Denote the affine map with derivative hα by φ. Let Σ be the set of
singular points on (X,ω). Then, φ acts by permutation on Σ. At each pi ∈ Σ,
we have outgoing separatrices — geodesics emanating from the singularities,
see Figure 1.4. Let {L1, L2, . . . , Lk} denote the set of outgoing separatrices
in the vertical direction. Then φ also acts on this set by permutation; by
passing to a power ψ = φn, we can assume that ψ fixes both every singularity
and each of the Li.
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Figure 1.4: Vertical saddle connections. (Three outgoing, giving also three
incoming.)

The affine diffeomorphism ψ acts up to translation exactly as its deriva-
tive; the derivative fixes the vertical direction, and hence ψ restricted to any
Li acts as a pure translation. Since a translation with a fixed point can only
be the identity, we conclude that ψ fixes each vertical separatrix Li pointwise.

We claim that each Li is in fact an outgoing saddle connection. Indeed,
if a separatrix L is not a saddle connection, then it must in fact be dense in
some open subset U of X. But if Li is dense in some U , then ψ is identity
on U ; since hα 6= I, this leads to a contradiction.

Next, we claim that ALL vertical leaves are closed. Consider an arbitrary
point p ∈ X not lying on any of our Li. Let Ft denote the vertical flow on X.
If Ft(p) is not closed, then it is dense in some minimal component — see the
proof of Theorem 1.8 of [MT]. On the other hand, Ft(p) does not encounter
any singularity, as we have assumed that p is not on any of the Li. Hence, p
flows in parallel with the Li; in particular, the distance of any Ft(p) to the
Li cannot be made arbitrarily small. Thus, Ft(p) is certainly not dense; it
must be closed.
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We now have a cylinder decomposition of (X,ω) in the vertical direction.
The powers of the affine Dehn twist of a given vertical cylinder are of deriva-

tive

(
1 0
kµ 1

)
where µ is the modulus. Since dψ =

(
1 0
nα 1

)
is constant,

the moduli of the various vertical cylinders are all rational multiples of α.

So we have the Veech Dichotomy: if the flow is not uniquely ergodic,
it gives a divergent trajectory in H/PSL(X,ω), thus there is a parabolic
element in SL(X,ω), and we can then decompose our surface into cylinders
with commensurable moduli.

Remark 1. Note that the Theorem leads to a simple necessary condition for
a surface to be Veech: in each direction with a cylinder decomposition, the
moduli of the cylinders must be commensurable. That is, if there are two
cylinders with moduli µ1, µ2, µ1/µ2 /∈ Q, we are not on a Veech surface. In
fact, a Veech surface has a cylinder decomposition in the direction of any of
its saddle connections.

Consider our basic example, the square torus. In this case, SL(X,ω) =
SL(2,Z); it is thus a lattice, and Veech’s result recovers the result we men-
tioned as a theorem of Weyl.

1.5 Arithmeticity

1.5.1 Theorem of Gutkin and Judge

For surfaces that can be tiled by squares — called, most simply, square-tiled
surfaces —, we have that SL(X,ω) is commensurate to SL(2,Z) (the groups
share a common finite index subgroup) and thus (X,ω) is a Veech surface.
Any lattice that has a SL(2,R)-conjugate commensurate to SL(2,Z) is called
arithmetic. (This weaker type of relationship between groups is called com-
mensurability.) Let us say that a surface (X,ω) is tiled by parallelograms if
it is in the SL(2,R) orbit of a square-tiled surface.

One has the following theorem of Gutkin-Judge, for a simple proof see
[HL].

Theorem 5. (Gutkin–Judge) The surface (X,ω) is tiled by parallelograms
if and only if SL(X,ω) is arithmetic.
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In particular this theorem proves that all square-tiled surfaces are Veech,
since any arithmetic group is a lattice. This implies that any square-tiled
surface satisfies the Veech alternative; this difficult result had previously been
shown by Veech [Vch] using Boshernitzan’s criterion.

1.5.2 Consequences and Examples

Note that an arithmetic group need not be contained in SL(2,Z). For ex-
ample, consider the surface given by two unit volume squares placed one on
top of the other. This is a degree 2 cover of the torus, with a one-cylinder
decomposition, of modulus 1/2. Thus, in SL(X,ω) we have the element(

1 1/2
0 1

)
, that is obviously not in SL(2,Z) .

Another square-tiled surface provides a cautionary example. There exist
oriented affine diffeomorphisms of parabolic derivative that are not formed
by taking powers of Dehn twists in the cylinder decomposition of the cor-
responding fixed direction. (However, as Veech [Vch] showed, some finite
power of such an affine diffeomorphism is given in such a manner.) Consider
the genus two square-tiled surface formed by 3 squares stacked one on top of
the other, with top and bottom identified, and side segments identified such
that there is a single singularity of total angle 6π. Then one can show that

there is an affine diffeomorphism of derivative

(
1 0
1 1

)
; however, it is the

cube of this matrix that corresponds to the fundamental vertical Dehn twist
here. For more on this, see [HL].

The Gutkin-Judge result implies that any surface of arithmetic Veech
group is a branched cover of the torus, with branching above one sole point.
In general there are surfaces that have the same (or commensurate) Veech
group, but are not related by any tree of finite covers that are “balanced”,
see [HS2].

The group Γ =<

(
1 3
0 1

)
,

(
1 0
3 1

)
> is not commensurable to any

Veech group [GHS]. Indeed, it is known that any Veech group with a hyper-
bolic element of trace in Q must be arithmetic [KS, Mc], and in particular a
lattice. The group Γ however, is not a lattice, but possesses hyperbolic ele-
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ments. Note that any finite-index subgroup H of Γ then includes hyperbolic
elements with rational trace. The same is thus true for any group commen-
surable to Γ, and our result follows.

In any fixed stratum, the set of square-tiled surfaces of that stratum is
dense. Indeed, integration of ω along its periods relative to the singulari-
ties provides local coordinates for the stratum, see [E]; these coordinates are
contained in Q + iQ exactly when (X,ω) is square-tiled. Thus, density of
Q + iQ in C gives the result. On the other hand, Gutkin and Judge gave
an argument showing that in any stratum the set of Veech surfaces is of
measure zero (if g ≥ 2) — see [M] for the definition of this measure. This
is loosely analogous to the fact that the rationals are of measure zero in the
real numbers.

1.5.3 Non-arithmetic Surfaces Exist

Non-arithmetic lattice Veech groups exist. In fact, our other favorite example
— the surface arising from the (π/5, π/5, 3π/5)-triangle —, has Veech group
that contains < S,R >, where S is the aforementioned diffeomorphism that
induces the Dehn twist on each of the two vertical cylinders, and R the order
five rotation. In fact, this is the entire Veech group. This group is a lattice;
moreover, it is non-arithmetic.

This Veech group is (conjugate to) a well-known group, a so-called Hecke
group. The Hecke group of index n is Γn =< z → −1/z, z → z+2 cos(π/n) >.
The group above is conjugate to Γ5. In fact, Veech showed that each Hecke
group of odd index n, as well as a subgroup of index two in each even index
case, is also realized as a Veech group. All but three of these are non-
arithmetic groups, and are known to be pairwise incommensurable [L].
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Chapter 2

State of the Art

In this new century, two perspectives on Veech groups have been fruitful.
The first, of a longer tradition, employs so-called scissor invariants of linear
flows on the translation surface (X,ω). The second, pioneered by McMullen
[Mc], emphasizes the algebro-geometric aspects of the Riemann surface X
imposed by characteristics of SL(X,ω).

2.1 Background: Scissor Invariants

Kenyon and Smillie [KS] introduced an invariant for translation surfaces,
called the J-invariant; this invariant is an extension of the Sah-Arnoux-Fathi
invariant used for the study of interval exchange transformations. Calta [Ca]
has recently used the J-invariant to characterize the Veech surfaces in the
stratum of genus 2 surfaces with a single singularity; this stratum is denoted
H(2), see §2 of [M].

Definition 1. Let P be a planar polygon of vertices v1, . . . , vn. We define
J(P ) as v1 ∧ v2 + v2 ∧ v3 + · · ·+ vn−1 ∧ vn + vn ∧ v1 ∈ R2 ∧Q R2.

This is indeed a scissors invariant, in the following sense.

Proposition 2. Suppose that P = P1 ∪ · · · ∪ Pk is a cellular decomposition
of P into polygons Pi. Then J(P ) = J(P1 ) + · · ·+ J(Pk ).

Now, any translation surface can be given as a finite union of polygons,
with appropriate side identification; indeed, some authors define the notion
of translation surface in this way, see Definition 4 of [M]. If (X,ω) is a

21
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translation surface, and (X,ω) = P1 ∪ · · · ∪ Pk is a cellular decomposition of
Σ into polygons Pi, then we define J(X,ω) as the sum of the J(Pi).

Theorem 6. (Kenyon-Smillie) The value J(X,ω) is independent of choice
of polygonal cellular decomposition of (X,ω).

One has the possibility of studying various projections of the J-invariant.
In particular, the Sah-Arnoux-Fathi invariant can be recovered in this man-
ner. Consider

πxx : R2 ∧ R2 → R ∧ R(
a
b

)
∧

(
c
d

)
7→ a ∧ c .

We define Jxx as πxx(J) and Jyy analogously. Let T : I → I be an interval
exchange transformation on a real interval I, with the lengths of the ith
subinterval denoted by λi, 1 ≤ i ≤ n. For i ∈ {1, . . . , n}, let ti ∈ R denote the
translation applied to the ith subinterval. The Sah-Arnoux-Fathi invariant
is defined as

SAF(T ) =
n∑

j=1

λj ∧ tj ∈ R ∧Q R .

The set of all interval exchange transformations on I forms a group under
composition of functions; Arnoux [A2], see also [A], showed that the SAF-
invariant defines a group homomorphism to R ∧Q R. Furthermore, since the
commutator subgroup of the group of interval exchange transformations is a
simple group, the SAF-invariant gives what is essentially the only non-trivial
homomorphism defined on the group.

The fundamental property of the SAF-invariant is its invariance under
induction:

Proposition 3. (Arnoux) Let T be an interval exchange transformation
on an interval I, and suppose that K ⊂ I is a subinterval that meets every
orbit of T . Let S denote the interval exchange transformation induced on K
by T . Then SAF(S) = SAF(T ).

The following is crucial in the work of Calta.

Remark 2. One easily shows that if T is periodic, then SAF(T ) = 0. Fur-
thermore, an interval exchange transformation T of three subintervals is pe-
riodic if and only if SAF(T ) = 0. This last is directly related to rotations:
let Rα denote the rotation of angle α ∈ R; this map of the circle to itself is
periodic if and only if α ∈ Q.
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Note, however, Arnoux and Yoccoz [AY] constructed an interval exchange
transformation T of 7 subintervals with SAF(T ) = 0, but such that T is
minimal, and in fact uniquely ergodic. The geometry of this interval exchange
transformation is extremely interesting, see [A3].

The invariance under induction of interval exchange transformation of
the SAF-invariant affords the possibility of defining an SAF-invariant for a
measured foliation F of a surface: Choose a normalized full transversal I
for F , thus in particular this interval I meets all leaves of F , and define
SAF(F) = SAF(T ), where T is the interval exchange transformation defined
on I by the first return map along leaves of F . This invariant is independent
of choice of I.

Kenyon and Smillie easily show the following.

Proposition 4. Let (X,ω) be a translation surface. Then Jxx(X,ω) equals
the SAF-invariant for the vertical foliation of (X,ω); similarly, Jyy(X,ω)
equals the SAF-invariant for the horizontal foliation of (X,ω).

It is deft use of the J-invariant that allows Kenyon-Smillie to reach the
main result of [KS], that in turn lead to the following sobering result.

Theorem 7. (Kenyon–Smillie, Puchta) Suppose that T is an acute, non-
isosceles, rational-angled triangle, and that (X,ω) is the translation surface
associated to T by the usual unfolding process. Then (X,ω) is a Veech surface
if and only if T has angles:

(a) (π/4, π/3, 5π/12) , (b) (π/5, π/3, 7π/15) , or (c) (2π/9, π/3, 4π/9) .

Kenyon and Smillie also show that an acute, isosceles, rational-angled
triangle gives a Veech surface if and only if the smallest angle is of the form
π/n.

2.2 Results of Calta

A translation surface (X,ω) is said to be completely periodic if for every
direction whose linear flow admits a periodic orbit, and hence a cylinder,
(X,ω) admits a decomposition into cylinders in this direction. Clearly, Veech
surfaces are completely periodic. The converse is in general false; consider
the slit torus examples of [M], see also [HS3], [Mc2]. However, one has the
following.
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Theorem 8. (Calta) A translation surface belonging to H(2) is completely
periodic if and only if it is a Veech surface.

Furthermore, in this stratum, every non-arithmetic Veech surface is
“quadratic” in the sense that up a change within the SL(2,R)-orbit, all of its
(absolute) periods are contained in some real quadratic field. Here, the ab-
solute periods of (X,ω) are the periods of ω: p(γ) =

∫
γ
ω with γ ∈ H1(X,Z);

thus the result is that p( H1(X,Z) ) ⊂ Q(
√
d) × Q(

√
d), with d > 0 a non-

square integer. Amongst all quadratic translation surfaces, Calta gives equa-
tions distinguishing the Veech surfaces.

The main idea of the proof is to introduce the following intermediate
property. Here, given a direction v, the projection Jvv is defined analogously
to Jxx and Jyy.

Definition 2. A direction is called a homological direction for (X,ω) if it is
the direction of some absolute period of ω. A translation surface has Property
X if for every homological direction v one has Jvv = 0.

Every periodic direction of course has a representative in p( H1(X,Z) );
Property X may be thought of as being “virtually” completely periodic —
every direction that is a candidate to be completely periodic passes the test
of vanishing of the corresponding projection of the J-invariant.

Calta’s proof of Theorem 8 consists of showing that for translation sur-
faces of H(2) the three properties are equivalent: Property X, completely
periodic, Veech. One easily shows that Property X does imply complete pe-
riodicity here — this is an application of Remark 2, and strongly depends
on the genus being 2. The converse is significantly more complicated, and
Calta uses explicit quadratic equations. A number theoretic argument shows
that the SL(2,R)-orbit of a translation surface with Property X is closed in
H(2); by Smillie’s Theorem, announced in [Vch3], the surface must then be
Veech.

An analogous discussion allows Calta to show that the completely periodic
surfaces of the remaining stratum of genus 2 translation surfaces, H(1, 1), are
also quadratic, and to again give explicit equations.

One can give a geometric interpretation of Calta’s work, that can be
compared to the appearance of Hilbert modular surfaces in the work of Mc-
Mullen, see below. Beginning with a completely periodic surface in H(1, 1),
consider the SL(2,R)-orbits of the surface found by fixing the absolute peri-
ods and deforming the relative periods; here “relative” means relative to the
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singularities. Thus, one considers the SL(2,R)-orbits of the various surfaces
found by varying the position of the zeros of ω. The result, M, is a closed
sub-manifold of H(1, 1) ∪ H(2) of real dimension 5. The intersection of M
with H(2) is a finite union of SL(2,R)-orbits of Veech surfaces.

2.3 McMullen’s Approach

The approach emphasized by McMullen [Mc] studies properties of the Rie-
mann surfaceX implied by hypotheses on the group SL(X,ω). Any affine dif-
feomorphism φ of (X,ω) is such that the pull-back map φ∗ acts on H1(X,R)
so as to preserve the two dimensional real subspace V generated by the real
and imaginary parts of ω. If φ has derivative Dφ hyperbolic of trace t, then
T ∗ := φ∗ + (φ∗)−1 acts on V as multiplication by t. McMullen relates this to
the structure of the endomorphism ring of the Jacobian of X.

2.3.1 Algebro-Geometric Background

We briefly recall some standard terminology and results from algebraic ge-
ometry, see the textbooks [Ha], [GrHa], [FK]; the classic reference on abelian
varieties is [Mu]; for a constructive treatment of real multiplication see [BL],
as well as [R]. See [Hi] or [vdG] for an introduction to the study by the
school of F. Hirzebruch of the geometry and arithmetic of Hilbert modular
surfaces. Our discussion closely follows §4 of [Mc3].

The Jacobian

Key to our discussion is the g-complex dimensional vector space Ω(X) of
1-forms on a Riemann surface X of genus g. Indeed, whereas the results
discussed so far are related to the flat structure induced on X by integration
of a single 1-form, we now fix a base point and consider integration of a vector
whose entries form a basis for Ω(X). This gives a map to Cg that is only
well-defined after dividing by the lattice formed by the integrals along closed
curves. The result is the famed Abel-Jacobi map from X to the complex torus
defined as the Jacobian variety of X, Jac(X).

The celebrated Riemann Relations show that Jac(X) is a principally po-
larized abelian variety: It is in particular a complex torus equipped with an
embedding into complex projective space. Expressing Jac(X) as Ω∗(X)/H1(X,Z),
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one avatar of the polarization is as a symplectic form on H1(X,Z). In fact,
the intersection pairing on H1(X,Z) gives this symplectic form. Of course,
as real vector spaces, Ω∗(X) and H1(X,R) are isomorphic; we can thus view
Ω∗(X) as H1(X,R) with a complex structure. See chapter 4 of [Cl] for a
discussion of related canonical isomorphisms.

Real Multiplication by a Field; Eigenforms

Given any principally polarized abelian variety A ∼= Cg/Λ, the polarization
of A equips Λ ∼= H1(A,Z) ∼= Z2g with a symplectic form. The endomorphism
ring End(A) consists of the Lie group homomorphisms of A; each endomor-
phism respects the Hodge decomposition H1(A,C) ∼= H(1,0) ⊕ H(0,1) and
induces an endomorphism of Λ.

A field K is called totally real if it is a number field all of whose embed-
dings fixing Q have image in R. Given a totally real field K with [K : Q] = g,
we say that A admits real multiplication by K if there is a faithful represen-
tation ρ : K → End(A)⊗Q such that each ρ(κ) is self-adjoint with respect
to the induced symplectic form on Λ ⊗ Q. The holomorphic 1-forms on A
form the g-dimensional C-vector space Ω(A) ∼= H(1,0). Since ρ(K) respects
the Hodge decomposition, K acts on Ω(A) in a complex linear fashion. An
eigenvector for this action is called an eigenform for the real multiplication
of A. The action can always be diagonalized: Ω(A) = ⊕Cωi for g eigenforms
ωi, thus there are eigenforms for any real multiplication.

In the case that A = Jac(X), we can speak of ω ∈ Ω(X) as being an
eigenform. Indeed, given real multiplication on Jac(X) ∼= Ω(X)∗/H1(X,Z),
one finds that the eigenforms are exactly the eigenvectors for the dual action
on Ω(X). The eigenform locus in ΩMg is the space of (X,ω) with ω an
eigenform.

Remark 3. With only slight complication of the above, one can define real
multiplication on an abelian variety of complex dimension g by a product K
of totally real fields Ki, with

∑
[Ki : Q] = g.

Endomorphisms to Real Multiplication

The integral points o = K ∩ End(A) of elements of K which act as endo-
morphisms of A form an order of K. That is, o is a finite-index subring of
OK , where OK is the product of the rings of algebraic integers of the Ki.
Of course, given an order o ⊂ K, and any faithful representation of o as
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self-adjoint endomorphisms of A, there is an induced real multiplication of
A by K.

Indeed, suppose that some totally real algebraic integer t acts as an endo-
morphism T on an abelian variety A. Then one finds that Z[t] ⊂ End(A ), by
extending the map t 7→ T in the usual manner. Tensoring with Q, one finds
that A admits real multiplication by Q(t). Thus, a single endomorphism can
induce real multiplication by a field.

Families with Real Multiplication by an Order

The appropriate level of abstraction is obtained by fixing a symplectic form
on a lattice L ∼= Z2g, and considering the injective homomorphisms ρ which
send o to End(L) as self-adjoint endomorphisms. One then says that A
admits real multiplication by (o, ρ) if there is a symplectic isomorphism of L
with H1(A,Z) such that ρ(o) coincides with the restriction of End(A).

The space of all abelian varieties admitting real multiplication by some
(ρ, o) can be determined in the following constructive manner. Tensoring the
rank two o-module L with R allows us to find a decomposition into orthogonal
eigenspaces, each of real dimension two: L⊗R ∼= ⊕g

i=1 Si . Fix i, and choose
some positively ordered symplectic basis (ai, bi) for Si; to each τi ∈ H, we
have an R-linear map from C to Si induced by sending 1 to ai and τi to bi.
Note that in particular this map respects the orientation of R2 ∼= Si.

Each τ := (τ1, . . . , τg) ∈ Hg thus determines an isomorphism of real
vector spaces that takes L⊗R to Cg and thus induces a symplectic structure
on Cg; the image of L⊗ 1 is a lattice. The quotient, Aτ , of Cg by this lattice
has real multiplication by (o, ρ).

Every abelian variety admitting real multiplication by (o, ρ) arises in this
fashion. Indeed, given some A = Cg/Λ, take Λ as L and use the symplectic
form given by the principal polarization. Choose an integral basis for Λ and
a compatible splitting of Cg; we may assume that the basis of Λ is of the
form (1, bi) with bi ∈ H. With τ = (b1, . . . , bg), we find that Aτ = A.

Hilbert Modular Varieties

Given L and (o, ρ) as above, let Sp(L⊗ R) ∼= Sp(2g,R) denote the R-linear
operators on L ⊗ R which respect the symplectic form. Those symplectic
automorphisms that commute with the action of o preserve the splitting
L ⊗ R ∼= ⊕g

i=1 Si . Therefore, each such automorphism acts on the set of
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complex structures on L ⊗ R that are compatible with the splitting. Since
these complex structures are indexed by Hg, one finds that the subgroup
of symplectic automorphisms that commute with the action of o is the im-
age of an injective homomorphism ι : SL(2,R)g → Sp(L ⊗ R). The integral
points Γ(o, ρ) := ι( SL(2,Z)g ) are exactly the automorphisms of the symplec-
tic o-module L. The group Γ(o, ρ) acts isometrically on Hg as elements of
SL(2,Z)g, the finite volume quotient X(o, ρ) := Γ(o, ρ)\Hg, called the Hilbert
modular variety of (o, ρ), parametrizes pairs (A, o → End(A) ) compatible
with ρ. There is a natural forgetful map from X(o, ρ) to Ag, the coarse mod-
uli space of principally polarized abelian varieties — one forgets the maps
o → End(A).

Multiplication by a Real Quadratic Order

When g = 2, there are two facts that simplify the above. First, it is well-
known that the orders o in real quadratic fields are uniquely determined by
their discriminants D = D(o) ∈ Z; we thus write oD. Second, for each such
oD, there is essentially a unique representation ρD : oD → Z4 which respects
the standard symplectic form on Z4; see say Theorem 2 of [R]. One thus finds
a single Hilbert modular surface for each discriminant, XD := X(oD, ρD).

Furthermore, one can give an explicit model for each of these. Let σ
denote the non-trivial element in Gal(K/Q); for M ∈ SL(2, K), let Mσ

denote the matrix whose elements are the images by σ of the corresponding
elements of M . Then SL(2, K) acts on H2 by M ◦ (z1, z2) = (Mz1,M

σz2 ),
where elements of SL(2,R) act on H in the usual manner. One can show
that XD

∼= SL(2, oD)\H2.
For each of these XD, the forgetful map to A2 is generically 2-to-1: ho-

momorphisms from oD to End(A) are conflated with their compositions with
σ. This forgetful map factors through the symmetric Hilbert modular sur-
face formed as the quotient of XD by the involution induced by the standard
permutation on H×H. The image variety in A2 is called a Humbert surface,
after the work of G. Humbert in the late 19th century.

2.3.2 McMullen’s Action by the Trace Field

With φ an affine diffeomorphism of hyperbolic derivative Dφ having trace t,
consider T = φ∗+(φ∗)

−1 acting on H1(X,R). Since φ preserves intersections,
it is easy to show that T is self-adjoint with respect to the corresponding
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symplectic form. Since the pull-back of any affine diffeomorphism leaves
V ⊂ H1(X,R) invariant, T leaves invariant the annihilator of V , defined as
the space of cycles upon which all elements of V vanish.

In genus two, the annihilator and its orthogonal complement are both of
real dimension two, giving thus complex lines in Ω∗(X). The self-adjoint T
acts on each of these eigenspaces as multiplication by a real number. That is
to say, T induces an endomorphism of Jac(X). When t is quadratic over Q,
the map t 7→ T as discussed in the treatment of real multiplication in §2.3.1
shows that Jac(X) admits real multiplication by K = Q(t).

The field K is independent of choice of hyperbolic element in SL(X,ω);
see the appendix of [KS] for the following: since those φ with Dφ hyperbolic
are in fact pseudo-Anosov maps, earlier results allow one to prove both that
(1) K is the full trace field of SL(X,ω), defined as the field generated by
adjoining to Q the traces of all elements of the group; and, (2) [K : Q] ≤ g.
Furthermore, see say Lemma 8 on p. 167 of [FLP], t is an algebraic integer.

2.3.3 Projecting Orbits to Mg and Ag

The projection π : ΩMg → Mg is constant on orbits of SO(2,R). On the
other hand, the stabilizer of z = i under the transitive action of SL(2,R)
by Möbius transformations on the Poincaré upper half-plane, H, is SO(2,R).
There is thus a map H → Mg that factors through SL(X,ω)\H. In fact,
it is of great importance that this image in Mg is isometrically immersed
with respect to the so-called Teichmüller metric, see [EG] for discussion of
this metric in terms related to SL(2,R). The image in Mg is an algebraic
curve if and only if SL(X,ω) is a lattice, in which case this image is called a
Teichmüller curve in Mg.

The Torelli map τ : Mg → Ag is defined by sending each X to Jac(X);
for a discussion of the geometry of this map, see [Mu2]. In dimension g = 2,
in fact A2 = τ(M2 )tH1, where H1 is the locus of abelian varieties that split
as a product of two polarized elliptic curves. In particular, the Torelli map
has dense open image in A2; there is thus a tendency in the literature to slur
over the distinction of certain loci as being in one or the other of the spaces
M2 and A2. For simplicity, call the map ΩMg → Ag, given by composing
the Torelli map with π, the projection to Ag.
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2.3.4 A Selection of Results

The fundamental observation of McMullen is that as soon as a translation
surface (X,ω) with X of genus 2 admits a hyperbolic element in SL(X,ω),
then Jac(X) admits real multiplication by the trace field of SL(X,ω), with
ω an eigenform for this multiplication. The following result, false in higher
genus, is crucial to McMullen’s study in genus two.

Theorem 9. (McMullen) The eigenform locus in ΩM2 is SL(2,R)-invariant.

The main result of McMullen on Teichmüller curves in M2 is the follow-
ing.

Theorem 10. (McMullen) Suppose that SL(X,ω) is a non-arithmetic lattice
and X is of genus 2. Then the SL(2,R)-orbit of (X,ω) projects to A2 to be
an algebraic curve contained in some symmetric Hilbert modular surface.

In fact, Remark 3 can be invoked to show that in genus 2 if SL(X,ω)
is arithmetic, then Jac(X) admits real multiplication by Q × Q, and the
SL(2,R)-orbit then projects to an appropriate symmetric Hilbert modular
surface [Mc3].

The previous theorem easily leads to the following result, which can also
be deduced from Calta’s results.

Theorem 11. (McMullen) Suppose that (X,ω) ∈ H(2). If there is a hyper-
bolic element in SL(X,ω), then (X,ω) is a Veech surface.

The situation is completely different for H(1, 1). Indeed, let D denote the
translation surface given by identifying by translation opposite sides of the
regular decagon. In [Mc4], McMullen conjectured, and in [Mc5] proves, the
following.

Theorem 12. (McMullen) The only non-arithmetic Veech surface of H(1, 1)
is D.

McMullen [Mc4] gives an algorithm for determining those (X,ω) whose
SL(2,R)-orbit projects to a Hilbert modular surface for a given discriminant
of order. In particular, he shows that Veech’s original examples of a double
pentagon and a double decagon account for all lattice groups giving rise to
curves on the symmetric Hilbert modular surface of real multiplication by
the order with discriminant D = 5.
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Remark 4. For reasons of time and space, we have not discussed an impor-
tant aspect of the projections of SL(2,R)-orbits in ΩMg to each of Mg and
Ag: These projections are isometries for the appropriate metrics. This result
is due to Kra [Kr]. This isometry is in some sense what allows one to use
the structure of the homogenous space Ag to study Veech groups. As well,
there are many curves in moduli space, but very few of them are isometrically
embedded with respect to the Teichmüller metric.

Using the above, McMullen [Mc3] proves an analog of the celebrated
Ratner Theorem, see [E].

Theorem 13. (McMullen) The closure of the SL(2,R)-orbit of any (X,ω) ∈
ΩM2 projects to M2 as exactly one of the following: an algebraic curve; a
Hilbert modular surface; all of M2.

In recent work, M. Möller [Moe] has extended McMullen’s result for lattice
SL(X,ω). In particular, for g > 2, he shows that even though the action by
the trace field identified by McMullen may not extend to the full Jacobian of
X, it does identify special properties, which he studies in terms of variation of
Hodge structures. (For an introduction to this study of splittings of bundles
generalizing the study of the Hodge decomposition, see [Voi].) An isogeny
of an abelian variety is a surjective morphism of algebraic varieties to some
abelian variety, and this morphism is a group homomorphism, of finite kernel.
(Isogenous abelian varieties are thus morally equivalent.)

Theorem 14. (Möller) Suppose that SL(X,ω) is a lattice. Then the SL(2,R)-
orbit of (X,ω) projects to Ag to be an algebraic curve contained in the locus
parametrizing abelian varieties A splitting up to isogeny to a product A1×A2,
where A1 admits real multiplication by the trace field of SL(X,ω).

2.4 Infinitely Generated Veech Groups

In [Vch3], Veech asked if a SL(X,ω) can ever be an infinitely generated
Fuchsian group. This has recently been answered in the affirmative, [HS3],
[Mc2].

Theorem 15. ([HS3]) For each genus g ≥ 4, there exist (Y, α) ∈ ΩMg

with SL(Y, α) infinitely generated. In particular, the genus four translation
surface arising from the triangle of angles (3π/10, 3π/10, 2π/5) has infinitely
generated Veech group.
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Theorem 16. (McMullen) Suppose that (X,ω) ∈ ΩM2 is such that SL(X,ω)
admits a hyperbolic element. Then the limit set of SL(X,ω) is the full bound-
ary ∂H. Furthermore, there exist infinitely many distinct (X,ω) ∈ ΩM2 with
SL(X,ω) infinitely generated.

2.4.1 Commonalities of Proofs

Other than the specifics of the examples, the proofs of these two results have
common logic, both beginning with the fact that a non-lattice Fuchsian group
whose limit set is all of ∂H must be infinitely generated. Now, it is often
quite easy to show that the Veech group of a given translation surface is not
a lattice: simply exhibit a saddle connection in whose direction the surface
does not admit a decomposition into cylinders of commensurable moduli.

To show that the limit set of the Veech groups under consideration in the
two theorems have all of ∂H as limit sets, both proofs show that the parabolic
directions of the corresponding translation surfaces — that is, the directions
for which there is a cylinder decomposition with commensurable moduli, and
thus a corresponding parabolic element in the group — form a dense set in
the unit circle of all directions. In both cases, one exhibits some point p ∈ X
such that every direction in which there is a separatrix passing through p is
in fact a parabolic direction. This is the difficult step in each proof.

2.4.2 Sketch: Proof of Theorem 16

Suppose that X is of genus two and SL(X,ω) admits a hyperbolic element,
of trace say t. Let K = Q(t) be the trace field. By results of the appendix of
[KS], one can assume that the relative (to the singularities of ω) periods of
ω on X lie in K(i). Let φ be an affine diffeomorphism corresponding to the
hyperbolic element. As in the previous section, T ∗ := φ∗ + (φ∗ )−1 acts as
multiplication by t on V , the real subspace spanned in H1(X,R) by the real
and imaginary parts of ω. Once again, we let σ denote the non-trivial Galois
group element. One finds that T ∗ thus acts as multiplication by σ(t) on the
subspace V σ spanned by the real and imaginary parts of σ(ω). Since T ∗ is
appropriately self-adjoint, V and V σ are orthogonal. One thus has that the
integral over X of each of ω ∧ σ(ω) and ω ∧ ¯σ(ω) is zero, where the bar here
denotes complex conjugation. From this,

∫
X
ρ∧σ(ρ) = 0 when ρ is the closed

real form associated to any directional flow of slope in P1(K) = K ∪ {∞}.
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However, if f is the interval exchange transformation on a transversal
of the measured foliation associated to ρ, then

∫
X
ρ ∧ σ(ρ) = flux(f), where

flux(f) is a version of the SAF-invariant introduced by McMullen, the Galois
flux: Suppose that all the translations for some interval exchange transfor-
mation T are contained in some quadratic number field K, then one defines

flux(T ) =
n∑

j=1

λjσ(tj) ∈ R .

Now, if this flux vanishes, then the directional flow for ρ cannot be
uniquely ergodic. But, Masur’s criterion now tells us that gtSL(X,ω) leaves
every compact set. This implies in turn that there are very short saddle
connections on the corresponding translation surfaces gt ◦ (X,ω) for large
t. Using the quadratic nature of K, elementary Diophantine approximation
considerations (to wit: quadratic numbers cannot be well-approximated by
rationals) then allow McMullen to conclude that for t sufficiently large, such
a short saddle connection must in fact lie in the direction of the foliation.
Restricting to genus 2, he then can give a complete analysis of such loops,
to conclude that either the foliation is periodic, or else surgery along a leaf
presents (X,ω) as a connected sum of irrationally foliated tori. In particular,
it turns out that if there is a Weierstrass point lying on a saddle connection
in the direction of flow for ρ, then this a parabolic direction.

However, (upon developing (X,ω) such that a singularity lies at the ori-
gin, every developed image of ) each non-singular Weierstrass point has co-
ordinates in K. Thus, any separatrix passing through a non-singular Weier-
strass point lies in a direction whose slope is in P1(K). From the above,
this direction is hence a parabolic direction. But, for any given point of a
translation surface, the directions of separatrices passing through this point
are dense, see say Lemma 1 of [HS3]. The density of parabolic limit points
then follows.

Remark 5. A side-product of the above is that a Veech surface of genus
two defined over Q(

√
d) allows a normalization such that the set of slopes of

its periodic directions equals Q(
√
d) ∪ {∞}, see also [Ca]. This is specific to

genus two, see [AS].

McMullen [Mc3] gives an infinite family of genus two translation surfaces
of infinitely generated Veech group by explicit construction, see Figure 1
there. Indeed, given 3 squares, of side length 1, a and a + 1 respectively,
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one can place these squares so as to construct a genus two surface. If a is
irrational of the form b− 1 +

√
b2 − b+ 1 for non-zero b ∈ Q, then the Veech

group of the translation surface is infinitely generated.

2.4.3 Sketch: Proof of Theorem 15

On the other hand, the proof of Theorem 15 constructs examples by use
of ramified covers of Riemann surfaces f : Y → X: the pull-back α =
f ∗(ω) can have an infinitely generated group even if SL(X,ω) is a lattice.
(Some background for this can be found in [HS].) Indeed, suppose that
the ramification is at the singularities of ω and at a point p — called a
connection point — such that every separatrix of (X,ω) passing through p
extends to a saddle connection. Again by Lemma 1 of [HS3], this is a dense
set of directions. Since SL(X,ω) is a lattice, the direction of any saddle
connections is a parabolic direction; one easily shows that each of our dense
set of parabolic directions for (X,ω) is a lattice, the direction of any saddle
connections is a parabolic direction; one easily shows that each of our dense
of parabolic directions for (X,ω) is also a parabolic direction for (Y, α). It
follows that the parabolic limit points of SL(Y, α) are dense.

The main part of the proof of Theorem 15 consists of showing that there
are (X,ω) with connection points p such that the corresponding SL(Y, α) is
not a lattice. For this, it suffices to show that one can find points that are at
the same time connection points and have infinite orbit under the group of
oriented affine diffeomorphisms. Amusingly enough, the genus two example
of Figure ?? admits such points. After an innocuous normalization, these are
the points of coordinates in Q(

√
5) (other than the regular Weierstrass points,

which are given by the middle of the sides). This results from the fact that the
parabolic (limit) points of Γ5 (recall that this is the Veech group here, up to a
normalization) is Q(

√
5), [L]. This latter fact can be recovered by direct use

of Remark 5. By way of [HS], one then finds that the translation surface to
which the triangle angles (3π/10, 3π/10, 2π/5) unfolds is a ramified cover of
the genus two example, with ramification above singularities and connection
points.

In [HS4], it is shown that the geometry of the projection to Mg of the
SL(2,R)-orbit of such (Y, α) is very complicated: SL(Y, α) has infinitely many
non-equivalent parabolic points and infinitely many “infinite ends”.
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2.5 Classification

The fundamental classification problem of determining when two given trans-
lation surfaces are in the same SL(2,R)-orbit seems far from being resolved.
Indeed, this remains open even for square-tiled surfaces, with the exception
of the stratum H(2).

In the setting of square-tiled surfaces, it suffices to classify the primitive
square-tiled surfaces: those such that the lattice generated by their relative
periods is Z2. One easily shows that in this setting SL(X,ω) ⊂ SL(2,Z).
There is an action of SL(2,Z) on the set of primitive square-tiled surfaces of
fixed number of squares, n; two such surfaces are in the same SL(2,R)-orbit
if and only if they are in the same SL(2,Z)-orbit.

In H(2), the position of the Weierstrass points give an invariant for the
SL(2,Z)-action. Informally: given a surface of our type, we develop in such
a manner that singularity lies at the origin, the six Weierstrass points then
each has coordinates that are integers are half-integers. To be more precise,
one explicitly parametrizes the square-tiled surfaces of H(2), as in [EMS],
[Z].

Proposition 5. ([HL]) The number of integer coordinate Weierstrass points
of a square-tiled surface of H(2) is invariant under the action of SL(2,Z).

If the number n of square tiles is even, there are two such Weierstrass
points; if n is odd, there are either three or one such point. The invariant
completely classifies the orbits.

Theorem 17. ([HL], McMullen) Given an integer n ≥ 3, the square-tiled
surfaces of H(2) form two SL(2,Z)-orbits if n is odd and n ≥ 5; they form a
single orbit if either n is even or n = 3.

The theorem was first proved in [HL] for prime n. McMullen generalized
this to not only square-tiled surfaces, but also so as to give an analogous
result for all Veech surfaces of H(2).

Combining Theorem 17 with a counting formula given by [EMS] shows
that the genus of Teichmüller curves defined by primitive square-tiled surfaces
tends to infinity with the number of tiles. This can be compared with the fact
that there are no explicitly known Teichmüller curves of positive genus arising
from non-arithmetic surfaces of H(2). (One expects that in fact almost all
of these are of positive genus.)
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Figure 2.1: A square-tiled surface with SL(X,ω) = SL(2,Z).

One can also show the group SL(X,ω) for a primitive square-tiled surface
is a congruence subgroup of SL(2,Z) only in the case of surfaces of three
square tiles. See [S] for an example of a non-congruence subgroup, and [HL2]
for the general case. Nevertheless, there are non-trivial examples of square-
tiled surfaces whose group is exactly the full group SL(2,Z), see [S]. There
has been work on this phenomenon by Herrlich, Schmoll, as well as by Möller.
We thank M. Möller for kindly providing Figure 2.1, which represents one
such surface.

2.6 Questions

We conclude with some more open questions.

1. Is there a general converse to the Veech Dichotomy (as found by Mc-
Mullen for genus g = 2)?

2. Which Fuchsian groups are realized as Veech groups?

3. Is there an algorithm for determining the Veech group of a general
translation surface?

4. Do there exist non-trivial Veech groups without parabolic elements?
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et une translation sur le tore, Bull. Soc. Math. France 116 (1988), no.
4, 489–500.

[AS] P. Arnoux and T. A. Schmidt, Fractions continues commensurables, in
progress.

[AY] P. Arnoux and J.-C. Yoccoz, Construction de difféomorphismes pseudo-
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ity, Ann. Scient. Éc. Norm. Sup., t. 36 (2003), 847–866.

[GJ] E. Gutkin and C. Judge, Affine mappings of translation surfaces: Ge-
ometry and arithmetic, Duke Math. J. 103 (2000), 191 – 213.

[Ha] R. Hartshorne, Algebraic Geometry, Grad. Text Math. 52, Springer-
Verlag, Berlin, 1977.

[Hi] F. Hirzebruch, Hilbert Modular Surfaces, Enseign. Math.19 (1973), 183–
281.
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[L] A. Leutbecher, Über die Heckeschen Gruppen G(λ). II. Math. Ann. 211
(1974), 63–86.

[Mc] C. T. McMullen, Billiards and Teichmüller curves on Hilbert modular
surfaces, J. Amer. Math. Soc. 16 (2003), no. 4, 857–885 (electronic).

[Mc2] ———, Teichmüller geodesics of infinite complexity, Acta Math. 191
(2003), 191–223.

[Mc3] ———, Dynamics of SL(2,R) over moduli space in genus two,
preprint. Available at:
http://abel.math.harvard.edu/∼ctm/papers/index.html

[Mc4] ———, Teichmüller curves in genus two: the decagon and beyond,
preprint. Available at:
http://abel.math.harvard.edu/∼ctm/papers/index.html

[Mc5] ———, Teichmüller curves in genus two: torsion divisors and ratio
of sines,
preprint. Available at:
http://abel.math.harvard.edu/∼ctm/papers/index.html



40 BIBLIOGRAPHY

[M] H. Masur , Ergodic theory of translation surfaces, Lectures at Luminy,
France, June 2003.

[MT] H. Masur and S. Tabachnikov, Rational billiards and flat structures, pp.
1015 – 1090, in Handbook on Dynamical Systems, vol. 1A, B. Hasselblatt
and A. Katok eds., Elsevier, Amsterdam 2002.
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