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GEOMETRY OF INFINITELY GENERATED VEECH GROUPS

PASCAL HUBERT AND THOMAS A. SCHMIDT

Abstract. Veech groups uniformize Teichmüller geodesics in Riemann moduli

space. We gave examples of infinitely generated Veech groups in [HS3]; here we

show that the associated Teichmüller geodesics can even have both infinitely
many cusps and infinitely many infinite ends.

1. Introduction

The study of billiards on Euclidean polygonal tables has benefitted greatly from
the use of the theory of Riemann surfaces. A classical unfolding process associates
to each rational-angled polygonal table a Riemann surface with holomorphic 1-
form, see [KZ]. Using this, Kerckhoff-Masur-Smillie [KMS] showed that for almost
every direction on a polygonal table, the billiard flow is ergodic. Soon thereafter,
Veech [Vch2] identified a setting where the only non-ergodic directions are those
of saddle connections; these examples are identified by an associated group, the
Veech group, being a lattice Fuchsian group. In [Vch3], Veech asked if in general
these groups can ever fail to be finitely generated. Only recently have examples
of infinitely generated Veech groups been given [HS3], [Mc2]. Here we study the
geometry associated to the groups of [HS3].

The Riemann moduli space Mg is the space of smooth compact Riemann sur-
faces of genus g, up to biholomorphic equivalence. The holomorphic 1-forms on a
Riemann surface X of genus g form a g-dimensional complex vector space, Ω(X).
Pairs (X,ω) with ω ∈ Ω(X) form a bundle ΩMg → Mg (of course, Mg is not
a manifold, but rather an orbifold, a fiber is actually Ω(X)/Aut(X) ). Each pair
(X,ω) (with ω non-null) identifies a translation structure on the real surface X:
local coordinates are defined by integration of ω. Invoking the real structure of C,
there is a SL(2,R)-action on these translation surfaces: post-composition with the
local coordinate functions.

To each (X,ω), there is thus a map from SL(2,R) to Mg, given by sending a
group element to the equivalence class of the corresponding orbit elements. Ro-
tations act so as to leave the Riemann surface X fixed, there is thus an induced
a map from SO2(R)\SL(2,R) to Mg. With respect to the Teichmüller metric on
Mg, this map turns out to be an isometric immersion of the hyperbolic plane
H2 = SL(2,R)/SO2(R). The resulting image is called the Teichmüller complex
geodesic determined by (X,ω). We denote this by G(X,ω).

The SL(2,R)-stabilizer of (X,ω) induces a subgroup of the oriented isometry
group of the hyperbolic plane. This induced group is the Veech group, denoted
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PSL(X,ω). The Teichmüller complex geodesic is thus the image of the hyperbolic
surface (or possibly orbifold) uniformized by the Veech group; the map between
them is generically injective. We obtain a strengthening of the main result of
[HS3]:

Theorem 1. For any genus g ≥ 4, there exists a complex Teichmüller geodesic in
the Riemann moduli space Mg that has infinitely many cusps and infinitely many
infinite ends.

We recall the definition and basic classification of ends of a hyperbolic surface
below. Informally, an end is a direction in which geodesics can leave compact
subsets. Finite volume hyperbolic surfaces can only have cusps as ends; briefly, a
cusp, or puncture, corresponds to a conformal punctured unit disk in the surface
(which cannot be completed in the surface). An end of a hyperbolic surface which
corresponds to a conformal non-trivial annulus is called a hole. Holes and cusps
are called finite ends, any other end is called an infinite end.

We prove our main results using the approach of translation surfaces. In par-
ticular, in terms that we make precise below, whereas cusps always form a discrete
set, we give examples such that each of infinitely many directions giving an infinite
end is the limit of directions of inequivalent infinite ends. A translation surface
(Y, α) is called a Veech surface if PSL(Y, α) is a lattice in PSL(2,R); the definition
of a non-periodic connection point can be found in Subsection 2.3.

Theorem 2. Let (X,ω) be a translation surface which is a balanced covering of
(Y, α; p), with p a non-periodic connection point of the Veech surface (Y, α). Then
PSL(X,ω)\H2 has infinitely many cusps and infinitely many infinite ends. There
is an infinite set Ξ of these infinite ends such that any corresponding direction on
(X,ω) is the limit of directions for distinct infinite ends.

That PSL(X,ω), for (X,ω) as in Theorem 2, is infinitely generated is the main
result of [HS3]. For the (X,ω) of Theorem 2, the complicated geometry at infinity
of PSL(X,ω)\H2 is projected to a small locus of the Riemann moduli space. Re-
stricting yet further the branch locus, we have explicit results on the geometry; the
first part of this also follows from [EMM]. Here, Ξ is the set of infinite ends lying
above cusps of the complex Teichmüller geodesic of (Y, α).

Theorem 3. With notation and hypotheses as above, suppose further that p is the
sole branch point of the underlying cover X → Y . If X is of genus g, then (i) the
complex Teichmüller geodesic generated by (X,ω) is dense in a complex algebraic
surface S ⊂ Mg; and, (ii) each cusp lies within a two real-dimensional set, each
infinite end in Ξ lies densely in a three real-dimensional set of S.

1.1. Outline. We prove Theorem 1 by restricting to the case where (X,ω) satisfies
the hypotheses of Theorem 2 — an application of the Riemann-Hurwitz formula
shows that we may assume that the corresponding (Y, α) be of genus two, we gave
explicit examples of such (Y, α) which admit non-periodic connection points in
[HS3], it is now known [C], [Mc1] that the set of such examples is large — the
existence of infinitely many cusps is proven in §4, the existence of infinitely many
infinite ends is proven in §5, that every direction of an infinite end is the limit of
inequivalent infinite end directions is also proven in §5. §6 discusses background
for factoring projections to Mg through tori. We prove Theorem 3 in §7. The
bulk of this paper uses methods of flat geometry; this final proof relies on slightly
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different ideas. Therefore, in §7.1 we sketch the proof, giving background material
both there and at the beginning of each of the following subsections. In §2 we give
background material on translation surfaces and certain SL(2,R)-actions, in §3 we
discuss projections of horocycles to the moduli space Mg. The main results rest
upon the elementary tools presented in §4.

1.2. Comments on a Related Setting. That a hyperbolic surface uniformized
by an infinitely generated Fuchsian group of the first kind admits infinite ends
can be deduced already from [Fo], Theorem 17. Thus, the examples of infinitely
generated Veech group given by McMullen [Mc2] must also have infinite ends. Each
of McMullen’s examples has its associated Teichmüller complex geodesics lying
densely on a symmetric Hilbert modular surface, all ends must lie in the finitely
many cusps of the Hilbert modular surface.

1.3. Comments on a Related Paper. Eskin, Marklof, and Morris have recently
completed [EMM], a work on flows on moduli spaces of translation surfaces which
are branched covers of Veech surfaces. Although they consider branching of the type
we address here, they do not explore the geometry of ends of these Teichmüller
geodesics of the branched covers. However, they do discuss SL(2,R)-orbits of
branched covers and the location of branch loci. In particular, results such as
part (i) of Theorem 3 can be deduced from their work.

1.4. Thanks. It is a pleasure to thank F. Dal’bo, G. Forni, and J. Smillie for helpful
discussions. In particular, we thank G. Forni for his ideas which are reflected in §6.
We thank A. Eskin for continued interest in these matters. It is also a pleasure to
acknowledge various helpful suggestions from the referee.

2. Background: SL(2,R)-Action on Translation Surfaces

In order to establish notation, we review basic notions. See say [MT] for more
details; [HS1], [HS2] and [HS3] use related notation and notions. See also [Mc1],
[Mc2], [Mc3], [Mc4] for recent related developments.

2.1. Translation Surfaces and Affine Diffeomorphisms. A translation surface
is a real surface with an atlas such that all transition functions are translations. As
usual, we consider maximal atlases. Given a Riemann surface X and a holomor-
phic 1-form ω ∈ Ω(X), integration of ω induces local coordinates on X away from
the zeros of ω; regarding C with its standard structure as R2, transition functions
are easily seen to be translations. In particular, directions of flow on a translation
surface are well-defined, by pull-back from the plane. One easily checks that the
translation surface associated to (X,ω) is well-defined up to isomorphism of trans-
lation surface (such isomorphism is realized by local pure translations), see Section
2.1 of [HS3] for a more formal discussion.

The holomorphic 1-form ω induces a flat metric on X off of its zeros; when the
metric is completed, a zero of multiplicity k gives a conical singular point, of cone
angle 2(k + 1)π. We consider only translation surfaces of this type; the notation
(X,ω) hence denotes both the ordered pair of Riemann surface X with holomorphic
1-form ω, and the translation surface structure, with which ω equips X.

Given a translation surface (X,ω), and an element A ∈ SL(2,R), we can post-
compose the coordinate functions of the charts of the atlas of (X,ω) by A. It is
easily seen that this gives again a translation surface, denoted by A ◦ (X,ω).
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Given a translation surface (X,ω), let X ′ denote the surface which arises from
deleting the singularities of (X,ω). An affine diffeomorphism f of (X,ω) is a
homeomorphism of X that restricts to a diffeomorphism of X ′ whose differential
at all points is a constant element of SL(2,R). In other terms, f induces a real-
affine map in the charts of the ω-atlas on X, of constant (Jacobian) derivative.
The orientation-preserving affine diffeomorphisms form a group, denoted Aff(X,ω).
The subgroup of SL(2,R) which arises as the derivatives of affine diffeomorphisms
is denoted by SL(X,ω).

If φ, ψ ∈ Aff(X,ω) have the same derivative, then the diffeomorphism φ◦ψ−1 acts
by pure translations. This diffeomorphism thus preserves the conformal structure
on the underlying translation surface; that is, φ◦ψ−1 is a conformal automorphism
of the Riemann surface X (that preserves ω). The kernel of the group homomor-
phism from Aff(X,ω) to SL(X,ω) is hence certainly finite whenever X is of genus
greater than one. By pull-back on charts, each φ ∈ Aff(X,ω) also gives a transla-
tion structure on the underlying surface. Indeed, if A is the constant derivative of
φ with respect to the ω-charts, then φ is an isomorphism of the translation surface
A ◦ (X,ω) with (X,ω). Thus, the SL(2,R)-stabilizer of (X,ω) is SL(X,ω).

2.2. Teichmüller Complex Geodesic, Veech Group. Fix some (X,ω), and let
F : SL(2,R) → ΩMg be given by A 7→ A ◦ (X,ω); let π : ΩMg →Mg denote the
standard projection. Note that the underlying Riemann surface Y is common to
the SO2(R)-orbit of any (Y, α) — the image of (Y, α) under a rotation is (Y, ζ · α),
where ζ ∈ S1 is the complex number which induces the rotation. Thus, π ◦ F
induces a map (from right cosets) fω : SO2(R)\ SL(2,R) →Mg. The image of fω

is G(X,ω), the Teichmüller complex geodesic associated to (X,ω).
Right multiplication gives the natural right group action of SL(2,R) on the

cosets SO2(R)\ SL(2,R). The center, {−I, I} = 〈−I〉, of SL(2,R) is a subgroup
of SO2(R), and one finds that PSL(2,R) = SL(2,R)/〈−I〉 acts faithfully. The
PSL(2,R)-stabilizer of the map fω is the Veech group PSL(X,ω), the image in
PSL(2,R) of SL(X,ω). This is trivially verified: f( SO2(R).A ) = f( SO2(R).B )
implies that there is some rotation R such that B−1RA ∈ SL(X,ω). Thus, the
class SO2(R).A is in the PSL(X,ω)-orbit of SO2(R).B . That fω is single-valued
on each such orbit is obvious. The map fω is generically injective; it can only fail
to be injective at some (Y, α) if Aut(Y ) is larger than the automorphism group
of Riemann surfaces corresponding to neighboring points of Mg, see [R] and [P].
When the Veech group uniformizes a true surface, then fω gives a ramified cover
normalizing, in the sense of algebraic curves, G(X,ω).

In [Vch2], Veech proved that PSL(X,ω) is a discrete subgroup of PSL(2,R).
That is, it is a Fuchsian group. The Veech Dichotomy, also proven in [Vch2], states
that if PSL(X,ω) is a lattice — that is, if PSL(X,ω)\H2 has finite hyperbolic area
—, then the linear flow in any direction of the surface (X,ω) is either ergodic or
periodic. One thus says that a translation surface is a Veech surface if PSL(X,ω)
is a lattice.

2.3. Saddle Connections, Parabolic Directions, and Special Points. Any
translation surface of genus greater than one must have singularities. A geodesic
line emanating from a singularity is called a separatrix, a separatrix connecting
singularities (with no singularity on its interior) is a saddle connection. We call a
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non-singular p ∈ (X,ω) a connection point if every separatrix passing through p
extends to a saddle connection.

Given a direction on a translation surface, there is a corresponding point of ∂H2:
Expressing the direction as a slope θ, the point on ∂H2 is 1/θ; this is due to the fact
that SL(2,R) acts on (X,ω) by way of its linear action on R2, but the SL(2,R)-
action on H2 is fractional linear. We say θ is a parabolic direction for (X,ω) if
there is a parabolic element of PSL(X,ω) whose associated affine diffeomorphism
preserves the direction θ. (In fact, the full Veech Dichotomy states that the non-
ergodic directions of a Veech surface are parabolic.) We also call these associated
affine diffeomorphisms parabolic. Thus for example, an element of SL(2,R) arising
from an element of Aff(X,ω) which fixes the vertical direction (should such an
element exist) acts on the extended hyperbolic plane so as to fix the boundary
point ξ = 0.

A point p ∈ (X,ω) of finite orbit under the group of affine diffeomorphisms
is called a periodic point. A point of finite orbit under the subgroup of affine
diffeomorphisms generated by the two (primitive) parabolic diffeomorphisms for
some pair of transverse parabolic directions is called a rational point for (X,ω). In
[GHS], one shows that non-periodic points have dense orbits. In [HS3], we show
that every connection point on a Veech surface is a rational point.

2.4. Infinitely Generated Groups using Ramified Coverings. To date, con-
structions of infinitely generated Veech groups rely on the following basic fact of
Fuchsian groups: (1) a Fuchsian group of the first kind (that is, whose limit set is
all of ∂H2) is either a lattice group or else is infinitely generated. In [HS3], we used
ramified coverings of Riemann surfaces. Given a ramified covering f : X → Y of
Riemann surfaces, let Br(f) ⊂ Y be the branch locus of f and PSL(Y, α; Br(f) )
the image in PSL(Y, α) of the affine diffeomorphisms which stabilize Br(f). If every
point of the fiber above each nonsingular branch point is a point of ramification,
then the translation surface (X, f∗α) is a balanced translation covering — see, say
[HS2] for the definition of this term introduced by E. Gutkin — of the marked
translation surface (Y, α; Br(f) ); Veech groups of translation surfaces related by
a balanced covering are commensurable [Vo], [GJ]: from this (2) PSL(X, f∗α) is
commensurable to PSL(Y, α; Br(f) ); and, (3) if there is an element of the branch
locus that is non-periodic (that is, such that its Aff(Y, α)-orbit is of infinite order),
then PSL(Y, α; Br(f) ) is of infinite index in PSL(Y, α). When (2) and (3) hold, we
easily conclude that PSL(X, f∗α) fails to be a lattice.

Given any point of a translation surface, the directions of separatrices through
the point are dense (see, say, Lemma 1 of [HS3], in turn essentially a result of [Vo]);
the direction of any saddle connection on a Veech surface is in fact a parabolic
direction; one finds that if the branch locus contains a connection point, then the
parabolic directions of PSL(Y, α; Br(f) ) are dense in ∂H2, and thus the limit set of
this group is certainly all of ∂H2. Now, if the connection point is non-periodic, then
we conclude that that PSL(Y, α; Br(f) ) is infinitely generated; again, the commen-
surable PSL(X, f∗α) is therefore also infinitely generated. But, we show in [HS3]
that there exist (Y, α) that admit non-periodic connection points, and thus proved
the existence of infinitely generated PSL(X,ω).

For an explicit example, we showed in [HS3] (see in particular Proposition 7
there) that the genus two surface given by the golden cross can be taken to play
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the role of (Y, α). This surface has exactly one singularity, say s; let us also choose
one of its infinitely many non-periodic connection points, p. If g = 2d is even, then
we can take d copies of our genus two surface, with a slit from s to p; identify these
with the usual process after having chosen some transitive permutation on d letters.
This gives a degree d ramified covering, whose branch locus consists of {s, p}, and
which is totally ramified above each of these points. The Riemann-Hurwitz formula
then shows that the covering Riemann surface does have genus g. One can choose
the odd genus g = 3 + 2k by way, say, of double coverings: choose 4k connection
points of our genus two surface; create 2k slits and glue two copies in the standard
manner. For more on creating ramified coverings, see say [D].

2.5. Fuchsian Groups and Ends. A complex Teichmüller geodesic is ‘morally’
the same of the quotient of the hyperbolic plane by the corresponding Veech group.
In order to address phenomena such as ends, we briefly discuss related notions in
the setting of Fuchsian groups.

Definition 1. The (open) horodisk of Euclidean radius r based at finite ξ ∈ ∂H2

is the Euclidean disk of radius r in H2 that is tangent to ∂H2 at ξ. We also refer
to the half-plane above y = r as the horodisk of radius r based at ξ = ∞ .

Of the following, only the last is a new term.

Definition 2. Let Γ be a Fuchsian group.
(1) A Dirichlet region for a Fuchsian group Γ associated to a point z ∈ H2 is

the set of all closest Γ-orbit representatives to z.
(2) A Dirichlet point for a Fuchsian group Γ is a point ξ ∈ H2 ∪ ∂H2 which is

on the boundary of some Dirichlet region.
(3) A parabolic point is a fixed point of a parabolic element of Γ.
(4) A cusp for Γ is the Γ-equivalence class of a parabolic point of Γ.
(5) A fat point for Γ is a point ξ ∈ ∂H2 such that there is a fundamental domain

for Γ that includes a horodisk based at ξ.

Remark 1. We were surprised to be unable to find in the literature a term for what
we have dubbed ‘fat point’.

An end of a manifold S is determined by a cover of S by compact sets Ki, with
each Ki contained in the interior of Ki+1; an end E is a sequence of components
Ei in the complement of Ki such that Ei+1 ⊂ Ei. The definition of an end is inde-
pendent of choice of sequence Ki, see say [Th]. An end E of a hyperbolic surface
is called a cusp if for all sufficiently large i, Ei is conformally equivalent to the
complex punctured unit disk. An end is called a hole if for all sufficiently large i, Ei

is conformally equivalent to a complex annulus. These two types of ends are called
finite, an infinite end is an end which is not finite. See [Ha] for discussion of the
geometry of various types of ends of a hyperbolic surface. As explained in §2.4, the
hyperbolic surfaces that we address here are of the first kind, any infinite end that
we discuss will be of the type called by Haas an infinite end of the first kind. (Note
that each of the above definitions continues to be valid upon allowing S to be a
hyperbolic orbifold, although there is then also the further possibility that the set
of elliptic fixed points enters arbitrarily far into an end.)
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If a Fuchsian group is of the second kind, then it may have fat points inside an
interval contained in the complement of its limit set. Such an interval corresponds
to a hole in the corresponding surface. However, if the group is of the first kind,
then there are no such intervals.

Lemma 1. If ξ is a fat point for a Fuchsian group of the first kind Γ, then the
Γ-equivalence class of ξ corresponds to an infinite end of Γ\H2.

The following result is well-known.

Lemma 2. Finite degree ramified coverings of hyperbolic surfaces or orbifolds map:
finite ends to finite ends and infinite ends to infinite ends.

Remark 2. In §5, we identify infinite ends by way of fat points for a certain group,
say Γ. These fat points are parabolic points for a related, larger group, say G. Now,
if G is any Fuchsian group, and ξ is a parabolic point for G, then for any subgroup
Γ ⊂ G admitting a fundamental domain which contains some horodisk based at ξ,
one can easily show that there is some z ∈ H2 such that ξ is a Dirichlet point for Γ
relative to z.

Nicholls showed, see [N1, N2], that a Dirichlet point ξ ∈ ∂H2 for some Γ is either
a parabolic fixed point, or is such that there exists a ∈ H2 whose Γ-orbit meets
the closure of some horodisk based at ξ but such that this orbit does not meet the
(open) horodisk itself. Recall that ξ ∈ ∂H2 is called, after Sullivan [S], a Garnett
point for Γ relative to a if the largest horodisk based at ξ containing no element
of the Γ-orbit of a, has its closure also not meeting this orbit. A point ξ is a rigid
Garnett point for Γ if ξ is Garnett with respect to all a ∈ H2. From the Nicholls
result, the fat points we use are not rigid Garnett points. We do not yet know if
they can in fact be Garnett points.

2.6. Cylinders and Horocyclic Flow. A cylinder on a translation surface (X,ω)
is a maximal connected set of homotopic simple closed geodesics. If the genus of X
is greater than one, then every cylinder is bounded by saddle connections. Upon
cutting the cylinder along a line perpendicular to the direction of flow, we can
represent it as indicated in Figure 1: of width w and height (or circumference) h.
A cylinder has its affine Dehn twist (x, y) 7→ (x, y+xh/w mod Zh ). The modulus of
the cylinder is µ = w/h. If for some direction θ the surface (X,ω) decomposes into
cylinders in this direction, then we say that θ is a (completely) periodic direction.
Veech [Vch2] shows that a completely periodic direction θ is a parabolic direction
if and only if the various cylinders in the direction θ have commensurable inverse
moduli: all hi/wi · wj/hj are rational.

The Teichmüller horocyclic flow is given by hs ◦ (X,ω), where hs :=
(

1 0
s 1

)
,

with s ∈ R. The orbit of (X,ω) under this flow is called a horocycle.
Suppose that (X,ω) is completely periodic in the vertical direction, that is (X,ω)

has a decomposition into vertical cylinders. The effect of hs, with s > 0, restricted
to a cylinder of the decomposition is to change the relative positions of the sin-
gularities on the right hand side of the cylinder with respect to those on the left.
It is easily seen that on a given vertical cylinder of height h and width w, that a
standard affine twist on the cylinder has been performed when s = h/w. (Thus,
when s is the multiplicative inverse of the modulus of the cylinder.) See Figure 1.
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Figure 1. Horocyclic flow: moving a singularity.

If the various moduli of the cylinders are commensurable, then there is a least
positive s such that hs induces on each cylinder an integer power of the basic Dehn
twist of the cylinder. This hs is then easily seen to belong to SL(X,ω). Indeed, the
element hs then generates a parabolic subgroup of PSL(X,ω), and the PSL(X,ω)-
conjugacy class of this parabolic subgroup corresponds to a cusp.

2.7. Geodesic Flow, Horodisks and Fat Directions. Teichmüller geodesic flow

is given by gt ◦ (X,ω), where gt =
(
et/2 0
0 e−t/2

)
, with t ∈ R. For positive t, the

effect of gt restricted to a vertical cylinder decomposition is to decrease heights
and increase widths. Note that vertical saddle connection lengths tend to zero as
t → ∞. Thus, if (X,ω) has saddle connections in the vertical direction, then for t
sufficiently large, the shortest saddle connections for gt ◦ (X,ω) are in the vertical
direction.

Given a direction θ, let Rθ denote the element of SO(2,R) that rotates the plane
so as to send the vertical direction to θ. A horodisk of index T corresponding to a
direction θ of (X,ω) is the union over t > T of all the horocycles hs( gtRθ ◦(X,ω) ) .

Definition 3. A direction θ of (X,ω) is a fat direction if there is a positive real T
such that no two points of the horodisk of index T corresponding to θ are SL(X,ω)-
equivalent.

The following is immediate.

Lemma 3. Let (X,ω) ∈ ΩMg, and let θ ∈ P1(R) be a direction for (X,ω). Let
ξ ∈ ∂H2 be given by ξ = 1/θ. If θ is a parabolic direction, then ξ is a parabolic
point of PSL(X,ω); if θ is a fat direction, then ξ is a fat point for PSL(X,ω).

3. Elementary Tools

In [HS2], we studied an invariant of the geometry at a cusp of a Teichmüller
complex geodesic — the multiplicities and relative lengths of saddle connection
vectors. In a similar manner, we use the following elementary notion to differentiate
amongst infinite ends.
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Definition 4. If p lies interior to the sides of an oriented cylinder, then the splitting
ratio of p is the ratio of the distance from the left hand side of the cylinder to p to
the width of the cylinder. (See Figure 2 .)

The following easy result is crucial to our treatment of infinite ends. See Lemma
4 of [HS1] and Proposition 3 of [HS3] for similar use of cylinder splittings. Recall
that given p on a translation surface (Y, α), we let PSL(Y, ω; p) denote the subgroup
of PSL(Y, α) arising from the stabilizer of p in Aff(Y, α).

Proposition 1. Let (Y, α) be a translation surface. If ξ ∈ ∂H2 is a parabolic
point of PSL(Y, α) and p ∈ Y has irrational splitting ratio for some cylinder of
the cylinder decomposition in the corresponding parabolic direction, then ξ is a fat
point for PSL(Y, α; p) .

Proof. Since ξ is a parabolic point, there is indeed a cylinder decomposition in the
corresponding direction. Furthermore, the elements of PSL(Y, α) that fix ξ are
exactly the (globally constant) derivatives of the parabolic affine diffeomorphisms
that fix the corresponding direction. The point p irrationally splits one of these
cylinders, hence no power of the fundamental affine Dehn twist of this cylinder can
fix p. However, every affine diffeomorphism that preserves the vertical restricts to
this cylinder to be some power of this Dehn twist. Thus, none of the parabolic
elements of PSL(Y, α) for this direction are in PSL(Y, ω; p) . Since these parabolic
elements form a single cyclic subgroup, distinct elements of this type define distinct
PSL(Y, α; p) -cosets.

We now choose a fundamental domain for PSL(Y, α) with the parabolic point ξ
on its boundary. There is some horodisk based at ξ which meets this fundamen-
tal domain in a triangle, with one vertex at ξ. But, a fundamental domain for
PSL(Y, α; p) can be given as the union over the PSL(Y, α; p) -cosets of the images of
our chosen fundamental domain by coset representatives. Since the chosen horodisk
based at ξ is filled out by the image of the intersection of our fundamental domain
by the parabolic elements of PSL(Y, α) fixing ξ, we find that ξ is indeed a fat point
of PSL(Y, α; p) . �

Lemma 4. Splitting ratios are SL(2,R) invariant.

Proof. Let (X,ω) be a translation surface, and suppose that p ∈ X splits some
cylinder with ratio θ. For ease of discussion, we may and do assume that the
cylinder, say C, is a vertical cylinder. Suppose that A ∈ SL(2,R).

We develop C to R2 in the standard fashion. The ratio θ is the ratio of the length
of the horizontal line segment passing from the left hand side of C to p to the width
of the cylinder. Of course, this second length is the length of the horizontal line
segment joining the sides of C and passing through p.

The image of the cylinder by A is again a cylinder, say D, with obvious devel-
opment. The horizontal line segment crossing C upon which p lies has as its image
some segment in D; since A acts linearly, the ratio of the length of the initial seg-
ment of this image — from the appropriate side of the cylinder to the image of p
— to the length of the full image segment is again θ.

Draw the line segment perpendicular to the sides of the cylinder which passes
through the image of p. Due to the equality of the opposite angles so defined, ratios
of corresponding sides of the triangles so formed are equal. A trivial cancellation,
see Figure 2, shows that the splitting ratio is indeed preserved. �
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a : b   =  a’ :  b’  =  a" :  b"    ==>     a : (a+b)  =  a" : ( a" + b")

a

p

b

a’

b’

a"

b"

Figure 2. Preserving splitting ratios.

We have the immediate consequence.

Corollary 1. Affine diffeomorphisms preserve splitting ratios of cylinders.

Lemma 5. Suppose that C and D are cylinders lying in tranverse directions which
have non-trivial intersection. If p irrationally splits C, then the orbit of p under the
affine Dehn twist of C meets the cylinder D so as to give infinitely many distinct
irrational splitting ratios with respect to D.

Proof. Let θ denote the splitting ratio of p with respect to C. By Lemma 4, we
may normalize such that C is in the vertical direction and D is in the horizontal
direction. Let R be a rectangle in which our two cylinders meet. Let us develop the
cylinders such that R is bounded below by the line y = y0 and above by y = y0 +λ.
Let us denote by h the vertical height of C. Thus in these coordinates, the orbit
of p by the vertical Dehn twist has heights nθh mod Zh , with n ∈ N. But, this is
exactly the set of {nθ}h , where {x} denotes the fractional part of the real number
x.

It suffices for us to show that there are infinitely many distinct ratios ( {nθ}h )/λ
which are irrational, and lie between y0 and y0 + λ. For completeness’ sake, we
show this elementary, presumably well-known, result.

Let ν := λ/h. Now, if {nθ} is a rational multiple of ν, then it is necessary that

θ =
aν + b

c
for a, b, c integers, with a, c nonzero.

Suppose now that θ is of the form
aν + b

c
, and there is an n such that {nθ} = rν/s

for nonzero integers r and s. We find:

n
aν + b

c
− k = rν/s , with k = bnθ c .

Since θ is irrational, it is not linearly related to a rational number. Hence, in
particular, we must have that k = nb/c. That is, bnθ c = n b/c; but then 0 <
θ − b/c < 1/n . This can only occur for a finite number of n.
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Since in the worst case scenario there are only a finite number of orbit elements
to avoid, and the orbit of p is dense in the circle on the vertical cylinder, we conclude
that there are always infinitely many elements of the orbit which irrationally split
the horizontal cylinder. �

The following is also an elementary tool in our approach.

Lemma 6. The affine diffeomorphisms of a translation surface preserve the set of
connection points.

Proof. Suppose that φ ∈ Aff(X,ω) is an affine diffeomorphism and p ∈ X is a
connection point. Given a separatrix passing from a singularity to φ(p), we apply
φ−1 to find a separatrix passing from some singularity through p. Since p is a
connection point, this separatrix extends to a saddle connection. But, the image
by φ of this extended separatrix extends our initial separatrix passing through φ(p).
Since φ sends saddle connections to saddle connections, we are done. �

4. Infinitely Many Cusps

We use the invariant studied in [HS2] to distinguish cusps.

Proposition 2. Let (X,ω) be a balanced cover of (Y, α; p), with p a non-periodic
connection point of the Veech surface (Y, α). Then the Teichmüller complex geodesic
G(X,ω) has infinitely many cusps.

Proof. The translation structure of (X,ω) arises as the pull-back by a ramified
holomorphic map f : X → Y of Riemann surfaces, with ω = f∗α. Recall from §2.4
that the Veech group PSL(X,ω) is commensurable to the subgroup of PSL(Y, α)
formed by the derivatives of the stabilizer in Aff(X,α) of p.

By Theorem 2 of [GHS], the image of the non-periodic p under the action of
the affine diffeomorphism group is dense on (Y, α). Let l be the length of the
shortest saddle connection of (Y, α). Given ε < l/2, we can find an image of p
under Aff+(X,ω), say q, which is within ε of one of the singularities, say σ. There
is a unique separatrix of length less than ε connecting q and σ. By Lemma 6, we
can extend this separatrix to a saddle connection, passing from σ to a singularity
τ . (Of course, τ may equal σ.)

Let φ be an affine diffeomorphism mapping q to p. The image by φ of the
above saddle connection is a saddle connection passing through p. Since (Y, α) is
a Veech surface, the direction of any saddle connection is a parabolic direction.
Since p lies on this saddle connection, p is preserved by the Dehn twist of either of
the cylinders (in this given direction) upon which p lies. Thus this direction is a
parabolic direction for (X,ω).

Consider a single lift to (X,ω) of the saddle connection that we have just deter-
mined. This lift is the union of two saddle connections on (X,ω): the first joins
a lift of φ(σ) to a lift of p, the second joins the lift of p to a lift of φ(τ). (The
connection vectors of these saddle connections are parallel!)

Now, the lengths of these saddle connections on (X,ω) are equal to the lengths
of the corresponding segments on (Y, α). But, the affine diffeomorphism φ preserves
ratios of segment lengths; thus the ratio of the lengths of the saddle connections on
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(X,ω) equals the ratio of the length along the separatrix from σ to q to the length
along its continuation from q to τ . We find that this ratio is less than ε/2l.

Our construction thus allows us to find pairs of parallel connection vectors, in
parabolic directions, of (X,ω) that are of arbitrarily small ratio. However, the
number of connection vectors in any given direction is finite. Furthermore, the ratios
of the various connection vectors lying in a parabolic direction is invariant under
the action of SL(X,ω) — see [HS2]. We conclude that (X,ω) has infinitely many
inequivalent parabolic directions. But, each of these parabolic directions determines
a distinct cusp of PSL(X,ω)\H2. Since the Teichmüller complex geodesic G(X,ω)
is a generically injective image of this quotient, it too has infinitely many cusps. �

5. Infinitely Many Infinite Ends

We now give the proof of Theorem 2. Thus, we continue with (X,ω) a ramified
covering of (Y, α) as above. The periodic directions on (X,ω) are exactly those
given by the periodic, and hence parabolic, directions of (Y, α). We show that
(X,ω) has many inequivalent directions which are periodic, but not parabolic.

Proposition 3. Let (X,ω) be a balanced cover of (Y, α; p), with p a non-periodic
connection point of the Veech surface (Y, α). Then the Teichmüller complex geodesic
G(X,ω) has infinitely many infinite ends.

Proof. There is some parabolic direction of (Y, α) for which p irrationally splits a
cylinder. Without loss of generality, we may normalize so that p irrationally splits
a vertical cylinder and such that the horizontal is a parabolic direction for (Y, α).

Consider the vertical cylinder C in which p lies, and any horizontal cylinder D
which meets C. By Lemma 5, the set of splitting ratios of D determined by the
orbit of p under the vertical affine Dehn twist includes an infinite set of irrational
numbers. There is some finite power of this Dehn twist which is induced by an
element φ of the affine diffeomorphism group of (Y, α); the orbit of p under the
subgroup generated by this multiply-composed Dehn twist still provides an infinite
set of distinct irrational splitting ratios.

For each image q = φn(p) of this latter type, apply the corresponding inverse
φ−n. Now, φ−n(q) = p ; φ−n(D) is a cylinder in a corresponding parabolic direction
for (Y, α) ; and, p splits φ−n(D) with the ratio that q splits D. Of course, given any
direction, p lies interior to at most one cylinder of the possible decomposition in
that direction; thus the splitting ratio defined by p in that direction is well-defined.
Furthermore, the splitting ratio that p gives is constant on directions equivalent
under the stabilizer of p amongst the affine diffeomorphisms of (Y, α). Since the
Aff(Y, α)-orbit of p gives infinitely many distinct irrational splitting ratios, Corollary
1 and Proposition 1 now imply that there are infinitely many fat directions that
are inequivalent under the stabilizer of p.

By Lemma 1, PSL(Y, α; p)\H2 has infinitely many infinite ends. But, again as
mentioned in §2.4, PSL(X,ω) is commensurable with PSL(Y, α; p); hence,
PSL(Y, α; p)\H2 and PSL(X,ω)\H2 admit a common finite degree (possibly rami-
fied) covering. By Lemma 2, PSL(X,ω)\H2 also has infinitely many infinite ends.
But, the Teichmüller complex geodesic G(X,ω) is a generically injective image of
PSL(X,ω)\H2, it too must have infinitely many infinite ends. �
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We now complete the proof of Theorem 2.

Lemma 7. With hypotheses and notation as above, let θ be a fat direction of (X,ω).
Then θ is the limit of PSL(X,ω)-inequivalent fat directions of (X,ω).

Proof. From construction, θ is a parabolic direction for (Y, α) and the non-periodic
connection branch point p irrationally splits a cylinder C of (Y, α) in this direction.
Recall that some power of the Dehn twist in this cylinder is induced by an element
φ of the affine diffeomorphism group of (Y, α). Choose any parabolic direction
for (Y, α) that is transverse to θ. There is some cylinder D in this direction that
meets C. The previous proof shows that there is a subsequence of φ−n(D) giving
cylinders which are split by p with distinct irrational splitting ratios. Since φ is
parabolic, preserving the direction θ, the direction of the cylinder φ−n(D) tends to
θ as n tends to infinity. Thus, θ is the limit of these inequivalent fat directions for
(Y, α; p). Finally, commensurability of groups allows us to choose a subsequence of
these directions consisting of inequivalent fat directions for (X,ω). �

6. Factoring Horocycles Through Tori

We discuss the effects on G(X,ω) of Dehn twists associated to a cylinder de-
composition of (X,ω). These Dehn twists are elements of the Teichmüller modular
group, and thus preserve the complex structure on X. We imagine that all of the
following is well-known. Our understanding of this material arose out of discussion
with G. Forni. In this section, we state and prove Proposition 4 and the related
Lemma 10; this latter is used in the next section.

Proposition 4. Suppose that the translation surface (X,ω) has a cylinder decom-
position, into n cylinders, in the direction θ. Let m be the number of distinct
commensurability classes of the inverse moduli of these cylinders. Then the projec-
tion to Mg of the horocycle {hs ◦ (Rθ ◦ (X,ω) ) | s ∈ R } factors through a dense
image on a real torus of dimension m.

The torus invoked in the above arises from Dehn twists, a simple form of this is
given in the following. The proof of necessity involves some Teichmüller theory.

Lemma 8. Suppose that the translation surface (X,ω) has a cylinder C in the
vertical direction. Let σ be the basic affine Dehn twist in C, extended by the identity
to all of (X,ω). Then σ defines an element of the mapping class group, Mod(g, n)
where X is f genus g and (X,ω) has n singular points. In particular, using σ again
to denote its class, π ◦ σ( (X,ω) ) = π( (X,ω) ), where π : ΩMg → Mg is the
standard projection.

Proof. This follows from standard material, which we sketch. Let X ′ denote X with
the zeros of ω deleted. Then σ is a quasi-conformal homeomorphism of X ′ to itself;
see [EG] for a particularly clear exposition of such self-maps (and their effects on Te-
ichmüller disks). Now, by taking squares, ΩMg is identified with a subspace of the
quadratic differentials. But, the modular group Mod(g, n) acts biholomorphically
and compatibly on both the Teichmüller space of n pointed marked Riemann sur-
faces and the space of its quadratic differentials, see say the introduction to [Vch1].
Furthermore, this action respects the strata of squares of holomorphic 1-forms, see
in particular Section 2 of [M]. Thus, σ( (X,ω) ) determines a holomorphic 1-form
on a punctured Riemann surface Z ′ that is biholomorphically equivalent to X ′. The
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holomorphic structure extends over the removable singularities, and hence we may
indeed consider σ( (X,ω) ) as an element of ΩMg. Furthermore, the biholomorphic
equivalence of X ′ and Z ′ extends to a biholomorphic equivalence of X and Z. Thus,
we have the equality π ◦ σ( (X,ω) ) = π( (X,ω) ). �

The following is immediate.

Lemma 9. With notation as above, horocylic flow restricts to C to give a map that
commutes with σ. Furthermore, if C is of modulus µ, then modulo the cyclic group
generated by σ, this restricted map is parametrized by s mod µ−1 .

Definition 5. Suppose that the translation surface (X,ω) has a cylinder decom-
position, into n cylinders, in the vertical direction. Define the following Rn-action
on the underlying topological surface. Given s = ( s(1), . . . , s(n) ) ∈ Rn, in the ith
cylinder, apply the restriction of the horocyclic flow hs(i) .

Note that the above Rn-action commutes with the group generated by the various
σi. Thus, modulo this group, the Rn-action defines an n-torus; the horocycle
hs ◦ (X,ω) projects to a curve on this torus. Since each σi also commutes with the
projection to Mg, the projection of the horocycle factors through the image of the
horocycle on this torus.

But, we can synchronize the twists for cylinders of commensurable (inverse) mod-
uli. Let m be the number of these commensurability classes; for the j-th class, let
σ̃j be the composition of the various σr(i)

i in this class, where each r(i) is the (min-
imal) appropriate power (as in the formation of parabolic affine diffeomorphisms).
Again, the projection of the horocycle factors through the torus corresponding to
the group generated by the σ̃j .

If our direction is parabolic and there is a single commensurability class, in which
case we find that the horocycle factors through a circle, which we certainly already
knew! Otherwise, the image of the diagonal (s, . . . , s) ∈ Rm projects to a dense
curve in the torus; that is, the image of the horocycle is dense on the m-torus.

Finally, all of the above goes though mutatis mutandi upon replacing the vertical
by any direction of a cylinder decomposition.

Lemma 10. For positive t, the image under gt of the horocycle of Proposition 4
also has projection to Mg factoring through a dense curve on a real m-torus.

Proof. For positive t, the effect of gt =
(
et/2 0
0 e−t/2

)
on a vertical cylinder decom-

position of (X,ω) is to preserve the number of cylinders, while decreasing heights
and increasing widths. Indeed, gt acts so as to multiply vertical cylinder moduli by
et. Thus, the number m remains constant. The rest of the proof is clear. �

7. Covers and Moduli Space

7.1. Overview of Proof: Density in Algebraic Surface. Heuristically, the
density of G(X,ω) in its complex algebraic surface is simply due to the fact that the
branch point p of (Y, α) has dense orbit under the group of affine diffeomorphisms.
There are two main steps involved in turning this into a proof: (1) f : X → Y
induces a topologically identical ramified covering for each element of the SL(2,R)-
orbit of (X,ω), see Lemma 13 below; but the Riemann surfaces Z of genus g which
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have a map of a given topological type (in terms of monodromy group, see the
discussion in §7.3) form an analytic subvariety of Mg — this is a consequence of
Wewers’ thesis [W], see Theorem 4 below. In fact, Wewers’ result is algebraic in
nature; and since G(Y, α) is a complex algebraic curve — as shown by [Moe2], this
can be seen as resulting from Smillie’s Theorem, see [Vch3], the SL(2,R)-orbit of
any Veech surface is closed — it follows that G(X,ω) lies in an algebraic variety.
Our condition of a single point of ramification allows an easy dimension count to
show that G(X,ω) does indeed lie in an algebraic surface. (2) To show the density
of G(X,ω) there, one focuses on the branch locus of f and of each of the maps for
the Riemann surfaces Z as above. To consider these all at once, recall that the
universal curve Mh,1 is the space of Riemann surfaces of genus h with a marked
point; we show that the branch point p gives rise to a dense subset of the subset
of the universal curve lying above G(Y, α), see Lemma 11. Wewer’s Theorem can
then be invoked to show the density of G(X,ω) in its complex algebraic surface, see
Lemma 15.

Remark 3. An advantage of using the strongly algebraic result of Wewers is that one
can expect that whenever some (X,ω) occurs as a ramified cover of a Veech surface,
it then will be dense in some appropriate algebraic variety, whose field of definition
is given in terms of the field of definition of the Teichmüller curve associated to
the Veech surface and the branch locus. Of course, the question remains whether
a similar statement is true under the weaker condition that SL(X,ω) is infinitely
generated.

7.2. Mapping to a Universal Curve. With our ongoing assumptions, we have

PSL(X,ω)\H2

��

deg m // PSL(Y, α; p)\H2 // PSL(Y, α)\H2

��
G(X,ω) G(Y, α) .

We now give what one might consider as G(Y, α; p), allowing us to complete the
lower horizontal line to give a commutative diagram; see C0 of Lemma 12. We
consider a map to a universal curve. See [HM], [Hu], [L] for related ideas.

For brevity, we use the language of Teichmüller theory. The hyperbolic metric
on PSL(Y, α)\H2 allows us to identify it with the Teichmüller disk of α2 in the
Teichmüller space of X. Let V be the fiber space of corresponding marked Riemann
surfaces above this disk. Note that p defines a section of this fiber space, σp.

A classic result of H. Cartan is that the quotient of a complex manifold by a
properly discontinuous group of automorphisms gives a normal complex space. ( A
normal complex space is a complex manifold off of its singular points, and the
singular locus is small in the sense that any function that is locally bounded and
holomorphic on its complement extends to a holomorphic function on the whole
space. [See [Na] and especially [Fr] for definitions and details.] There is also the
notion of a normal algebraic variety, the standard underlying space of a normal
variety over C is a normal complex space, see the end of Appendix VI of [Fr].)
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Now, since the Teichmüller modular group acts properly discontinuously by bi-
holomorphisms on Teichmüller space, one has that Mh is certainly a normal ana-
lytic space. Similarly, there is the possibility to achieve a universal marked curve
over Teichmüller space, this descends to give a normal complex fiber space — the
universal curve Mh,1 over Mh. Here each fiber is a Riemann surface modulo its
automorphism group, see in particular the Corollary on p. 326 of [Na].

Thus, V projects to a normal complex fiber space C, the restriction of the uni-
versal curve to G(Y, α). Clearly, the section σp projects to a subset C0 ⊂ C.

Lemma 11. Let (Y, α) and p be as above. The projection of the fiber space V to the
universal curve restricted to G(Y, α) sends the image of the section σp to a dense
subset C0.

Proof. By Theorem 2 of [GHS], the non-periodic p has dense Aff(Y, α)-orbit on
the (marked) Riemann surface Y . But, Aff(Y, α) injects into the modular group
Mod(h), so as to give the stabilizer of the Teichmüller disk of α2. Recall that fα

is generically injective, for this argument we may assume that it is injective at the
center of this disk (under its identification with H2 as above). Hence the image of
p under Aff(Y, α) descends to give a dense subset of the fiber of C above the image
of the center of the disk. Since the affine diffeomorphism group of any element in
the SL(2,R)-orbit of (Y, α) is conjugate to that of (Y, α), the result follows. �

Lemma 12. Let (Y, α) and p be as above. There is a generically injective analytic
map fp : PSL(Y, α; p)\H2 → C0 .

Proof. This follows from the generic injectivity of fα and the fact that PSL(Y, α; p)
is exactly the group of derivatives of the affine diffeomorphisms of the translation
surface (Y, α) that fix p. �

In classical Teichmüller theoretic terms, the map from H2 to the image of σp is
the restriction to a certain Teichmüller disk of the standard map from T (h, r + 1)
to V (h, r), see p. 330 of [Na].

Proposition 5. With notation as above, let E be an end of PSL(Y, α; p)\H2. If E
is a cusp, then the image under fp of E is homeomorphic to R+ × S1. Let Ξ be
the set of infinite ends of PSL(Y, α; p)\H2 that lie above cusps of PSL(Y, α)\H2. If
E belongs to Ξ, then the image is homeomorphic to R+ × S1 × A, with A a dense
subset of S1.

Proof. For E of either of the two types of ends considered here, let ξ ∈ ∂H2 cor-
respond to E , and let θ = 1/ξ be the corresponding direction on the translation
surface (Y, α). Since this latter is a Veech surface, one easily shows that θ is a par-
abolic direction for (Y, α). Take a horodisk based at ξ of sufficiently small radius
such that it projects to the cusp of PSL(Y, α)\H2 corresponding to ξ. This horodisk
also projects to E .

If E is a cusp, then p must not irrationally split any cylinder in the θ direction.
Thus p is of finite order under the parabolic affine diffeomorphisms preserving the
direction θ. That is, p is stabilized by a finite index subgroup of the subgroup of
Aff(Y, α) preserving θ. Reasoning as in the proof of Lemma 10 shows that this is
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true upon replacing (Y, α) by any gt ◦ (Y, α) with t > 0. Hence, for each point in
our chosen horodisk, the horocycle based at ξ passing through this point projects
to a circle in both PSL(Y, α; p)\H2 and PSL(Y, α)\H2. This is compatible with the
projection from C to G(Y, α): the circle in PSL(Y, α; p)\H2 is mapped to a circle in
C0 lying above a circle on G(Y, α).

Now, suppose that E is an infinite end in Ξ. Then p must irrationally split some
cylinder. Consider the cylinder decomposition with this split cylinder replaced by
the two newly created cylinders. This has exactly two commensurability classes of
inverse moduli. Furthermore, for each point in our chosen horodisk, although the
horocycle based at ξ passing through this point projects to a circle in PSL(Y, α)\H2,
it projects to a line in PSL(Y, α; p)\H2. Directly related to this, the orbit of p on the
translation surface (Y, α) forms a proper dense subset of the circle in the direction
θ upon which p lies. The image of the line under fp is indeed a line lying densely
in a torus contained in C; this torus projects to the circle on G(Y, α) arising from
the horocycle. Again, the above persists under application of the Teichmüller flow,
gt, to provide a factor of R+. �

7.3. Hurwitz Spaces. We will show that G(X,ω) lies in a complex surface of
Mg, related to G(Y, α). One can discuss these matters in terms of so-called relative
Teichmüller spaces, see for example Remark 3 on p. 510 of [MH]; however, we use
the notion of Hurwitz spaces. For this, we rely upon S. Wewers’ thesis, see [Moe]
for similar usage. This can be compared with [MSSV]’s use of the earlier results
of [Ber]. See also §5 of [L] for another application of maps between moduli spaces
induced by ramified covers.

We first sketch the idea. Given our f : X → Y , consider the space of all ramified
covers of compact Riemann surfaces ρ : Z → W where Z is of genus g and W of
genus h and of the same monodromy group as f . By work of Wewers [W], this space
has the structure of a quasi-projective variety H (that is, H is the complement of
an algebraic subvariety inside some projective variety); furthermore, there are finite
degree analytic maps from φ : H →Mg and Ψ : H →Mh,1. Viewing Mh,1 as the
universal curve over Mh, restrict to the algebraic (normal) surface fibering C over
G(Y, α). We show that G(X,ω) lies densely inside the image by Φ of one of the
components of Φ−1(C).

The monodromy group of a ramified cover of topological surfaces, ρ : A→ B, is
the permutation representation of the fundamental group of B \ Br(f) determined
by fixing a non-branch point b as base point and computing the action on the
fiber ρ−1(b) of the fundamental group — each closed loop based at b lifts to give
paths joining elements of the fiber. Since we assume connected covers, the resulting
homomorphic image of π1(B) is a transitive subgroup of the symmetric group Sd,
with d the degree of the cover. Deleting the branch points and their pre-images
results in a true cover of surfaces; this cover is regular if the monodromy group is a
normal subgroup of Sd. This cover being regular is equivalent to the ramified cover
ρ being Galois.

Note that change of base point results in a conjugation of monodromy group;
as well, change in enumeration of the elements of the fiber ρ−1(b) also results in
a conjugation of monodromy group. Still, it is standard practice to speak of the
monodromy group of a cover, tacitly using the fact that it is rather the conjugacy
class in Sd of the group that is well-defined.
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The following elementary result is crucial to our discussion.

Lemma 13. Let f : (X,ω) → (Y, α;P) be a balanced cover of translation surfaces,
and A ∈ SL(2,R). Then f : A ◦ (X,ω) → A ◦ (Y, α) is also a balanced cover, and
has the same monodromy group.

Proof. That the SL(2,R)-action preserves balanced covers is shown by both [GJ]
and [Vo]. Since this action does not change topology, it is clear that monodromy
groups are preserved. �

In roughest terms, Hurwitz spaces parametrize covers of Riemann surfaces in
terms of ramification data. Wewers [W] obtains various results about Hurwitz
spaces (and in particular their compactifications) by using the theory of algebraic
stacks. Wewers used the notion of G−N covers — appropriately defined families
of covers such that all monodromy groups lie within the subgroup N ⊂ Sd where
N ⊃ G, and such that all geometric fibers of the family do have G as monodromy
group. Geometric fibers here are those elements of the family corresponding to
closed points of the underlying parametrizing space — in our setting, all ‘standard’
points are closed points.

Recall that Mh,[r] denotes the Riemann moduli space of Riemann surfaces of
genus h with r unordered points marked. Combining Theorem 4.1.4 and Remarks
4.1.6 and 4.1.7 of [W], with underlying ring being C, one has the following.

Theorem 4. (Wewers) Fix a genus h and a natural number r. Suppose that G is
a monodromy group realized by some cover ρ : X → Y with Y of genus h, ρ having
r branch points, and X say of genus g. Then there is a quasi-projective space H,
parametrizing all covers of genus h Riemann surfaces with monodromy group G,
with finite degree, (forgetful) algebraic maps Φ : H →Mg and Ψ : H →Mh,[r].

7.4. Proof of Theorem 3. Suppose that G(Y, α) is any complex Teichmüller ge-
odesic and ρ : X → Y any cover ramified above r points of Y . Then the restriction
of the natural projection Mh,[r] →Mh restricts to give an r + 1 dimensional fiber
space V over G(Y, α). If ρ has monodromy group G, then X corresponds to a point
contained in the image of Φ applied to an appropriate component of Φ−1(V).

Lemma 14. Let ρ : (X,ω) → (Y, α;P) be a balanced cover of translation surfaces,
with the corresponding cover of the underlying Riemann surfaces ramified over r
points. Suppose (Y, α) is a Veech surface.

Let V be the restriction to G(Y, α) of the fiber space Mh,[r] →Mh. Then G(X,ω)
is a subset of the algebraic set given by Φ applied to the pre-image under Ψ of V.
In particular, G(X,ω) lies within an r + 1 complex dimensional algebraic space.

Proof. By Lemma 13 each point of π( SL(2,R) ◦ (X,ω) ) has a ramified covering
map, with the same monodromy group and number of branch points as f , to a
Riemann surface corresponding to a point of G(Y, α). Thus, G(X,ω) is indeed
contained in the image under Φ of the appropriate subset of the Hurwitz space.
The fact that V is analytic and of dimension r + 1 is well-known, see say p. 326
of [Na] and surrounding discussion. The result thus is a consequence of Wewers’
Theorem 4 above. �
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Lemma 15. With hypotheses and notation as above, suppose further that P consists
of a single, non-periodic connection, point. Then G(X,ω) lies densely on a complex
algebraic surface.

Proof. We can identify Mh,[1] with Mh,1, and in fact with the universal curve
over Mh. Combining Lemmas 11 and 13, the single branch point of our given map
f and its images under the SL(2,R)-action leads to a section σp whose image is
dense in the restriction of the universal curve to G(Y, α). But, G(X,ω) lies in the
image by Φ of the pre-image under Ψ of this dense set.

Now, since the Teichmüller curve G(Y, α) is algebraic, see [Moe2], so is the re-
striction to it of the universal curve. The finite maps Φ and Ψ preserve algebraicity.
Therefore, G(X,ω) lies densely on an algebraic surface. �

We finish the proof of Theorem 3 with the following.

Lemma 16. Let S be the complex algebraic surface of the conclusion of Lemma
15. Each cusp of G(X,ω) lies within some two real-dimensional set of S. Let Ξ be
the set of infinite ends of G(X,ω) corresponding to infinite ends of PSL(Y, α; p)\H2

covering cusps of PSL(Y, α)\H2. Each infinite end in Ξ lies within some three
real-dimensional set of S.

Proof. This follows from Proposition 5 and the finiteness of the various maps: π,
Φ, Ψ, fp and PSL(X,ω)\H2 → PSL(Y, α; p)\H2 . �
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