
INFINITELY GENERATED VEECH GROUPS

PASCAL HUBERT AND THOMAS A. SCHMIDT

Abstract. We give a positive response to a question of W. Veech: Infinitely
generated Veech groups do exist.

1. Introduction

Thurston, see [Th], investigated surface diffeomorphisms by way of locally flat
structures. In particular, he examined maps which were of constant derivative
with respect to the atlas of such a structure. To each of these oriented, area pre-
serving affine diffeomorphisms, see below, one associates the element of SL(2, R)
which gives the differential of the diffeomorphism at the nonsingular points.

Veech [Vch] showed that the subgroup of SL(2, R) formed by the differentials of
the affine diffeomorphisms can reveal significant aspects of the ergodic theory of
the linear flow of the surface. In particular, this has important implications in the
study of billiards on Euclidean tables. One now calls this group the Veech group
of the surface. It remains an open question to classify the groups which arise as
Veech groups.

We answer a question of W. Veech [Vch3, Vch5] by the following.

Theorem 1. There exist translation surfaces whose Veech group is infinitely gen-
erated and of the first kind.

A Veech group is of finite index in the stabilizer in the Teichmüller modular
group of the corresponding Teichmüller disk. Thus, our result is directly related
to a question of Thurston as presented by Kra, see [Kr].

Whereas Thurston [Th] and Gutkin [Gu] had given examples of arithmetic
Veech groups, Veech [Vch, Vch2] was the first to find nonarithmetic lattice groups.
Further examples were given by Vorobets [Vo], Ward [Wa] and Kenyon and Smillie
[KS], see also Earle and Gardiner [EG].

Much of this later work was motivated by applications to billiards. In [HS] we
showed in particular that the triangle of angles 3π/10, 3π/10, 2π/5, ‘unfolds’ to
give a translation surface of whose Veech group is not a lattice. In fact, it is of
the type of our Theorem: infinitely generated and of the first kind, see Remark 4.
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It follows that the directions of periodic billiard trajectories on the triangle are
dense in S1.

Surfaces with lattice Veech groups are rare, see [KS] and the related [Pu] as
well as [GJ]. Gutkin and the present authors [GHS] studied surfaces whose Veech
groups satisfy a weaker condition. The translation surfaces of our main theorem
have Veech groups which are of the type named “prelattice” groups in [GHS].

After this research was completed, Calta [Ca] and McMullen [Mc] independently
announced results about genus two translation surfaces. In particular, their re-
sults show that there are infinitely many GL(2, R) equivalence classes of genus
two translation surfaces with nonarithmetic lattice Veech groups. More recently,
McMullen [Mc2] has shown that there exist genus two translation surfaces with
infinitely generated Veech groups. In the final section of this article, we briefly
report on these related works and their impact our setting.

It is a pleasure to thank Bill Veech for reminding us of his question and Françoise
Dal’bo for interest and stimulating discussion. We also thank the referee for a
thorough reading.

2. Background

Here we briefly recall some of the basic background which we use.

2.1. Translation Surfaces. A translation surface is a compact orientable sur-
face with an atlas such that off of finitely many points called singularities, all
transition functions are translations. Each holomorphic 1-form on a Riemann
surface induces a translation structure on the surface. The study of Euclidean bil-
liards, the straight-line flow within subsets of the Euclidean plane, quickly leads to
translation surfaces. There is a classic construction, see [KZ], which passes from
a Euclidean rational polygon to an associated translation surface, determining a
complex structure on the surface along with a holomorphic 1-form. This view-
point, and the consideration of what can be called 1/2-translation surfaces which
are analogously related to quadratic differentials, has lead to impressive results,
in particular see [KMS], [MS], [Ma], [Vch] and [Vch4].

Away from its singularities, a translation surface has a flat structure in the
sense of Thurston [Th2]. To study its geometry, one uses the developing map.
Following Thurston’s [Th2] treatment of general G-manifolds, see also [Th3], we
sketch some of the basics in the setting of translation surfaces. See [GJ2] and [KS]
for related discussion.

Let Trans be the group of translation isometries of R2, thus Trans is isomorphic
to the group R2. A Trans-atlas on a topological surface S is an atlas on S such that
all transition functions are given by restrictions of elements of Trans. As usual,
two such atlases are said to be compatible if their union is also a Trans-atlas;
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a Trans-structure on a surface is a maximal Trans-atlas for the surface. Post-
composition of all local coordinate functions with a fixed element of GL(2, R) is
easily seen to give rise to a new Trans-structure on a surface; that is, there is an
action of GL(2, R) on the set of Trans-structures on a topological surface. One
says that two Trans-structures are affinely equivalent if they differ by the action of
an element in SL(2, R). Two Trans-structures on a topological surface are Trans-
isomorphic if their local coordinate maps differ by post-composition with elements
of Trans.

The only orientable compact topological surface which can be given a Trans-
structure is the torus; however, general compact translation surfaces are such
that by deleting a finite number of points they give rise to surfaces with Trans-
structures.

To define the developing map of a simply connected surface with Trans-structure:
one first fixes a chart of the Trans-atlas; the developing map restricted to the cor-
responding open set is defined to be the same as the local coordinate function;
thereafter, analytic continuation leads to a well-defined map.

The developing map, dev = devM of a general translation surface M is defined
by factoring through its universal cover. In particular, this gives that any element
of the fundamental group a ∈ π(M) induces an element g(a) of the structure
group G = Trans such that dev ◦ a = g(a) ◦ dev. The group of all such g(a) is the
holonomy group of M. A geodesic arc of M is a curve whose image under the
developing map is a line segment in R2.

Note that given a point p of M, we can normalize dev(M) such that the de-
veloped image of p lies at the origin of R2. Indeed, there is a unique translation
which brings dev(p) to the origin. We simply replace M by the Trans-isomorphic
surface given by post-composing all local coordinate functions with this transla-
tion.

Given a translation surface M, we can puncture all of its singularities and
obtain a true Trans-surface, M′. This M′ is in particular a metric space, which
we can complete to say M̄. An admissible translation surface M is one for which
each point of M̄\M has the metric of a cone point. In particular, any translation
surface induced by a holomorphic one-form on a Riemann surface is admissible,
see [Th3], [Bo] and [Tr]. We will only consider admissible translation surfaces in
all that follows. The complete, locally compact metric space M̄ is a length space
— the distance between points is the infimum of lengths of paths between them.
Therefore, the Hopf-Rinow theorem, see say [BH], shows that M̄ is geodesically
complete — any two points can be joined by a geodesic. The geodesics of M̄
restrict to be the union of geodesics on M′. See Lemma 2 for the significance of
this.

Now, the identity map on M′ extends to a homeomorphism between M and
M̄. We thus will think of M as M̄. In particular, we will refer to geodesics and
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the like of M. We also speak of the images of a singularity under the development
map.

A geodesic emanating from a singularity is called a separatrix. A geodesic,
without singularities in its interior, which connects two singularities is called a
saddle connection. The image, considered as a vector, in R2 of an oriented saddle
connection by the developing map is called the associated saddle connection vector.

By way of the translation structure, directions of linear flow are well defined
on a translation surface. It is a standard result, see say [MT], that the flow in a
given direction is nonminimal only if the direction is the direction of some saddle
connection.

The following result is presumably well-known. Our proof is a variation of that
of Vorobets’ proof that the set of directions of saddle connections on a translation
surface is dense in S1, thus of part of Proposition 3.1 in [Vo].

Lemma 1. Let p be a point of a translation surface with at least one singular
point. Then the set of directions of geodesic segments which emanate from p and
encounter some singular point of the surface is dense in S1.

Proof. Since there are only countably many saddle connection directions, if the
originally chosen direction is not minimal, then we can and do choose an arbitrarily
close minimal direction to replace it. Furthermore, without loss of generality, we
may and do apply an element of SL(2, R) so as to replace our direction by the
vertical.

Denote our translation surface by M. Given p ∈ M, if p lies on a vertical
separatrix, we are done. Thus suppose not. Fix a singularity, s of M. Choose
any ε > 0 sufficiently small such that there is a disk of radius ε on M about s.
Since the leaf of the flow in the vertical direction emanating from p is dense, there
is a sequence of times t1 < t2 < . . . < tn tending towards infinity such that for
each n the distance from s to φtn

vert(p), the image of p under the vertical flow at
time tn, is at most ε. Fix one such n. The developed images of p, s and φtn

vert(p)
form a right triangle in R2 with angle at dev(p) which we label as θn. We have
that θn is bounded above by tan−1 ε/tn.

If this developed triangle has no images of singularities in its interior, then it is
in fact the developed image of a geodesic triangle inM. There is thus a separatrix
passing through p making an angle θn with the vertical.

If the developed triangle does have an image of a singularity in its interior,
then we can replace s by this other singularity and find that there is a separatrix
passing through p making an angle less than θn with the vertical.

Since the angle measurements of θn converge to zero as n tends to infinity, we
are done.
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The following is well-known.

Lemma 2. Let p and q be singularities of M, a translation surface with at least
one singular point. Then there is a sequence of saddle connections passing from
p to q.

Proof. If M has only one singularity, then the previous result shows that there
are in fact many saddle connections joining this singularity to itself.

If p and q are distinct singularities of M, then this is immediate from the
geodesic completeness of M̄.

If p = q, and there is more than one singularity, then we can join p to some
other singularity by a sequence of saddle connections and return to p by reversing
direction.

Remark 1. There are instances in which there is no single saddle connection con-
necting a singularity to itself. This is related to the notion of blocking points, see
[HeSn] — however, note that [Sch] and [Mo] have found corrections to [HeSn].

Following [KS], one calls the image, considered as a vector, of an element of
H1(M, Z) under the developing map a holonomy vector. The holonomy field is
the smallest field k such that after choosing R-linearly independent elements e1

and e2 of the holonomy vectors, the k-span of e1 and e2 contains every holonomy
vector.

2.2. Fuchsian Groups. We will have need of some basic facts about Fuchsian
groups. For further details then we summarize here, refer to say, S. Katok’s
textbook [Ka].

Recall that the oriented isometry group of the Poincaré upper half-planeH, with
its hyperbolic metric is PSL(2, R), acting as fractional linear transformations. The
group SL(2, R) is naturally topologized as a subset of R4, the quotient topology
is then induced onto PSL(2, R). A subgroup of PSL(2, R) which is discrete with
respect to this topology is called a Fuchsian group.

The limit set of a Fuchsian group Γ is the set of limits of Γ-orbits of points
z ∈ H. The limit set is a subset of the points at infinity, that is of R ∪ {∞}. A
Fuchsian group is said to be of the first kind if its limit set is the full set of points
at infinity. It is well known that if the limit set of a Fuchsian group which is not of
the first kind is a nowhere dense subset of R∪{∞}, see say Theorem 3.4.6 of [Ka].
A Fuchsian group is geometrically finite if it has a convex fundamental domain
for its action on H which has finitely many sides. A geometrically finite Fuchsian
group is finitely generated. A Fuchsian group is a lattice if it has a fundamental
domain which has finite hyperbolic area. One also then says that the Fuchsian
group is of finite covolume.

We will in particular use the following well-known fact.
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Lemma 3. Let Γ be a Fuchsian group of the first kind. Then Γ is either a lattice,
or Γ is infinitely generated.

Proof. Suppose that Γ is a finitely generated Fuchsian group of the first kind.
We show that Γ is a lattice.

By Theorem 4.6.1 of [Ka], since Γ is finitely generated, it is also geometrically
finite. By Theorem 4.5.1 of [Ka], since Γ is also of the first kind, it is indeed of
finite covolume.

A parabolic element of PSL(2, R) is an element which fixes exactly one point of
the extended hyperbolic plane, and this fixed point is a point at infinity. Recall
that subgroups of PSL(2, R) are said to be commensurable if they share a common
subgroup of finite index in each. They are said to be commensurable in the wide
sense if a finite index subgroup of one conjugates within PSL(2, R) to give a finite
index subgroup of the other. A Fuchsian group with parabolic elements is called
arithmetic if it is commensurable in the wide sense to PSL(2, Z).

2.3. Veech Groups. We will say that φ is a diffeomorphism of a translation sur-
face M if φ is a homeomorphism which is a diffeomorphism off of the singularities
of M. The differential of such a diffeomorphism is then a linear operator on the
tangent space at each nonsingular point of M. Using the atlas of M, the differen-
tial of a diffeomorphism can be expressed at each nonsingular point as an element
of GL(2, R).

A diffeomorphism φ : M→N induces a new atlas on the underlying topological
space: the open sets are the images of open sets of M; the local coordinate
functions are the post-composition of φ−1 by the local coordinate functions of
the atlas of M. A diffeomorphism which induces a Trans-isomorphic atlas is
called an affine diffeomorphism. In particular, an affine diffeomorphism must
have a constant differential with respect to the atlas. Since Trans-isomorphism
clearly preserves area and is orientation-preserving, the constant differential is
an element of SL(2, R). In [Vch] Veech proved, in particular, that the group of
these differentials is a discrete subgroup of SL(2, R). That is, it defines a Fuchsian
group. We will call this image in PSL(2, R) the Veech group of M and denote it
by V (M).

If V (M) is a lattice, M is called a Veech surface. If V (M) is an arithmetic
Fuchsian group, M is called an arithmetic surface.

A direction on a translation surface M is called parabolic if there is an affine
diffeomorphism which preserves the set of geodesics in this direction and whose
differential is parabolic.

A direction on a translation surface M is called periodic if the flow in this
direction is periodic (off of the set of separatrices in this direction). Maximal
cylinders of flow in a periodic direction are bounded by saddle connections. Veech
[Vch] showed in particular that the direction of any saddle connection on a Veech
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surface is a parabolic direction. Thus, on a Veech surface, the set of periodic and
parabolic directions are equal.

There is a direct connection between the parabolic direction and the fixed points
of these corresponding parabolic elements of the Veech group. Let θ be the angle
which the parabolic direction makes with the horizontal. Then the parabolic
elements fix the (extended, that is possibly infinite) real number ν = cot θ. Indeed,

let P =

(
a b
c d

)
be a parabolic element of the Veech group. Acting as a standard

matrix on real 2-vectors, suppose that it has as nontrivial eigenvector (x, y). One

solves to find that
ax

y
+ b

cx
y

+ d
=

x

y
. But, of course ν = x/y is the cotangent of θ. In

particular, note that the parabolic directions of a translation surface are dense in
the unit circle if and only if the parabolic fixed points of the surface’s Veech group
are dense in R ∪ {∞}.

2.4. Markings and Coverings. Let M be a translation surface. Let P =
{p1, . . . , pn} be any set of nonsingular points of M. By marking M at P we
create a formally new translation surface (M;P). Its set of singularities is the
union of the singularities of S with P . We define the group of affine diffeomor-
phisms of (M;P) to be the subgroup of affine diffeomorphisms which preserve
P . The Veech group of (M;P), V (S;P), is thus the corresponding subgroup of
V (M).

A balanced translation covering of a translation surface M is a translation sur-
face N and a map f : N → M such that the pull-back by f of the translation
atlas of M is fully compatible with the translation atlas of N . More formally, f
restricted to N ′ gives a Trans-covering of M′ — where, as above X ′ denotes the
surface arising from a translation surface X by puncturing it at all of its marked
points — and both the image of every marked point of N is a marked point of M
and the inverse image of every marked point of M is a marked point of N .

A balanced affine covering of a translation surface M is a map f : N →M of
translation surfaces whose pull-back by the action of an element of SL(2, R) on the
translation atlas of N gives a balanced translation covering. It is a result of [GJ2],
see also [Vo], that the Veech groups of such a pair M and N are commensurable
in the wide sense. See also [HS].

3. Rational Points and Connection Points

As defined in [GHS], a point of a translation surface is called a rational point
if there exist two distinct parabolic directions of the surface such that the point
is periodic under both of the corresponding primitive parabolic elements of the
Veech group of the surface. One can also consider the class of periodic points,
those which are of finite orbit under the full Veech group of the given surface.
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3.1. Connection Points. In order to find infinitely generated groups, we will
need to mark a special type of point.

Definition 1. We say that a nonsingular point p is a connection point of a trans-
lation surface M if every separatrix passing through p is a saddle connection.

Proposition 1. Let p be a nonperiodic connection point on a Veech surface M.
Then the group V (M; {p}) is infinitely generated.

Proof. Since p is not a periodic point of M, Corollary 4 of [HS2] shows that
V (M; {p}) is not a lattice. Thus, by Lemma 3, it suffices to show that V (M; {p})
is a Fuchsian group of the first kind.

By Lemma 1, the directions of segments which join p to singular points of M
are dense in S1. But, each such direction is the direction of a saddle connection
on the Veech surface M, and is thus a parabolic direction of the Veech surface.
Furthermore, p lies on a saddle connection of each of these directions. Therefore,
for each direction, there is some corresponding parabolic element of the Veech
group which is the differential of an affine diffeomorphism of M fixing p. Each of
these survives to V (M; {p}). Hence, the parabolic directions of V (M; {p}) are
dense in S1. But, the limit set of a Fuchsian group which is not of the first kind
is nowhere dense. Thus, we conclude that V (M; {p}) is in fact of the first kind,
and we are done.

Proposition 2. Each connection point on a Veech surface is a rational point.

Proof. Let p be a connection point of a Veech surface M. Take any two seg-
ments in transverse directions connecting p to singularities of M. These segments
define separatrices; by hypothesis on p, these separatrices extend to saddle con-
nections. Since M is a Veech surface, the directions of these saddle connections
are parabolic.

The cylinders of flow in these parabolic directions are bounded by saddle con-
nections. Since p is on the boundary of at least one cylinder in each of the two
parabolic directions which have been defined, p is surely a rational point.

Proposition 3. Let p be a connection point on a Veech surface M. Suppose
that the translation surface N is a balanced affine cover of (M; {p}). Then N
satisfies the following weak Veech dichotomy: For any direction of N , the flow in
this direction is either minimal or it is periodic.

Proof. By replacing N with the image of its atlas by an appropriately chosen
element of SL(2, R), we may and do assume that the covering is a translation
covering. If a direction is not minimal, then there is a saddle connection in this
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direction. Since a periodic direction for M is surely a periodic direction for N ,
it suffices to show that the directions of saddle connections for N are periodic
directions for M.

There are three types of saddle connection on N : those which project to saddle
connection on M; those which project to geodesic segments connecting p to a
singularity; and finally those which project to a geodesic connecting p to itself.

Since M is a Veech surface, our first type of direction is certainly a periodic
direction there. Since p is a connection point of M, the second type is also a
periodic direction on this Veech surface. Finally, a geodesic of M which connects
p to itself is obviously a periodic orbit. But, since M is a Veech surface, the
direction of any periodic orbit is in fact a periodic direction.

3.2. Strong Holonomy Type. Recall that the image, considered as a vector, of
an element of H1(M, Z) under the developing map is called a holonomy vector.

Definition 2. We say that a translation surface M is of weak holonomy type if
both: (1) every holonomy vector, and (2) every saddle connection vector of M,
when expressed in terms of the canonical basis of R2, has all of its components in
the holonomy field of M. We say M is of strong holonomy type if M is of weak
holonomy type, and (3) the periodic directions are exactly the vertical and those
directions whose slopes belong to the holonomy field.

Our main result of this subsection is the following. We give the proof at the
end of this subsection.

Theorem 2. Let M be a nonarithmetic Veech surface which is of strong holonomy
type. Then there are infinitely many nonperiodic connection points on M. Let p
be one such point. Then there are infinitely many balanced translation covers of
(M; {p}). Each of these covering translation surfaces has an infinitely generated
Veech group.

The action of GL(2, R) on Trans-structures restricts to give an action on the
set of translation surfaces. It is trivial to check that the Veech groups of surfaces
corresponding under this action are conjugate. Thus the following is an immediate
implication of Theorem 2.

Corollary 1. Suppose that M is in the GL(2, R)-orbit of a nonarithmetic Veech
surface of strong holonomy type. Then there are infinitely many points p on M
such that (M; {p}) admits infinitely many balanced translation covers, each having
an infinitely generated Veech group.

We record a simple remark for use in §3.3.
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Lemma 4. If a translation surface M has exactly one singularity and every ho-
lonomy vector has all of its components in the holonomy field of M, then M is
of weak holonomy type.

Proof. Since M has only one singularity, every saddle connection is a closed
curve. The development of a saddle connection is thus contained in the set of
holonomy vectors. By hypothesis, these have coordinates in the holonomy field,
and thus M satisfies the conditions of the definition to be of weak holonomy type.

The following indicates that the property of weak holonomy type is rather
ubiquitously enjoyed.

Lemma 5. Up to normalization by an element of GL(2, R), any translation sur-
face whose Veech group contains a hyperbolic element is of weak holonomy type.

Proof. Recall that [KS] give the holonomy field as the smallest field k such that
after choosing R-linearly independent elements e1 and e2 of the holonomy vectors,
the k-span of e1 and e2 contains every holonomy vector. By applying an element
of GL(2, R) to the atlas of the translation surface, we may assume that the ei

are the standard basis vectors of R2. Then, each holonomy vector has all of its
components in k.

If further the Veech group contains a hyperbolic element, then Theorem 30 of
[KS] shows that the Z-span of the saddle connection vectors contains the holonomy
vector group with finite index. In particular, the saddle connection vectors must
also have all of their components in the holonomy field.

The following lemma provides a means for working with the property of weak
holonomy type.

Lemma 6. Let M be of weak holonomy type. Suppose that the developing map
of M is such that the image of some singular point is the origin of R2. Then
the developed images of all singular points and all rational points of M have
coordinates lying in the holonomy field.

Proof. By Lemma 2, given any singular point there is a sequence of saddle
connections from our distinguished singular point to it. Thus, every singular
point has a developed image whose coordinates are in the holonomy field. For p
any point on a translation surface, the developed images of p differ by holonomy
vectors. Thus, all developed images of singularities of M have coordinates in the
holonomy field.

Let p be a rational point. It thus lies in a rectangle formed by the intersection
of flow cylinders for two distinct parabolic directions. Choose a developed image
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of the rectangle, thus determining a development p̃ of p and developed images of
the two cylinders.

Each cylinder develops to a large rectangle; each of its sides parallel to the flow
direction lies on a line which contains multiple developed singularities. Each of
these lines is thus of equation with coefficients in the holonomy field. Therefore,
each of the four vertices of the small rectangle is the intersection point of lines
defined over the field. These vertices thus have coordinates in the holonomy field.
Let us label in counter-clockwise order these vertices as v1, . . . , v4, where v1 and
v2 determine a side which we call the base. Now, p̃ lies on a line which intersects
the base of the rectangle at a point q = v1 + t(v2 − v1) with t ∈ Q ∩ [0, 1]. This
line intersects the top of the rectangle at r = v4 + t(v3 − v4) for the same value
of t. Of course, q and r have coordinates in the holonomy field. Thus, the line
they determine is defined over this field. Similarly, the line parallel to the base
which passes through p̃ also has equation in the holonomy field. The intersection
of these two lines, p̃, is hence a point of coordinates in the holonomy field.

Since any other developed image of p differs from p̃ by a holonomy vector, we
are done.

Our use of the property of strong holonomy type will be as an aid in the location
of connection points.

Proposition 4. For p a nonsingular point on a Veech surface M of strong holo-
nomy type, the following properties are equivalent:

(i) p is a connection point;
(ii) p is a rational point;
(iii) after the development of a singular point has been fixed as origin, every

developed image of p is of coordinates in the holonomy field.

Proof. We have already seen that (i) implies (ii) and that (ii) implies (iii). We
thus prove that (iii) implies (i).

Normalize the developing map of M such that the image of some singular point
is the origin of R2. Suppose that a nonsingular point p now has its developed image
of coordinates in the holonomy field.

Choose any separatrix passing through p. The initial segment of this separatrix
develops to a line segment joining two points of coordinates in the holonomy field.
Therefore, the slope of this line segment lies in the holonomy field. But since M
is of strong holonomy type, the direction of this segment is a periodic direction
on M. Therefore, any separatrix in this direction extends to a saddle connection.
In particular, the separatrix with which we began extends to a saddle connection,
and we have proven the result.
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Proposition 5. Let P = {p1, . . . , pn} be a set of connection points on a Veech
surface M of strong holonomy type. Suppose that the translation surface N is a
balanced translation cover of (M;P). Then N satisfies the following weak Veech
dichotomy: for any direction of N , the flow in this direction is either minimal or
it is periodic.

Proof. When n = 1, this is exactly Proposition 3. It thus suffices to prove
that the segments on N connecting lifts of any pi and pj project to segments
lying in parabolic directions of M. But, pi and pj have developed images whose
coordinates (can be assumed to) belong to the holonomy field. The direction of a
segment connecting them is hence of slope in the field. By the strong holonomy
type of M, this is a periodic direction of M. Since M is a Veech surface, this is
indeed a parabolic direction.

Lemma 7. If M is a nonarithmetic Veech surface which is of strong holonomy
type, then there exist infinitely many nonperiodic connection points on M.

Proof. Since M is a nonarithmetic Veech group, Theorem 1 of [GHS] shows that
it has at most finitely many periodic points.

Theorem 4 of [GHS] shows that the rational points of any prelattice surface
form a dense countable set. A prelattice surface is a translation surface having
at least two distinct parabolic directions; any Veech surface is certainly of this
type. In particular, we conclude that M has infinitely many rational points. By
Proposition 4 each of these is a connection point. Thus there are infinitely many
connection points which are not periodic.

Proposition 6. If M is a nonarithmetic Veech surface which is of strong holo-
nomy type, then M has infinitely many nonperiodic connection points. For each
nonperiodic connection point p, V (M; {p}) is infinitely generated.

Proof. By Lemma 7 there are infinitely many nonperiodic connection points. For
each such point p, Proposition 1 then implies the result.

We can now prove the main result of this section.

Proof of Theorem 2. As mentioned in [GHS], the statement that given any
nonsingular point in M there are infinitely many distinct balanced translation
covers of (M; {p}) follows from Theorem IV.9.12 of [FK].

Now consider p a nonperiodic connection point. Fix a balanced cover of (M; {p}).
Recall, see [GJ2] and [Vo], that the Veech group of such a cover is commensurable
with V (M; {p}). Since commensurable groups have the same set of parabolic
fixed points, the Veech group of the covering surface has all of S1 as its limit set.
The group V (M; {p}) is not a lattice, hence no group commensurable with it can



INFINITELY GENERATED VEECH GROUPS 13

be a lattice. Therefore, Lemma 3 shows that the covering translation surface does
indeed have an infinitely generated Veech group.

3.3. Examples. It is easy to find arithmetic translation surfaces which are of
strong holonomy type.

Lemma 8. If M is a balanced translation cover of the once-marked standard
square torus, then M is of strong holonomy type.

Proof. Gutkin-Judge [GJ2] have shown that the holonomy field of any affine
cover of the square torus is the rational field. They also show that the parabolic
directions on such covers are the vertical and those of rational slope. Finally, we
note that every saddle connection on a balanced translation cover of the standard
square torus has rational components.

Strong holonomy seems a very restrictive property on the class of nonarith-
metic translation surfaces. We exhibit the three nonarithmetic translation sur-
faces which we found to enjoy this property.

In [HS2], we defined the cross of translation λ for each real λ ≥ 1 as the
symmetric rectangular cross of minor length one and major length λ; see Figure 1
of [HS2]. By identifying opposite sides by translation, one obtains a surface of
genus 2 with exactly one singularity. See [Ca] and [Mc] for much more on Veech
groups of surfaces of this general description. Here we use the term golden cross
to refer to the translation surface arising from the cross of translation length
λ = (1 +

√
5)/2.

Proposition 7. The golden cross is of strong holonomy type.

Proof. The proof of Lemma 2 of [HS2] shows that the Veech group of this cross is
the so-called Hecke triangle group of index 5. Indeed, Lemma 4 of [HS2] shows that
this cross is affinely equivalent to Veech’s [Vch] original nonarithmetic translation
surface arising from copies of the regular pentagon; see [Mc] for a pictorial proof
of this. The group is in particular nonarithmetic.

The hyperbolic element

(
2λ −1
1 0

)
is easily seen to be in this Hecke group.

Thus, by Theorem 28 of [KS] the holonomy field of the surface is Q(
√

5).
Referring to Figure 1 of [HS2], one sees that there are four visible opposite

images of the sole singular point of the cross. In particular, the standard vectors e1

and e2 of R2 are clearly saddle connection vectors. Since the cross is a translation
surface with only one singularity, these are also holonomy vectors. This translation
surface is thus of weak holonomy type.

Leutbecher [Le] showed that the set of parabolic fixed points (with respect
to the upper half-plane model) of this group is exactly Q(

√
5) ∪ {∞}. From
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the relation between parabolic fixed points and parabolic directions mentioned in
subsection 2.3, we conclude that the vertical and the directions of slope in Q(

√
5)

form the parabolic directions for the golden cross. We have thus shown that this
translation surface is indeed of strong holonomy type.

Remark 2. As mentioned in the above proof, there is an affine map from the golden
cross to the double pentagon example of [Vch]. The images of the connection
points of the golden cross are hence connection points on this latter surface. In
particular, one checks that the centers of the pentagons are connection points.

Recall that the double pentagon surface may be seen as arising from an “un-
folding” process applied to the Euclidean triangle of angles π/5, π/5, 3π/5. In
Theorem 8.1 of [Vch], Veech considers the Euclidean triangle of angles π/n, π/n,
(n − 2)π/n, n > 2. Using that the billiard trajectories of the Euclidean triangle
lift to geodesics of the translation surface, he shows that whenever a billiard tra-
jectory begins and ends at the same vertex of the triangle, then every trajectory
in the same direction is either closed or else begins and ends at a vertex. In a
remark, Veech gives an argument for why one can remove the words “the same”
when n is even. He leaves the case of odd n open.

When n = 5, we can remove the hypothesis “the same.” In brief, the corre-
sponding translation surface has a sole singularity given by copies of the triangle
meeting at vertices of angle 3π/5; Veech’s arrangement is such that the remaining
vertices meet variously at the centers of the two pentagons. Any billiard trajec-
tory from a vertex to a vertex lifts to a translation geodesic arc which is either: a
saddle connection; an arc joining a center to itself; a separatrix meeting a center;
or, an arc joining the two centers. The translation surface is a Veech surface,
thus the directions of saddle connections and of single closed orbits are periodic
directions. The centers are connections points, hence separatrices passing through
them extend to saddle connections. Finally, any geodesic arc passing from one
center to the other is affinely equivalent to a geodesic arc joining rational points
on a translation surface which is of strong holonomy type — the golden cross; the
original geodesic arc thus also lies in a periodic direction.

Definition 3. LetM2n be the translation surface formed from the regular 2n-gon
inscribed in the unit circle of the complex plane by identifying, by translation,
opposite sides.

Lemma 9. For n > 3, the holonomy field of M2n is Q(cos π
n
).

Proof. As [AH] point out, the Veech groups of the M2n are the same as those
of the even index examples of Veech’s fundamental paper [Vch]. In particular, for
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n > 3 fixed, the group is generated by P =

(
1 2 cot π

n
0 1

)
and R, the rotation of

angle 2π/(2n). The trace of P 2R is easily computed to be 2 (6 cos2 π
2n
− 1). This

is clearly greater than 2 for n ∈ N. Thus P 2R is a hyperbolic element. Hence, by
Theorem 28 of [KS], the holonomy field of M2n is Q(cos2 π

2n
). But, the double

angle formula for the cosine function shows that for any real x, the two fields
Q(cos2 x ) and Q(cos 2x ) are equal.

Proposition 8. The translation surfaces M8 and M12 are of strong holonomy
type. If n > 3 is odd, then M2n is not of strong holonomy type.

Proof. The singularities of an M2n arise from the vertices of the corresponding
regular 2n-gon. It is easily checked that if n is even, then there is only one
singularity on M2n. In particular, by Lemma 4, to prove that either of M8 and
M12 is of weak holonomy type, it suffices to show that the holonomy vectors all
have their components in the holonomy field. By the definition of the holonomy
field, to do this it suffices to find two R-linearly independent holonomy vectors
having all of their components in the holonomy field.

By Lemma 9 the holonomy fields of M8 and M12 are Q(
√

2) and Q(
√

3),
respectively. The coordinates of the vertices of the corresponding 2n-gon are all
in this respective field. Thus, the holonomy vector arising from the segment joining
any two opposite vertices has all components in the holonomy field. Choose any
two distinct pairs of opposite vertices, the corresponding holonomy vectors are
clearly R-linearly independent. We thus conclude that M8 and M12 are of weak
holonomy type.

It is shown in [AS] that results of Leutbecher [Le2] imply that the fields Q(
√

2)
and Q(

√
3) are the set of slopes of the nonvertical parabolic directions for M8 and

M12, respectively. We thus have shown that M8 and M12 are of strong holonomy
type.

In [AS], it is also noted that results of Leutbecher [Le2] imply that when n > 3
is odd, no rational number is the slope of a parabolic direction for M2n . Hence,
none of these can be of strong holonomy type.

Remark 3. Wolfart [Wo] extended Leutbecher’s and others’ work on cusp values.
In our terms, with [AS] in mind, this shows that the only remaining M2n which
could possibly be of strong holonomy type are M20 and M24.

Combining Propositions 7 and 8 and Corollary 2, give the following, which
proves our Theorem 1.

Corollary 2. Let M be any of the golden cross, M8 or M12 and p be any nonpe-
riodic rational point of M. There are infinitely many balanced translation covers
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of (M; {p}). Each of these covering translation surfaces is such that its Veech
group is infinitely generated.

Remark 4. Again consider the double pentagon surface of [Vch]. As mentioned in
Remark 2, the centers of the pentagons are connection points; in [HS], we show
that these points are nonperiodic. Therefore, using the arguments for Proposi-
tion 5 to extend Proposition 6, we find that any balanced translation covering of
the surface marked at these points is of infinitely generated Veech group. Now,
in the proof of Proposition 4 of [HS] we show that the translation surface arising
from the ‘unfolding’ of the Euclidean triangle of angles 3π/10, 3π/10, 2π/5 gives
exactly such a balanced covering. It follows that on this ‘non-Veech’ triangle every
direction of billiard trajectories is either minimal or periodic; indeed the periodic
directions are dense.

Remark 5. By taking a double cover of either of the golden cross or M8 which
is ramified at a nonperiodic rational point and the singularity, one obtains a
translation surface of genus 4 which has infinitely generated Veech group. This is
the minimal genus which can occur in our construction.

4. Implications of works of Calta and of McMullen

After the completion of this research, Calta [Ca] and McMullen [Mc], gave
certain results about genus two Veech surfaces. Furthermore, McMullen [Mc2]
has since given his own examples of infinitely generated Veech groups. We briefly
indicate some of the implications of these works in the present setting.

By the Riemann-Roch theorem, the total multiplicity of the zeros of a nontrivial
holomorphic 1-form on a compact Riemann surface of genus g is 2g − 2. The set
of translation surfaces of a fixed genus is stratified by sets corresponding to the
partitions of 2g − 2 which are achievable as multiplicities of zeros. (Recall that
the angle at a cone point on (X, ω) corresponding to a zero of ω of multiplicity k
is 2(k + 1)π .) For example, any genus two translation surface either has one sole
singularity or else has two distinct singularities; the first characterizes an element
of H(2), the second of H(1, 1). See [KoZo] for a detailed description of the strata
in the general genus case.

With distinct methods, Calta [Ca] and McMullen [Mc] give results which may
be interpreted in the following manner.

Theorem 3. (Calta; McMullen) Any translation surface of H(2) whose Veech
group has more than two points in its limit set is a Veech surface. Each such
surface is either an arithmetic surface, or else is of real quadratic holonomy field.
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Theorem A.1 of [Mc2] can be interpreted in the following manner. Note that
Theorem 7 of [Ca] is closely related.

Theorem 4. (McMullen) Any Veech surface having real quadratic holonomy field
lies in the GL(2, R)-orbit of some nonarithmetic Veech surface which is of strong
holonomy type.

Remark 6. The above two results imply that in H(2) there are many translation
surfaces which admit nonperiodic connection points and are therefore covered by
translation surfaces of infinitely generated Veech group.

We do not yet know of any translation surface of strong holonomy type which
is not also of real quadratic holonomy field.

Our construction of translation surfaces of infinitely generated Veech group
results in these translation surfaces being of genus at least four.

Theorem 5. (McMullen) There exist genus two translation surfaces which are of
infinitely generated Veech group.

McMullen’s technique for displaying his examples is, as he points out, rather
general. It seems likely that in each genus there are translation surfaces of in-
finitely generated Veech group. The surfaces which McMullen finds are similar
to those which were found in this work: there are parabolic directions which are
dense in S1. We do not yet know if these are the only possibilities for infinitely
generated Veech groups.
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