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ARITHMETICITY
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Abstract. Nous étudions des surfaces de translation ayant un grand groupe de
difféomorphisms affines — les surfaces “préréseaux”. Parmi celles-ci se trouvent
les surfaces de translation réseaux étudiées par W. Veech. Nous montrons qu’il
existe des surfaces de translation préréseaux qui ne sont pas réseaux. Nous
donnons une nouvelle caractérisation des surfaces arithmétiques : ce sont les
surfaces préréseaux qui ont un nombre infini de points périodiques sous l’action
du groupe des difféomorphisms affines. Nous exhibons des exemples de surfaces
de translation dont les points périodiques et points de Weierstrass cöıncident.

We study translation surfaces with rich groups of affine diffeomorphisms
— “prelattice” surfaces. These include the lattice translation surfaces studied
by W. Veech. We show that there exist prelattice but nonlattice translation
surfaces. We characterize arithmetic surfaces among prelattice surfaces by the
infinite cardinality of their set of points periodic under affine diffeomorphisms.
We give examples of translation surfaces whose periodic points and Weierstrass
points coincide.

1. Introduction

A translation surface is a flat surface with conical singularities (see say [Th88]),
whose transition functions are (restrictions of) translations. Translation surfaces
arise in several contexts: mathematical billiards, Riemann surfaces and their mod-
uli, classification of surface diffeomorphisms and measured foliations. In this pa-
per, we focus on the geometry and arithmetic of translation surfaces.

In [Th88] W. Thurston studied flat Riemannian metrics with conical singular-
ities. In a particular setting, these give rise to translation surfaces. Let S be a
Riemann surface and φ a holomorphic 1-form on S. Integrating φ, we obtain a
translation atlas off of the zeros of φ. A zero of φ of multiplicity m − 1 yields a
cone point with angle 2mπ. See [MT01, Wrd98] for details.
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The affine diffeomorphisms of a translation surface form a group, Aff(S). As-
signing to g ∈ Aff(S) its (constant) differential, we obtain the differential homo-
morphism D : Aff(S) → SL(2,R). Let Γ(S) ⊂ SL(2,R) be its range. W. Veech
showed that Γ(S) is a Fuchsian group, and related it to the geometry and dynam-
ics of the geodesic flow of S [Vch89]. It is customary to call Γ(S) the Veech group
of S. 1

We say that S has the lattice property, or simply that S is a lattice surface, if
Γ(S) is a lattice, i.e., SL(2,R)/Γ has finite volume. (It is also common to call S a
Veech surface.) The lattice Γ(S) is necessarily nonuniform [Vch89]. For instance,
the standard flat torus is a lattice surface — its Veech group is SL(2,Z).

A nonuniform lattice is arithmetic if it admits a finite index subgroup which is
conjugate to a subgroup of SL(2,Z). A lattice translation surface is arithmetic if
its Veech group is arithmetic. Arithmetic translation surfaces were investigated
already in [Gut84]. In [Vch89, Vch92] Veech gave the first examples of nonarith-
metic lattice surfaces. He also showed that the geodesics on lattice surfaces satisfy
the Veech dichotomy: Every geodesic is either closed or uniformly distributed.

There are two major branches to the study of translation surfaces. One is
the study of the general or, at least, the generic translation surface. See, for
instance, [EM01, KMS86] and the survey [MT01]. The other is the study of special
translation surfaces, e.g., lattice surfaces. This branch naturally subdivides: The
purely geometric one [Vo96, Gut00] and the algebro-geometric one [Wrd98, GJ96,
KS00, GJ00, HS00, HS01]. The present work is of the latter type.

Every element of SL(2,R) \ {±1} is either parabolic, elliptic, or hyperbolic. By
convention, we consider the elements ±1 elliptic. We say that φ ∈ Aff(S) is a
parabolic, elliptic, or a hyperbolic diffeomorphism, if Dφ ∈ SL(2,R) is parabolic,
elliptic, or hyperbolic respectively.

The generic translation surface has no affine symmetries, while we study the
surfaces with infinitely many of them. We emphasize the diffeomorphisms “gen-
erated” by parabolic directions. A direction is parabolic for S if

(i) Every geodesic in this direction is either periodic or a saddle connection;
(ii) The moduli of the cylinders in S, formed by the geodesics in this direction

are commensurate.

To each parabolic direction, θ, one can associate a parabolic diffeomorphism,
φθ ∈ Aff(S), [Vch89]. The restriction of φθ to a cylinder in the direction θ is
a power of the Dehn twist of that cylinder. This then allows us to identify φθ

1The flat structures considered by Veech and many others are induced by quadratic differen-
tials. Translation surfaces correspond to the quadratic differentials which are squares of linear
ones. From the geometric viewpoint, these more general flat structures are the half-translation
surfaces [GJ00]. All of our results extend mutatis mutandis to the half-translation surfaces.
This follows from the standard 2-sheeted covering of a half-translation surface by a translation
surface [HM79].
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with its differential, a parabolic element of Γ(S). Furthermore, for any parabolic
g ∈ Aff(S), there exist m,n ∈ N, and a parabolic direction θ such that gm = φn

θ ;
see Proposition 2.4 of [Vch89].

If α, β are arbitrary directions, then either α = ±β or α and β are transversal.

Definition 1. A discrete group Γ ⊂ SL(2,R) is a prelattice if it contains noncom-
muting parabolic elements. A translation surface S is a prelattice surface if the
group Γ(S) is a prelattice. Equivalently, S is a prelattice surface if it has a pair
of transversal parabolic directions.

In § 9 of [Vch89] Veech briefly considered translation surfaces satisfying Defini-
tion 1. We show that such surfaces need not be lattice surfaces — see Corollary 7.

Let S be a translation surface and let G ⊂ Aff(S) be a subgroup of infinite
order. A point of S is G-periodic if its G-orbit is finite. When G = Aff(S), we
simply speak of the periodic points of S. It follows from Theorem 5.5 of [GJ00]
that the periodic points of an arithmetic translation surface form a countable,
dense set.

Theorem 1. Let S be a prelattice translation surface. Then the following di-
chotomy holds:

(i) The surface S is an arithmetic lattice surface; the periodic points form a
dense, countable subset;

(ii) The surface S is not an arithmetic lattice surface; the set of periodic points
is finite.

Theorem 1 will follow from Theorem 7 in § 3, which gives an upper bound on
the number of periodic points that a nonarithmetic prelattice translation surface
can have.

Recall that an action of a group on a compact set is minimal if there are no
nontrivial closed invariant subsets. We show that the action of the affine group
on a prelattice surface is “nearly” minimal.

Theorem 2. Let S be a prelattice translation surface. Then the only closed infinite
subset of S invariant under Aff(S) is S itself.

Definition 2. Let S be a translation surface, and let C(S) be its set of cone
points. Let s1, . . . , sp ∈ S \ C(S). Marking s1, . . . , sp we create a formally new
translation surface (S; s1, . . . , sp). It is the surface S punctured (or marked) at
the points s1, . . . , sp. Its set of cone points is C(S) ∪ {s1, . . . , sp}. Its group of
affine diffeomorphisms consists of the elements of Aff(S) that preserve C(S) ∪
{s1, . . . , sp}.

Although puncturing a translation surface does not change the geodesics, it
may drastically change its Veech group and the counting functions [Gut00, HS00,
HS01]. Marked translation surfaces naturally arise in the context of affine cover-
ings. See § 2.2 and § 5.2.



AFFINE DIFFEOMORPHISMS OF TRANSLATION SURFACES 4

Let S be a prelattice surface. We say that s ∈ S is a rational point if there
exist two transversal parabolic directions for S such that for each direction, s is
periodic with respect to the Dehn twist of the cylinder in which it lies. See § 5
for a formal definition.

Theorem 3. Let S be a prelattice translation surface. Let SQ ⊂ S be the set of
rational points and let P (S) be the set of periodic points.

(a) The set SQ is dense, countable, and P (S) ⊂ SQ.
(b) The surface S is arithmetic if and only if P (S) = SQ.
(c) Let s ∈ S. Then (S; s) is a prelattice surface if and only if s ∈ SQ.

Claim (b) is a new characterization of arithmeticity for translation surfaces. The-
orem 3 yields a classification of points in lattice surfaces.

Corollary 1. Let S be a lattice translation surface, and let s ∈ S. Then the
following trichotomy is satisfied.

(i) We have s ∈ P (S) if and only if (S; s) is a lattice surface.
(ii) We have s ∈ SQ \P (S) if and only if (S; s) is a prelattice, but not a lattice

surface.
(iii) We have s ∈ S \ SQ if and only if (S; s) is not a prelattice surface.

Our further results concern balanced coverings [Gut00] of translation surfaces.
See Definition 4 in § 2.2. Veech groups behave naturally under balanced coverings:
The lattice property is preserved. A translation covering is an affine covering
p : R → S, whose differential satisfies Dp = 1. The group GL(2,R) acts on
translation surfaces, by composition with coordinate functions. Let S → g · S
denote the action. Translation surfaces S,S ′ are equivalent (resp. equivalent
in the extended sense) if S ′ = g · S with g ∈ SL(2,R) (resp. g ∈ GL(2,R)).
This equivalence allows us to replace a (balanced) affine covering by a (balanced)
translation covering.

Recall that Fuchsian groups Γ,Γ′ are commensurable if Γ ∩ Γ′ is of finite index
in both Γ,Γ′. The groups are called commensurable in the wide sense if there is
some g ∈ SL(2,R) such that Γ and gΓ′g−1 are commensurable.

Definition 3. Let Γ ⊂ SL(2,R) be a Fuchsian group. We say that Γ is realizable
(resp. almost realizable) as a Veech group if there exists a translation surface S
such that Γ = Γ(S) (resp. Γ is commensurable with Γ(S)).

Theorem 4. Let S be a lattice translation surface, and let Γ be its Veech group.
Then S is nonarithmetic if and only if there exists a prelattice subgroup Γ′ ⊂ Γ of
infinite index which is almost realizable as a Veech group.

Perhaps the most striking implication of Theorem 4 is the following.

Corollary 2. Let Γ ⊂ SL(2,Z) be a prelattice. Then Γ is almost realizable as a
Veech group if and only if it is a lattice.
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Recall that a Riemann surface, S, is hyperelliptic if it admits a holomorphic (hy-
perelliptic) involution, σ, such that the quotient S/σ is the Riemann sphere. The
fixed points of σ are called the Weierstrass points of S. Since a translation surface
defines a Riemann surface, we can speak of hyperelliptic translation surfaces and
their Weierstrass points.

Theorem 5. There are hyperelliptic translation surfaces whose sets of Weierstrass
points and of periodic points coincide.

This last cannot be true in general: If S is arithmetic, then the set of its periodic
points is infinite, while the set of Weierstrass points is always finite.

Organization of Paper In Section 2 we discuss background material. In
§ 3 we prove key quantitative results. In § 4 we prove our main quantitative
result, Theorem 7, and then Theorems 1 and 2. In § 5 we study rational points
of prelattice surfaces, proving in particular Theorems 3 and 4. In § 6 we study
hyperelliptic surfaces, and give explicit examples proving Theorem 5.

Thanks We thank the referee for a careful reading.

2. Background and Preliminaries

2.1. Parabolic Diffeomorphisms of a Translation Surface. We recall the
main concepts, referring the reader to the survey [MT01] for elaboration. We
consider only closed, connected translation surfaces. A translation surface, S, has
a finite set, C(S), of cone points. The points in S \ C(S) are called regular. A
nonzero tangent vector at a regular point of S has a direction. For any θ ∈ [0, 2π),
the unit tangent vectors in direction θ form a vector field, Vθ, with singularities
at the cone points. Integral curves of Vθ are the geodesics on S in direction θ.
We parametrize them by arclength. If γ(t) is a geodesic such that γ(t + `) =
γ(t), γ(t + `/n) 6= γ(t) for n > 1, then γ is a (prime) periodic geodesic of length
`. If γ(t), 0 ≤ t ≤ `, is a geodesic, whose endpoints belong to C(S), and whose
interior points are regular, then γ is a saddle connection of length `. We designate
by closed geodesics both periodic geodesics and the saddle connections.

The only closed translation surfaces without cone points are the flat tori. To
unify our treatment, we always mark a point of a flat torus and call this the origin.
Any regular closed geodesic determines a maximal flat cylinder, C ⊂ S. The flat
cylinder, C(`, w), of length ` and width w, is obtained by identifying the two
vertical sides of the rectangle R(`, w) = {(x, y), 0 ≤ x ≤ `, 0 ≤ y ≤ w}. Although
various cylinders are affinely equivalent, the modulus µ = `/w = µ(C) gives a
conformal invariant. The interior of any (maximal) cylinder C ∈ S is isometric
to Int(C(`, w)), where ` = `(C) and w = w(C) are respectively the length and the
width of C. If C ⊂ S is a cylinder of length `, width w, and direction θ, then
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Ly, 0 < y < w, are the periodic geodesics in S of length ` and direction θ. The
curves L0 and Lw are the unions of saddle connections in the same direction.

The basic affine diffeomorphism of C = C(`, w) is the Dehn twist T = TC. In
the coordinates above we have T (s, t) = (s + t `

w
mod `Z, t). Since T fixes the

boundary ∂C(`, w) pointwise, it defines the Dehn twist for any cylinder, C ⊂ S,
of length ` and width w. A direction θ is periodic for S if every geodesic in this
direction is closed. A periodic direction defines a decomposition of S as a finite
union of cylinders Ci, 1 ≤ i ≤ k(θ). Let wi, `i, µi be the respective parameters,
and let Ti : Ci → Ci be the respective Dehn twists. There exist Ni ∈ N such
that the iterates TNi

i , 1 ≤ i ≤ k(θ), fit together, yielding an affine diffeomorphism
φθ : S → S, if and only if the moduli µi are commensurable. In this case θ is a
parabolic direction. The smallest positive µ = µ(θ) such that µ = Niµi, 1 ≤ i ≤
k(θ), is the modulus of the parabolic direction θ. The diffeomorphism φθ ∈ Aff(S)
is the principal parabolic diffeomorphism corresponding to θ. We use the same
notation for its differential, which belongs to Γ(S). In appropriate coordinates,
φθ is given by the parabolic upper triangular 2×2 matrix with µ(θ) in the corner.

2.2. Affine Equivalence and Coverings. There is a natural action of GL(2,R)
on the space of translation surfaces, which is simple to describe in terms of the
coordinate charts, [Vch84], [Vch86], [GJ00]. If S is a translation surface, and
g ∈ SL(2,R), we denote by g · S the new translation surface. The translation
surfaces S and g · S are affinely equivalent, and Γ(g · S) = gΓ(S)g−1. Hence, this
action preserves arithmeticity and the (pre)lattice property. In particular, if α, β is
a pair of transversal parabolic directions for S, then g ·α, g ·β is the corresponding
transversal pair for g · S. The statements announced in the Introduction are each
appropriately either invariant or equivariant under the affine equivalence.

We use this observation for two purposes: 1) To normalize a pair of parabolic
directions; 2) To replace an affine covering by a translation covering. Let S be a
translation surface, and let α, β be a transversal pair of parabolic directions for S.
Replacing S by an affinely equivalent surface, if need be, we can assume without
loss of generality that α, β are the positive x, y-directions respectively

Natural mappings of translation surfaces are the affine coverings [GJ00]. Let p :
X → Y be one. Then p defines a (possibly branched) covering of the corresponding
closed topological surfaces. Furthermore, p is affine outside of the cone sets. The
differential, Dp(x) ∈ GL(2,R), is a constant matrix. Translation coverings are the
affine coverings whose differential is the identity matrix. Hence, replacing either
X or Y by an affinely equivalent surface (in general, in the extended sense), we
can assume that p : X → Y is a translation covering [GJ96, Vo96, GJ00, HS01].

Definition 4. Let p : X → Y be an affine covering of translation surfaces. Then
p is balanced if p(C(X )) = C(Y) and p−1(C(Y)) = C(X ).
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The following theorem was proved independently by E. Gutkin and C. Judge,
and by Ya. Vorobets.

Theorem 6. ([GJ96, GJ00] and [Vo96].) Let p : X → Y be a balanced affine cov-
ering of translation surfaces. Then the groups Γ(X ) and Γ(Y) are commensurable
in the wide sense. If, besides, p is a translation covering, then Γ(X ) and Γ(Y) are
commensurable.

3. Periodic Points of Translation Surfaces

Let C be a flat cylinder, and let T : C → C be the Dehn twist. A point z ∈ C is
periodic if T nz = z, for some n > 0. The smallest such n is the period of z.

We do the computations for the standard cylinder C = C(1, 1). It is straightfor-
ward to extend them to arbitrary C(`, w). Thus, T : (x, y) 7→ (x + y mod 1, y).
The restriction of T to the closed geodesic Ly = {y = const} ⊂ C is the rotation
by y. Hence, a point z ∈ C is periodic if and only if z ∈ Ly, where y is rational.
Moreover, the set of points of period n is the union of Lk/n, with k and n relatively
prime. Thus, we have φ(n) closed geodesics consisting of the points of period n,
where φ is Euler’s totient function.

The number of geodesics in C, consisting of the points of period at most n is
Φ(n) :=

∑n
m=1 φ(m) = (3/π2) · n2 +O(n log n). See [HW38], Theorem 330.

We consider the subgroups of affine diffeomorphisms of C, generated by powers
of T . For n ∈ N let Fn be the set of rational rotation numbers with denominator
at most n. Thus, Fn := { (k, l) ∈ N2 | gcd(k, l) = 1, k < l ≤ n }, and |Fn| =
Φ(n) ≤ n2. The map of the unit interval to itself, x 7→ {Nx}, is N -to-1 and sends
Fn to itself. In particular, the points of period at most n under TN lie on NΦ(n)
closed geodesics in C.

The translation surface T = R/Z with the marked point (0, 0) is the standard
torus. Any flat torus is affinely equivalent to T, we thus restrict our considerations
to the standard torus. The group of affine diffeomorphisms of T is SL(2,Z),
generated by the horizontal and the vertical Dehn twists, Th and Tv respectively.
We have Th : (x, y) 7→ (x + y mod 1, y) and Tv : (x, y) 7→ (x, y + x mod 1).
The points (x, y) ∈ T which are periodic with respect to SL(2,Z) are the rational
points (x, y) ∈ Q2/Z2. The set of points which are periodic of period at most n
under Tv and of period at most m under Th is the intersection of the horizontal
and vertical closed geodesics that we have just considered. The cardinality of this
set is asymptotic to (9/π4) ·m2n2, as m,n→∞.

Let θ be a parabolic direction on a translation surface S. Using the preceding
material, we speak of rational closed geodesics, their periods and their rotation
numbers. Note that the periodic points of period n under the restriction of φθ to
the cylinder Ci lie on Niφ(n) rational geodesics of Ci. The set of rotation numbers
of these geodesics is Fn.
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Theorem 7. Let S be a translation surface, and let α, β be a pair of transversal
parabolic directions. Then there exist positive integers M and N , depending only
on the ratios of the parameters of the cylinder decompositions, so that the following
statements hold.

(i) If S has more than M periodic points with respect to Affα,β(S), then S is
arithmetic.

(ii) If S has an Affα,β(S)-periodic point of period greater than N , then S is
arithmetic.

Theorem 7 follows from several technical lemmas and propositions. By the
remarks in § 2.2, we assume without loss of generality that α, β are the coordinate
directions. We use labels v and h to refer to the vertical and the horizontal
directions respectively. From now until Proposition 4 the standing assumption
is that both coordinate directions are parabolic. A rectangle in S is a connected
component of the intersection Ch

i ∩ Cv
j . The interior of any rectangle is isometric

to the Euclidean rectangle (0, wv
j )× (0, wh

i ). Let µi,j be the number of rectangles

formed by this intersection. We denote the rectangles by Rl
i,j, 1 ≤ l ≤ µi,j. The

(essentially disjoint) decomposition

(1) S = ∪k(h)
i=1 ∪

k(v)
j=1 ∪

µi,j

l=1 R
l
i,j

implies
k(h)∑
i=1

k(v)∑
j=1

µi,jw
h
i w

v
j = Area(S) .

Lemma 1. For 1 ≤ i ≤ k(h) (resp. 1 ≤ j ≤ k(v)) let Hi (resp. Vj) be a finite
set of closed geodesics in Ch

i (resp. Cv
j ). Then

(2) |(∪k(h)
i=1 Hi) ∩ (∪k(v)

j=1Vj)| =
k(h)∑
i=1

k(v)∑
j=1

µi,j|Hi||Vj|.

Proof. The intersection of a longitude in Ch
i with a longitude in Cv

j consists of
µi,j points.

To simplify the notation, we denote the subgroups of Aff(S) generated by the
diffeomorphisms φh and φv by A and B, respectively. Let 〈A,B〉 be the subgroup
generated by A and B.

If f and g are functions of natural argument, we use the notation f ≤∼ g
to indicate that f(n) ≤ g(n) for n sufficiently large, and f ∼ g means that
f(n)/g(n) → 1 as n goes to infinity. The proposition below is immediate from
Lemma 1 and the preceding remarks.
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Proposition 1. For any subgroup G ⊂ Aff(S) let PG ⊂ S be the set of G-periodic
points. Denote by PG

n ⊂ PG the subset of points of periods at most n. Then

(i) For any m and n we have

(3) |PA
m ∩ PB

n | = Φ(m)Φ(n)

k(h)∑
i=1

k(v)∑
j=1

µi,jN
h
i N

v
j .

(ii) We have

(4) |PA
m ∩ PB

n | ∼
9

π4

k(h)∑
i=1

k(v)∑
j=1

µi,jN
h
i N

v
j

 m2n2.

Corollary 3. We have the asymptotic inequality

(5) |P 〈A,B〉
n | ≤∼ 9

π4

 k(h)∑
i=1

k(v)∑
j=1

mi,jN
h
i N

v
j

 n4 .

Proof. Use equation (4) and the inclusion P
〈A,B〉
n ⊂ PA

n ∩ PB
n .

We state a few immediate consequences of the propositions above, then formu-
late and prove a few technical lemmas.

If α, β is a pair of transversal parabolic directions on S, we denote by Affα,β(S) ⊂
Aff(S) the subgroup generated by the diffeomorphisms φα and φβ. A subgroup
G ⊂ Aff(S) is basic if its intersection with some Affα,β(S) has finite index in the
latter.

Corollary 4. Let S be a prelattice translation surface. Let G ⊂ Aff(S) be any
basic subgroup. Then

(i) The sets PG
n are finite.

(ii) The cardinality |PG
n | grows at most quartically in n, as n tends to infinity.

(iii) The set PG is infinite if and only if it contains periodic points of arbitrarily
large periods.

Lemma 2. There exist constants c0 and n0, depending only on the parameters of
the transversal pair of parabolic decompositions of S, such that any finite orbit of
〈A,B〉 of cardinality n > n0 contains points of periods at least c0 4

√
n with respect

to each of A and B.
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Proof. We choose c0 > 0 so that

c40 = (
3

π2
+ 1)−2

k(h)∑
i=1

k(v)∑
j=1

µi,jN
h
i N

v
j

−1

.

By equations (4) and (5), there exists m0 ∈ N such that for m > m0 one has

(6) |P 〈A,B〉
m | < c−1

0 m4.

Rewriting this inequality as m4 > c0|P 〈A,B〉
m | and setting n0 = c0m

4
0, we obtain the

claim.

If xα
i , 1 ≤ i ≤ k(α), are any parameters of the cylinders of a parabolic direction

α, we denote by xα
min and xα

max the smallest and the biggest ones.

Lemma 3. There is m0 ∈ N, depending only on the parameters of the horizontal
and vertical decompositions of S, such that the following holds:
If a finite 〈A,B〉-orbit contains a point of A-period m > m0, then the A-orbit of

this point contains a point whose B-period is at least [2(m
wv

min

`h
max

− 1)/N v
max]

1
2 .

Proof. Suppose that O is a finite 〈A,B〉-orbit, and s ∈ O is of A-period m. We
assume, without loss of generality, that s ∈ Ch

1 , and let L ⊂ Ch
1 be the closed

geodesic containing s. It intersects at least one vertical cylinder. Again, we can
assume that L intersects Cv

1 . Let R ⊂ Ch
1 ∩ Cv

1 be one of the rectangles.
The distance between consecutive points of A · s is `h1/m. Hence the number of

points of the orbit A·s in the interval L∩R is at least bwv
1/(`

h
1/m)c ≥ (mwv

1/`
h
1)−1.

The interval L ∩ R intersects each closed geodesic of Cv
1 exactly once. Hence

{A · s} ∩ R intersects at least (mwv
1/`

h
1)− 1 distinct closed geodesics of Cv

1 .
Let X ⊂ [0, 1]∩Q be the set of rotation numbers of these geodesics with respect

to the basic Dehn twist of Cv
1 . Recall that the closed geodesics in a cylinder are

parametrized by their rotation numbers. Set N := N v
1 and Y := { {Nx} |x ∈

X }. Then Y is the set of rotation numbers of these geodesics with respect to
the diffeomorphism φv of S. Let n be the smallest positive integer such that
Y ⊂ Fn. Then n is the largest B-period of the geodesics in question. Using that
|Y | ≥ |X|/N and the obvious upper bound for |Fn|, we have

(7)
m

wv
min

lhmax
− 1

N v
max

<
n2

2
.

Taking m > lhmax/w
v
min, we obtain the claim.

The following two lemmas put the statements above into a more suitable form.
The proofs are straightforward, and we leave them to the reader.
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Lemma 4. There exist c1 > 0 and n0 ∈ N depending only on the parameters of
the two decompositions of S, and such that the following holds:
Let n > n0, and let O ⊂ S be an 〈A,B〉-periodic orbit of cardinality at least c1n

8.
Then O contains a point, s, with the following properties:

(i) The A-period of s is at least n;
(ii) Every vertical cylinder which intersects nontrivially the horizontal cylinder

containing s contains a point of B · {A · s}, whose B-period is at least n.

Lemma 5. There exist c2, c3 > 0 and n0 ∈ N so that the following holds:

(i) Let n ≥ n0, and let O ⊂ S be a finite 〈A,B〉-orbit of cardinality greater
than c2n

4. Then O contains a point of A-period at least n, and a point of
B-period at least n.

(ii) Suppose that an 〈A,B〉-periodic orbit O contains an A-periodic point, s,
of period at least c3n

2 with n ≥ n0. Then every vertical cylinder which
intersects nontrivially the horizontal cylinder containing s contains a point
of A · s whose B-period is greater than or equal to n.

Note that in the lemmas above A and B are interchangeable. The following
proposition is the main technical result.

Proposition 2. Let the assumptions be as above. There exist c4 > 0, n0 ∈ N and
d ∈ N, so that the following holds:
Let O ⊂ S be a finite 〈A,B〉-orbit of cardinality greater than c4n

2d+2
with n ≥ n0.

Then in every horizontal (resp. vertical) cylinder there is a point of O whose
A-period (resp. B-period) is at least n.

Proof. We sketch the proof, leaving the details to the reader. In particular,
we will pretend that in the lemmas above the constants ci are equal to one and
that all the thresholds n0 are the same. The latter can always be achieved by
taking the biggest threshold of them all. The former can be arranged by (for
instance) increasing the exponents in the lemmas by an arbitrarily small, but
positive amount, and raising the threshold. By the first claim of Lemma 5, there
is a horizontal cylinder, Ch

1 , such that O∩Ch
1 contains a finite A-orbit of cardinality

at least n2d
. Then every vertical cylinder intersecting Ch

1 contains a B-periodic

point of O, whose period is greater than or equal to n2d−1
. See the second claim of

Lemma 5. If the union of these vertical cylinders with Ch
1 covers S, then we proved

the claim. Otherwise, we continue the inductive argument. At each consecutive
iteration of the argument we just lose a factor of 2 in the exponent. Since S is
connected, after a finite number of steps we exhaust the surface.

4. Large Periodic Orbits Imply Arithmeticity

We need a few more technical propositions about transversal pairs of parabolic
directions. We continue to use the convention of § 2, and restrict the exposition
to the pair of coordinate directions.
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4.1. Commensurability of Parameters.

Lemma 6. Let Cv
i and Ch

j be two cylinders such that Ch
i ∩Cv

j 6= ∅. Let R ⊂ Cv
i ∩Ch

j

be one of the rectangles in the intersection. Suppose that two distinct points of R
lie in the same A-orbit and in a finite 〈A,B〉-orbit. Then wv

j /`
h
i ∈ Q.

Proof. We denote by (x, y) the natural coordinates in R. Then 0 ≤ x ≤ wv
j , 0 ≤

y ≤ wh
i . Let s = (x, y) and s′ = (x′, y′) be the two points in question. By

assumption, there is 0 6= n ∈ Z so that

(8) x′ = x+ n
y

wh
i

`hi , y′ = y .

Since s is A-periodic, y
wh

i
∈ Q. On the other hand, since s and s′ are both B-

periodic, they belong to rational closed geodesics in Cv
j . Thus, both x/wv

j and
x′/wv

j are rational numbers. Hence

(9)
x′ − x

wv
j

= n
y

wh
i

`hi
wv

j

∈ Q.

Since, as we already noted, y
wh

i
∈ Q, we obtain the claim.

Remark 1. The interchange of A and B in the assumptions of the preceding
Lemma yields wh

i /`
v
j ∈ Q.

The following technical proposition is crucial. It is also of independent interest.

Proposition 3. Let the notation be as in Proposition 2. Set

(10) m = m(A,B) = max{ `
h
max

wv
min

,
`vmax

wh
min

}.

Suppose that S has an 〈A,B〉-periodic point of period greater than or equal to

c4m
2d+2

. Then

(i) All numbers wv
j /`

h
i and wh

i /`
v
j are rational;

(ii) The lengths `hi , 1 ≤ i ≤ k(h), are commensurate, and the lengths `vj ,
1 ≤ j ≤ k(v), are commensurate, as well.

(iii) The widths wh
i , 1 ≤ i ≤ k(h), are commensurate, and the widths wv

j ,
1 ≤ j ≤ k(v), are commensurate, as well.

Proof. Let O be the 〈A,B〉-orbit in question. By Proposition 2, every horizontal
(resp. vertical) cylinder contains a point of O of A-period (resp. B-period) greater
than m. In view of equation (10), every rectangle R ⊂ Ch

i ∩Cv
j contains (at least)

two points, s and s′ of O, such that s′ = φh · s (resp. s′ = φv · s). Lemma 6 and
Remark 1 imply our first claim.
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Suppose that Ch
i and Ch

i′ intersect the same vertical cylinder, Cv
j . We have already

proved that wv
j /`

h
i and wv

j /`
h
i′ are rational. Thus `hi and `hi′ are commensurate. In

view of the connectedness of S, for any pair C, C ′ of horizontal cylinders, there is
a sequence C1, . . . , Ck of horizontal cylinders such that C = Ch

1 , C ′ = Ch
k , and every

two consecutive cylinders of the sequence intersect a common vertical cylinder.
Thus `(C)/`(C ′) is rational. The same argument works for vertical cylinders,
proving our second claim. The proof of the last claim is essentially identical, and
we leave it to the reader.

From now on we drop our convention that our transversal parabolic directions
is the pair x, y, and explicitly formulate all of our assumptions. The following
proposition is of independent interest.

Proposition 4. Let S be a translation surface. Let α and β be transversal par-
abolic directions. Let wα

i , 1 ≤ i ≤ k(α), and wβ
j , 1 ≤ j ≤ k(β), be the widths of

the respective cylinders. Suppose that the numbers wα
i are all commensurate, and

the numbers wβ
j are commensurate, as well. Then S is an arithmetic translation

surface.

Proof. Replacing S by an affinely equivalent surface, we assume without loss of
generality that α and β are the coordinate directions. In what follows we use h
for α and v for β.

Changing the translation structure S by a diagonal transformation, if need be,
we ensure that all the widths wh

i and wv
i are rational. Now we use the relations

(11) `vj =

k(h)∑
i=1

µi,jw
h
i , `hi =

k(v)∑
j=1

µi,jw
v
j .

Thus, all the lengths `hi , `
v
j are rational, as well. Applying a homothety to S, we

make all these parameters integral. By Theorem 5.5 of [GJ00], S is arithmetic.

Proposition 4 is a special case of a more general statement: A translation surface
all of whose parameters are commensurate is arithmetic [GJ00].

4.2. Proofs of Theorems 1, 8, 7. First, we prove the main quantitative result.

Proof of Theorem 7. We begin with the latter claim. Let m = m(α, β) be
given by equation (10). By Proposition 3, if N ≥ m(α, β), then the assumptions
of Proposition 4 are satisfied. Hence, S is arithmetic.

By Corollary 3, the existence of M periodic points implies the existence of a pe-
riodic point of period at least N = const 4

√
M . This holds only for M greater than

a certain threshold, depending on the data, which also determines the constant
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in question. Therefore, if S satisfies the assumption of claim (i), then it satisfies
the assumption of claim (ii), as well.

The hypothesis of the first claim of Theorem 7 implies that of the second,
with M = N . By this observation and the preceding argument, we reformulate
Theorem 7 as follows.

Corollary 5. Let S be a prelattice translation surface. Then there exists n ∈ N,
determined from any pair of transversal parabolic directions, so that the following
holds:
If S has at least n periodic points, then it is arithmetic.

Theorem 8. Let S be a translation surface, and let G ⊂ Aff(S) be a basic sub-
group. If the set of G-periodic points of S is infinite, then S is an arithmetic
translation surface.

Proof. If H ⊂ G ⊂ Aff(S) is a tower of subgroups, then P ⊂ PG ⊂ PH . The
claim now follows directly from Theorem 7.

Proof of Theorem 1. We have already proved that a nonarithmetic (pre)lattice
translation surface has a finite number of periodic points. Note that the cone
points are necessarily periodic! Now let S be an arithmetic translation surface.
Replacing S by an equivalent translation surface, if need be, we can assume that
S admits a balanced translation covering of the standard torus T. By Theorem 6,
Aff(S) is commensurable with Aff(T) = SL(2,Z).

The set Q2/Z2 of rational points is dense in T. But it is also the set of SL(2,Z)-
periodic points. The set of periodic points in S is the preimage of Q2/Z2 under
the covering, hence it is dense in S.

4.3. Proof of Theorem 2. It suffices to prove the claim under the convention
that the coordinate directions are parabolic. Let X ⊂ S be an infinite closed
〈A,B〉-invariant subset. Suppose that X contains a ‘coordinate’ closed geodesic,
L. We can assume without loss of generality that L is vertical. Let R be one
of the rectangles intersecting L. The set of φh-rotation numbers of the points
in the vertical interval R ∩ L is (0, 1). For every point z ∈ R ∩ L of irrational
rotation number, the φh-orbit of z is dense in the horizontal geodesic containing z.
Since X is closed, it contains this geodesic. Since irrational numbers are dense in
(0, 1), the horizontal cylinder containing R∩L belongs to X. Since R was chosen
arbitrarily, X contains the union, X1, of the horizontal cylinders intersecting L.
Replacing L by a horizontal closed geodesic in X1, we conclude that X contains
the union, X2, of the vertical cylinders intersecting X1. This inductive process
produces a sequence L ⊂ X1 ⊂ X2 ⊂ · · · ⊂ X, where either Xi+1 \Xi contains at
least one coordinate cylinder, or Xi = S. Since the number of cylinders is finite,
X = S.
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It remains to prove that X contains a vertical or a horizontal closed geodesic.
Let R be a coordinate rectangle, and let z = (x, y) ∈ R be an arbitrary point.
Denote by rh(z) and rv(z) the φh and φv rotation numbers respectively. Note that
rh is a locally linear function of y alone; similarly for rv with respect to x. Since
X is infinite, there is at least one R such that the set X ∩ R is infinite. Denote
by Rh(X) and Rv(X) the sets of horizontal and vertical rotation numbers of the
points in X∩R. Since X∩R is closed, both Rh(X) and Rv(X) are closed subsets
of [0, 1].

If Rh(X)∪Rv(X) contains an irrational number, then there exists a closed (ver-
tical, without loss of generality) geodesic, L, with an irrational rotation number,
containing a point of X. Then, by minimality of irrational rotations, L ⊂ X.
Assume then that Rh(X) ∪ Rv(X) ⊂ Q. There are two possibilities: the set
Rh(X) ∪Rv(X) is infinite or finite.

Assume first that it is finite. Then there is a closed (horizontal, without loss of
generality) geodesic, L, with a rational rotation number which contains infinitely
many points of X. Since X ∩ L ∩ R is infinite, we have infinitely many vertical
rotation numbers, contrary to the assumption.

Suppose now that Rh(X)∪Rv(X) is infinite. Assume, without loss of generality,
that |Rh(X)| = ∞. Let r ∈ Q be an accumulation point of Rh(X). Then there is
an infinite sequence of points zn ∈ X ∩R converging to z ∈ X ∩R, and r = rh(z).
Set rh(zn) = pn/qn. Since pn/qn → r, as n → ∞, the sequence qn is unbounded.
Let Ln (resp. L) be the horizontal closed geodesic containing zn (resp. z). The
distance between the consecutive points of the orbit A · zn ⊂ Ln is of the order of
q−1
n . Since Ln converges to L, we conclude that L consists of accumulation points

of X. Since X is closed, L ⊂ X.

5. Prelattice Surfaces

5.1. Rational Points. Let S be a prelattice translation surface, and let α, β be
a transversal pair of parabolic directions. Let R ⊂ Ch

i ∩ Cv
j be one of the par-

allelograms Rl
i,j of the associated decomposition. We change the affine structure

of S by any g ∈ SL(2,R) which sends α and β to the coordinate directions. Let
x, y be the Euclidean coordinates such that the interior of R is parametrized by
(0 < x < wv, 0 < y < wh). In view of possible identifications on the boundary, R
itself may not be isometric to the Euclidean rectangle [0, wv] × [0, wh]. However,
there is a mapping [0, wv]× [0, wh] → R, inducing an isometry of (0, wv)× (0, wh)
onto Int(R).

Reversing the affine equivalence above, we return to the original directions α, β.
This construction yields an affine mapping fR : [0, wv]×[0, wh] → R, which is onto,
preserves orientation and area, and is an affine isomorphism of (0, wv) × (0, wh)
and Int(R).
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Definition 5. Let S be a translation surface, and let α, β be a transversal pair
of parabolic directions. Let z ∈ S be an arbitrary point, let R be a parallelogram
of the decomposition (1), containing z, and let fR : [0, wv] × [0, wh] → R be the
corresponding affine mapping. Then z is rational with respect to the pair α, β if
z = fR(x, y), where x/wv, y/wh ∈ Q. A point z ∈ S is rational, if there is a pair
of transversal parabolic directions such that z is rational with respect to it.

We use irrational for all points that are not rational in the sense of Definition 5.
If R is a parallelogram of the decomposition (1), we denote by RQ the set of

its rational points. We use the notation Sα,β
Q for the set of rational points with

respect to the pair α, β, and SQ for the set of rational points of S. Note that the
concepts of rational and irrational points are applicable only to prelattice surfaces.

We leave the straightforward proof of the following proposition to the reader.

Proposition 5. Let S be a prelattice translation surface, and let α, β be a pair
of transversal parabolic directions for S. Let s ∈ S \ C(S). Then the following
statements are equivalent.

(i) The point s is rational with respect to α, β.
(ii) The directions α, β are parabolic for the punctured surface (S; s).
(iii) The point s is periodic with respect to both φα and φβ.
(iv) The point s is an intersection point of two rational geodesics, with direc-

tions α and β respectively.

5.2. Marking Points. We continue with the proofs of the claims of the Intro-
duction.
Proof of Theorem 3. The set SQ is the union of Sα,β

Q over all transversal pairs

of parabolic directions. Each set Sα,β
Q is countable and dense in S. A parabolic

direction is periodic, thus the set of parabolic directions of any translation surface
is at most countable. Any s ∈ P (S) is periodic with respect to every Affα,β(S) ⊂
Aff(S), hence P (S) ⊂ ∩α,βSα,β

Q ⊂ ∪α,βSα,β
Q = SQ. Claim (a) follows.

If S is arithmetic, then, by the proof of Theorem 1, SQ ⊂ Sα,β
Q ⊂ P (S) for

any transversal pair α, β, hence SQ ⊂ P (S). If SQ ⊂ P (S), then the set P (S) is
infinite, hence, by Theorem 8, S is arithmetic. This proves claim (b).

It remains to prove claim (c). If s ∈ SQ, then (S, s) is a prelattice surface, by
Proposition 5. By the same Proposition, Γ(S; s) is not a prelattice if and only if

for any transversal parabolic pair α, β we have s ∈ S \ Sα,β
Q , i.e., s ∈ S \ SQ.

Proof of Corollary 1 The first claim is in [HS00]. The second claim follows from
the first and Theorem 3. The third is contained in part (c) of Theorem 3.

As a byproduct of Corollary 1, we obtain a new characterization of arithmetic
translation surfaces. See [GJ00] for other characterizations.

Corollary 6. Let S be a lattice translation surface. Then S is arithmetic if and
only if the following dichotomy holds:
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For any s ∈ S the surface (S; s) is either a (necessarily arithmetic) lattice surface,
or it is not a prelattice surface.

Theorem 9. A. Let S be a prelattice translation surface, and let s ∈ S. Let
p : R→ (S; s) be a balanced affine covering. Then the following trichotomy holds.

(i) The surface R is a prelattice surface, and the groups Γ(R),Γ(S) are com-
mensurable in the wide sense if and only if s ∈ P (S).

(ii) The surface R is a prelattice surface, and the group Γ(R) is commensurable
in the wide sense to a prelattice of infinite index in Γ(S) if and only if
s ∈ SQ \ P (S).

(iii) The surface R is not a prelattice surface if and only if s ∈ S \ SQ.

B. Suppose further that p is a balanced translation covering. Then the groups in
question are commensurable (in the “narrow” sense).

Proof. It suffices to prove the theorem under the assumption that p : R→ (S; s)
is a balanced translation covering. By Theorem 6, the groups Γ(R) and Γ(S; s)
are commensurable. Hence, all but one our claims follow from Theorem 3. The
remaining claim concerns Γ(S; s) for s ∈ SQ \P (S). Let α, β be a transversal pair

of parabolic directions such that s ∈ Sα,β
Q . Then the stabilizer Γα,β

s ⊂ Γ(S; s) is a
prelattice. Therefore Γ(S; s) ⊂ Γ(S) is a prelattice as well. But, since the orbit
Aff(S) · s is infinite, the index of Γ(S; s) in Γ(S) is infinite.

A translation surface, S, can be viewed as a closed Riemann surface, S, equipped
with a holomorphic 1-form, say ω, see say [MT01]; we write S = (S, ω). The cone
points C(S) is the set of zeros of ω. Let p : R → S be a branched covering
of Riemann surfaces, and let α be the pull-back of ω. Let R be the translation
surface corresponding to (R,α). Then C(R) is the union of p−1(C(S)) and the
set of the ramification points of p : R→ S.

Proposition 6. Let S be a translation surface without marked points, and let
s ∈ S \ C(S). For any n > 1 there exists a translation surface R without marked
points, and a balanced m-to-1, m ≥ n, translation covering p : R→ (S; s).

Proof. Let (S, ω) be the Riemann surface with 1-form corresponding to S. It suf-
fices to exhibit branched coverings of Riemann surfaces, p : R→ S, of arbitrarily
high degrees such that the branch locus of p is contained in C(S) ∪ {s} and the
set p−1(s) ⊂ R belongs to the ramification locus of p. It is well-known that such
coverings exist [FK92].

Proof of Theorem 4. Let S be a nonarithmetic lattice surface, and let α, β be a
transversal pair of periodic directions. Let s ∈ Sα,β

Q \ P (S), which is nonempty,
by Theorems 1 and 3. Set Γ′ = Γ((S; s)). Then Γ′ is a prelattice of infinite index.
By Theorem 6, each one of the infinitely many balanced translation coverings,
p : R→ (S; s), provided by Proposition 6 gives an almost-realization of Γ′.
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Let now S be arithmetic, and let Γ′ ⊂ Γ(S) be a prelattice subgroup of infi-
nite index. Suppose that Γ′ is almost realizable, and let R provide an almost-
realization of Γ′. Thus, Γ′′ = Γ(R) ∩ Γ′ has finite index in both groups. In view
of arithmeticity, the trace of any g ∈ Γ is rational. Since Γ′′ contains hyperbolic
elements, by Theorem 28 of [KS00], the holonomy field of R is Q. Therefore, by
Theorem 5.5 of [GJ00], R is arithmetic. But Γ(R) is not a lattice!

Corollary 7. Let S be a nonarithmetic lattice translation surface. Let α, β be
a transversal pair of parabolic directions for S. Then there exists a translation
covering p : R → S where R is a nonlattice, prelattice translation surface, and
α, β are parabolic directions for R.

Corollary 8. Let S be a prelattice, but nonlattice translation surface. Then Γ(S)
is not commensurable (in the wide sense) with any subgroup of SL(2,Z).

Proof of Corollaries 7,8, 2. Corollary 7 follows from the proof of Theorem 4;
Corollary 8 is immediate from the statement of Theorem 4. The nontrivial impli-
cation of Corollary 2 follows from Corollary 8.

5.3. Examples and Applications. In this subsection we illustrate and augment
the preceding material, and apply it to polygonal billiards. We begin with an
infinite family of prelattice subgroups of SL(2,Z).

Example 1. For m,n ∈ N, let Gm,n ⊂ SL(2,Z) be the group generated by the

parabolic matrices µ =

(
1 m
0 1

)
and ν =

(
1 0
n 1

)
.

Let Γ ⊂ SL(2,R) be any Fuchsian group. Denote by K1(Γ) (resp. K2(Γ)) the
smallest field extension of Q containing tr(g) (resp. tr(g2)) for all g ∈ Γ. The
condition K1(Γ) = K2(Γ) is necessary for Γ to be realizable as a Veech group
[HS01]. The groups Gm,n obviously satisfy this condition. For mn > 4 (resp.
mn ≤ 4) the group Gm,n has a fundamental domain in H2 of infinite (resp. finite)
area [B83]. By Corollary 2, Gm,n is almost realizable as a Veech group if and only
if mn ≤ 4.

Recall that a polygon, P , is rational if its angles are commensurate with π.
In the subject of mathematical billiards there is a well known construction that
replaces a rational polygon, P , by a translation surface, S = S(P ) and reduces
the billiard flow in P to the geodesic flow in S, see [St06, FoKe36, KZ75, Gut84,
Gut96, MT01].

Definition 6. Let P be a rational polygon, and let S be the corresponding trans-
lation surface. We say that P is a lattice polygon (resp. a prelattice polygon) if S
is a lattice (resp. a prelattice) translation surface.
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Remark 2. Let P and S be as above. If Γ(S) has a parabolic element, then it also
has a hyperbolic element [KS00]. It then follows that P is a prelattice polygon if
and only if its translation surface has a parabolic direction.

We will denote by Γ(P ) the Veech group of the translation surface S(P ), and
say that Γ(P ) is the Veech group of the rational polygon P . Arithmetic polygons
are the polygons P such that Γ(P ) is an arithmetic lattice. They were investigated
in [Gut84] and [GJ00]. In particular, if P tiles the plane under reflections, it is
arithmetic; S(P ) is then a flat torus. Veech showed that the right triangle whose
smallest angle is π/n is a nonarithmetic lattice polygon if n 6= 4, 6 [Vch89].

Let p, q, r ∈ N be relatively prime. We denote by T (p, q, r) the Euclidean
triangle with angles pπ/(p+q+r), qπ/(p+q+r), rπ/(p+q+r). In this notation,
the right triangle above is T (2, n− 2, n) if n is odd and T (1,m− 1,m) if n = 2m.

Example 2. Set T1 = T (2, 3, 5) and T2 = T (3, 3, 4). Let S1 and S2 be the
corresponding translation surfaces, and let Γ1 and Γ2 be the respective Veech
groups. By [Vch89], T1 is a lattice triangle. We will show that T2 is a prelattice but
nonlattice triangle. The surface S1 is obtained by glueing along parallel sides two
copies of the regular pentagon; their vertices are glued into a single point, C(S1).
The isosceles triangle T2, with angles 2π/5, 3π/10, 3π/10, is the “doubling” of T1

along a side. Accordingly, there is a two-to-one translation covering p : S2 → S1.
Let o1, o2 be the centers of the two pentagons. The covering p : S2 → (S1; o1, o2)

is balanced. By Theorem 6, Γ2 and Γ((S1; o1, o2)) are commensurable. By Propo-
sition 3 of [HS00], Γ2 is not a lattice. Hence T2 is not a lattice triangle. By
Theorem 9, o1, o2 are not periodic points of the lattice surface S1. Let α, β be the
directions of two distinct diagonals of the regular pentagon. They are parabolic
[Vch89]. Thus, o1, o2 are intersection points of parabolic geodesics (saddle con-
nections) for a transversal pair of parabolic directions. Hence, they are rational
points of S1. Therefore, (S1; o1, o2) is a prelattice translation surface, and T2 is
hence a prelattice triangle.

6. Weierstrass Points versus Periodic Points

Definition 7. Let S be a translation surface without marked points. We say
that S is a hyperelliptic translation surface if the corresponding Riemann surface
is hyperelliptic.

Under certain conditions, the Weierstrass points of a hyperelliptic translation
surface are periodic and can even be the only periodic points of the surface.

6.1. Periodicity of Hyperelliptic Weierstrass Points. Recall that the nonar-
ithmetic lattice surfaces of [Vch89] are hyperelliptic. Their Veech groups are either
generated by elliptic elements, or by an elliptic and a parabolic element.
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Theorem 10. Let S be a hyperelliptic translation surface such that Γ(S) is gen-
erated by elliptic elements. Then the set of Weierstrass points of S is Aff(S)-
invariant.

Since the set of Weierstrass points is always finite, these points are all periodic
under the above hypotheses.

Our proof relies on the following simple lemma.

Lemma 7. Let S be a translation surface, and let φ ∈ Aff(S) be an elliptic
element. Then there is an affinely equivalent translation surface T such that the
induced diffeomorphism ψ ∈ Aff(T ) is an isometry.

Proof. A diffeomorphism f ∈ Aff(S) is an isometry if Df ∈ SO(2). Since Dφ ∈
SL(2,R) is elliptic, there is an element g ∈ SL(2,R) such that g ·Dφ ·g−1 ∈ SO(2).
Set T = g ·S. The induced diffeomorphism ψ ∈ Aff(T ) satisfies Dψ = g ·Dφ ·g−1.

Proof of Theorem 10. To simplify the exposition, we will not notationally dis-
tinguish between a translation surface and its underlying Riemann surface. By
the results of Veech [Vch93b], any hyperelliptic translation surface is obtained by
identifying the opposite sides of a centrally symmetric, planar polygon. Any such
polygon, P , yields a hyperelliptic translation surface, S. Without loss of gener-
ality, the center of symmetry of P is the origin o. The hyperelliptic involution is
then induced by the map z 7→ −z. Denote by W (S) the set of Weierstrass points.
The points of the cone set C(S) come from the vertices of P , and C(S) ⊂ W (S).
Furthermore, W (S) contains the points arising from o and the midpoints of the
sides of P .

Let g ∈ SL(2,R), and let T = g · S. Then T is represented by the polygon
Q = g · P . Hence, T is hyperelliptic as well, and g induces a bijection of W (S)
and W (T ).

Let now φ ∈ Aff(S) be an elliptic diffeomorphism. Let g and T = g · S be as in
Lemma 7. Since the induced diffeomorphism ψ : T → T is conformal, it preserves
the Weierstrass set W (T ) [FK92]. Since ψ = g · φ · g−1, φ preserves W (S). Thus,
W (S) is invariant under Aff(S).

Denote by Tn the isosceles triangle with base angle π/n, n ≥ 3, and let Sn be
the corresponding translation surface. By results of Veech [Vch89], Tn is a lattice
polygon, which is nonarithmetic if n 6= 3, 4, 6. The surface Sn is hyperelliptic.

Corollary 9. Let Sn be the hyperelliptic translation surface corresponding to the
isosceles triangle Tn, for n ≥ 3. Then the set of Weierstrass points of Sn is
Aff(Sn)-invariant.

Proof. By [Vch89], Aff(Sn) is generated by an elliptic element and a parabolic
element that preserves the set W (Sn). The claim follows, by the preceding argu-
ment.
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6.2. Examples Proving Theorem 5. The examples below led to the present
work. In particular, they prove Theorem 5.

Example 3: The golden mean gnomon. Let P be the polygon modeling the
“Swiss cross” with the golden ratio parameter λ = (1 +

√
5)/2. See Lemma 2 of

[HS01]. Identifying opposite sides of P by translation, we obtain a translation sur-
face, S, of genus 2 (and thus certainly hyperelliptic). The hyperelliptic involution
is induced by inversion of P with respect to its center. The six Weierstrass points
of S thus arise from: the center of P ; the exterior corners — giving two points;
the interior corners — identified to the single cone point; the boundary points of
the figure which lie on the axes of either horizontal or vertical symmetry.

By a cut-and-paste operation, we transform P into a “gnomon” (i.e., an “L”
shape), see Figure 1. We denote the gnomon by P , as well. The surface S is
obtained from it by the natural identifications. The 8 points marked by black
circles in Figure 1 are identified to the cone point of S. Let O, A, . . . , D be
the remaining five Weierstrass points, marked by open circles in Figure 1. The
coordinate directions are periodic. Since P is symmetric about the diagonal, it
suffices to study the vertical cylinders. Their parameters are: wv

1 = 1, `v1 = λ,
wv

2 = λ − 1 and `v2 = 1. Hence µ1 = 1/λ, µ2 = λ − 1. Since 1/λ = λ − 1, these
moduli are equal; thus the coordinate directions form a transversal parabolic pair.

y

x

y’

x’
C

1 1− λ

1

B A

D

O

Figure 1. The golden ratio gnomon.

The directions π/4 and 3π/4 are also periodic. Their cylinder decompositions

have the same parameters: w
π/4
1 = (λ − 1)/

√
2, `

π/4
1 = (λ + 1)

√
2, w

π/4
2 = (2 −

λ)/
√

2, `
π/4
2 = λ

√
2, see Figure 2. Hence µ1 = λ−1

λ+1
, µ2 = 2−λ

λ
, and µ1/µ2 = 1.

Thus, π/4, 3π/4 is also a transversal pair of parabolic directions
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λλλ −1−12−

λ

1

Figure 2. The cylinders in the direction 3π/4.

Let U be the unit square contained in P . Denote by O the center of U , and
let x, y and x′, y′ be the standard coordinate system and its rotation by −π/4,
respectively. See Figure 1. By the preceding material, if s(x, y) ∈ U is a periodic
point, then x, y are rational. Denote by I ⊂ U the intersection of the two cylinders
of width (λ − 1)/

√
2. If s = (x, y) ∈ I is a periodic point, then (x, y) = ( (x′ +

y′)/
√

2, (−x′ + y′)/
√

2 ). Thus,
√

2y′ = x− y ∈ Q. Since y′ is a rational multiple
of the width of the cylinders,

√
2y′ ∈ Q ∩ (λ− 1)Q. Hence, y′ = 0. Analogously,

x′ = 0.
Let now s = (x, y) ∈ U \ I be periodic. By symmetry, it suffices to consider the

bottom left corner of U . The same rationality argument as above yields x′ = 0.
Analogous considerations show that y′ ∈

√
2Q ∩ 2−λ√

2
Q. Hence, y′ = 0, and U \ I

contains no periodic points. Therefore, the only periodic point in U is the center.
Let s be a periodic, regular point. We show that the orbit of smeets U . Suppose

that s belongs to the interior of the first vertical cylinder (i.e, the cylinder of width
one). The vertical closed geodesic upon which s lies clearly must meet U in at
least half of its length. Therefore, there is some power of the basic vertical affine
map which takes s into U . By symmetry, if s belongs to the interior of the first
horizontal cylinder, the orbit of s also meets U . But, the horizontal Dehn twist
sends the boundary of the first vertical cylinder into the union of the interiors of
the two “first cylinders”.

We conclude that the orbit of any periodic point meets the set of Weierstrass
points. By Theorem 10, the set of periodic points is exactly the Weierstrass points.

Example 4: The regular octagon. Denote by P the regular octagon, inscribed
in the unit circle, and let S be the translation surface obtained by identifying the
opposite sides of P . It is a hyperelliptic surface of genus 2. Furthermore, S is
a nonarithmetic lattice surface and Γ(S) is generated by elliptic and parabolic
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elements [Vch89]. As in the preceding example, the six Weierstrass points of S
come from: the center of P , the midpoints of its edges, and the vertices. The
parabolic generator of Γ(S), referred to above, stabilizes W (S) [AH00].

We claim that the Weierstrass and periodic points of S coincide.
The coordinate directions form a transversal parabolic pair in S. The 3π/8, 7π/8

pair is also parabolic. There are two cylinders in each decomposition. By the 8-
fold symmetry of the regular octagon, it suffices to determine the parameters of
two of the four decompositions. In the notation of Figure 3, we have w1 =

√
2/2,

w2 = (2−
√

2)/2, and w1′ = 2 sinπ/8, w2′ = cos π/8− sin π/8.

I

II

II

I

1
12 2

2’

II’

1’

2’
I’

II’

C
B

A

Figure 3. Cylinder decompositions for parabolic directions; The induced parti-
tion of the triangle.

Let s ∈ S be a periodic point. By symmetry, we can assume that s belongs to
the triangle T with vertices 0, eiπ/4, i. Intersecting T with the cylinders above, we
obtain the decomposition T = A∪B ∪C. See Figure 3. The triangle A intersects
the cylinders 1, I, 1′ and I ′. The quadrilateral B intersects the cylinders 1, I,
1′ and II ′. The triangle C intersects the cylinders 1, II, 1′ and II ′. We denote
by x, y and x′, y′ the standard coordinate system about the center of P and its
rotation by −π/8, respectively.

Let s ∈ A be a periodic point, of respective coordinates (x, y), (x′, y′). Then:
x, y ∈

√
2Q, x′, y′ ∈ (sin π/8)Q, and

(12) x = x′ cos π/8 + y′ sin π/8, y = −x′ sin π/8 + y′ cos π/8.

Set x′ = p
q
sin π/8. By trigonometry, x′ cos π/8 ∈

√
2Q, hence y′ sin π/8 ∈

√
2Q.

Since y′ = u
v

sin π/8, we conclude that x′ = y′ = 0. Thus, s is the center of P .
Let s ∈ B ∪ C be a periodic point, of respective coordinates (x, y), (x′, y′).

Applying the preceding argument, we obtain: x ∈
√

2Q, x′ ∈ (sin π/8)Q, and
y′ − sin π/8 ∈ (cosπ/8− sin π/8)Q. The same argument yields x′ cos π/8 ∈

√
2Q.
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By eq. (12), y′ sin π/8 ∈
√

2Q. Set y′ = sinπ/8 + (cos π/8 − sin π/8)u
v
. Then

(2−
√

2)/4+[
√

2/2−(2−
√

2)/4]u
v
∈
√

2Q, implying that u = v, and y′ = cos π/8.
Thus s belongs to the outer edge of C. The Dehn twist of cylinder 1′ fixes the
endpoints and sends the midpoint of the edge into the center of P . The rest of
the edge is sent into the interior of P , avoiding the center.

We have shown above that the interior of P contains no periodic points, with
the possible exception of the center. Therefore s ∈ W (S). By Corollary 9,
W (S) ⊂ P (S), hence the claim.
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