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Abstract. We study an infinite family of one-parameter deformations, so-called α-continued
fractions, of interval maps associated to distinct triangle Fuchsian groups. In general for such

one-parameter deformations, the function giving the entropy of the map indexed by α varies

in a way directly related to whether or not the orbits of the endpoints of the map synchronize.
For two cases of one-parameter deformations associated to the classical case of the modular

group PSL2(Z), the set of α for which synchronization occurs has been determined (see

[CT, CIT], [KSS]).
Here, we explicitly determine the synchronization sets for each α-deformation in our infinite

family. (In general, our Fuchsian groups are not subgroups of the modular group, and hence

the tool of relating α-expansions back to regular continued fraction expansions is not available
to us.) A curiosity here is that all of our synchronization sets can be described in terms of

a single tree of words. In a paper in preparation, we identify the natural extensions of our

maps, as well as the entropy functions associated to each deformation.
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1. Introduction

1.1. Main results. Associated to each of the infinite family of groups G3,n defined below in
(1), we introduce the continued fraction type maps T3,n,α , defined in (2) below, parametrized
by α ∈ [0, 1]. When α = 0 this gives the (unaccelerated) maps treated in [CS]. We show
that for each n, the set of those α such that the T3,n,α-orbits of the endpoints of the interval of
definition, denoted `0(α) and r0(α) respectively, eventually agree has full Lebesgue measure. We
call such agreeing of orbits synchronization. We give a full description of the set of α for which
synchronization occurs. The following is a simply stated implication of this detailed description.

Theorem 1. For n ≥ 3, the set of α ∈ (0, 1) such that there exists i = iα, j = jα with

T i3,n,α( r0(α) ) = T j3,n,α( `0(α) ) is of full Lebesgue measure.

Synchronization is key to determining planar models of natural extensions for many continued
fraction type maps. See for example [CT, KSS]. Indeed, in a forthcoming paper we apply the
results obtained in the present to give the natural extensions of the T3,n,α.

A key phenomenon of our setting is that for all n ≥ 3 there are two synchronization relations,
in the sense that for n fixed there is a large subinterval of the values of α along which all values
where synchronization occurs is announced by a basic relation in the group G3,n being satisfied

by the elements R,L such that T i−1
3,n,α( r0(α) ) = R · r0(α) and T j−1

3,n,α( `0(α) ) = L · `0(α). These
relations, discovered by computational investigation and justified in Propositions 49 and 72,
determine intervals along which synchronization occurs.

These synchronization intervals are in particular defined by admissibility of both the digits of
the expansion of T i−1

3,n,α( r0(α) ) and of T j−1
3,n,α( `0(α) ). An appropriate endpoint of each interval is

determined by one of the expansions no longer being admissible, the applicable synchronization
relation allows us to determine the other expansion at that endpoint. This leads to the tree of
words, V, defined in Definition 18.

The intervals are indexed by Z6=0×V, where V is the tree of words defined in Definition 18. (A
proper subset of V is necessary when −1 is the indexing natural number.) That the complement
in [0, 1] of the collection of the intervals of synchronization is a thin Cantor set is proven by use
of the ergodicity result of [CS] for the setting of α = 0.
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The admissibility of the two expansions defining a synchronization interval is shown by in-
duction, with the expansion related to the indexing pair being straightforward and the other
expansion requiring a more delicate induction argument. A new phenomenon presents itself
in the proofs of admissibility: the interval of admissibility of a candidate expansion of digits
for some endpoint (in other terms, the corresponding higher rank cylinder) has an endpoint
determined by the longest string of digits having a property that we name full-branched, see
§ 4.2.3.

The determination of the synchronization set of α proceeds by treating three partitioning
subintervals of (0, 1), after initial results in Sections 2, 3 describing the dynamics in the setting
of α = 0, 1 for all n,m ≥ 3. The indexing is such that positive k correspond to the leftmost subin-
terval of α where we express the synchronization intervals in terms of right digits; the rightmost
subinterval corresponds to k < −1 for this and the middle case of k = 1, the synchronization
intervals are expressed in terms of left digits.

We expect that the case of m > 3 will be very similar, although the synchronization rela-
tions will involve longer words and thus some arguments will become awkwardly tedious. Our
work raises the question of whether there is a simple characterization of when a one-parameter
deformation of interval maps has a set of synchronization relations.

1.2. Motivation. The α-continued fractions of Nakada [N] are associated to the modular group
SL2(R), whose projective quotient is G2,3. Nakada determined natural extensions and more for
the setting of α ≥ 1/2. Kraaikamp [K] gave a more direct method for treating these values.
Intermediate results were obtained in particular by Marmi-Cassa-Moussa [MCM]. The work of
Luzzi-Marmi [LM] reinvigorated this area. Nakada-Natsui [NN] confirmed a numeric observation
of [LM] by showing what in our terminology is that a certain synchronization relation holds for
the Nakada α-continued fractions. It was left to Tiozzo et al [CIT] and, independently, [KSS]
to show that the relation accounts for all synchronization. These authors also showed that
the entropy function, assigning to α the entropy of the interval indexed by α, varies in a way
previsely described in terms of the synchronization intervals. (Note that some authors refer to
synchronization as matching.)

Partial results when the underlying groups being the Hecke triangle groups (thus, theG2,q, q ≥
3) were given by [DKS, KSSm]. Tiozzo and others [CIT] treat a one-parameter deformation
sitting inside a two-dimensional family of continued fractions with underlying group the modular
group introduced by Katok and Ugarcovici [KU]. For both of the families associated to the
modular group studied to date, Tiozzo and coauthors [CIT, CT2, BCIT] relate the entropy
function to explicit subsets of the Mandelbrot set; see also Tiozzo’s thesis, [T].

Our goal is to study deformation families of continued fractions defined over higher degree
fields, and determine how the entropy function varies. The current work is the key step in this,
in particular highlighting the central nature of synchronization relations. In work in preparation,
we apply these results to give the entropy functions.

1.3. The basics of our maps. We use the groups considered in [CS]. Fix integers n ≥ m ≥ 3,
and let µ = µm = 2 cosπ/m, ν = νn = 2 cosπ/n. Also let t = µ+ ν that is,

t := tm,n = 2 cosπ/m+ 2 cosπ/n.

Let Gm,n be generated by

(1) A =

(
1 t
0 1

)
, B =

(
ν 1
−1 0

)
, C =

(
−µ 1
−1 0

)
,
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and note that C = AB. We work projectively, hence B,C are of order n,m respectively while
A is of infinite order. That is, Gm,n is a Fuchsian triangle group of signature (m,n,∞).

Fix α ∈ [0, 1] and define

Im,n,α := Iα = [ (α− 1)t, αt ) .

Let

(2) Tα = Tm,n,α : x 7→ AkCl · x,

where as usual, any 2× 2 matrix

(
a b
c d

)
acts on real numbers by

(
a b
c d

)
· x =

ax+ b

cx+ d
, and

• l is minimal such that Cl · x /∈ I

• k = −b(Cl · x)/t+ 1− α c.

We consider Tα as a map on the closed interval taking values in the half-open interval Iα,

Tα : [ (α− 1)t, αt ]→ Iα .

1.4. Geometric perspective, well-definedness. The reader may well ask if there always
does exist an l such that Cl · x /∈ Iα. For the special cases of α = 0, 1 see below; here we briefly
indicate the setting for all other α. A quick study of the graph of the function x 7→ C · x shows
that this has horizontal asymptotes given by y = µ, a pole at x = 0 and a zero at x = 1/µ.
Of course this is an increasing function. In fact, C is an elliptic matrix (that is, its trace is of
absolute value less than 2) that fixes a point in the upper half-plane of real part µ/2. It thus acts
as a rotation about that fixed point. Indeed, it acts as a rotation on a hyperbolic m-gon; from the
words above, this m-gon has consecutive vertices 1/µ, 0,∞, µ. (Note that when m = 3, we have
µ = 1/µ = 1.) Therefore the remaining m− 4-vertices lie between 1/µ and µ; let us denote the
set of all vertices by v1 = µ, v2, . . . , vm−3, vm−2 = 1/µ, vm−1 = 0, vm =∞. Thus, C acts on the
real line as (−∞, 0)→ (µ,∞)→ (v2, µ)→ (v2, v3)→ · · · → (1/µ, vm−3)→ (0, 1/µ)→ (−∞, 0).
For x ∈ Iα, the map Tα is thus the composition of rotating by powers of C until Cl · x is no
longer in Iα, and then shifting by applying the appropriate power of A to bring this image back
into Iα.

Certainly the left endpoint of Iα, being negative, is sent by C to a positive real number.
We now briefly indicate why this value is greater than αt. It then follows that Tα on the left
endpoint is given by some A−kC with k > 0. In fact, for all negative x ∈ Iα, we claim that
C · x > x + t. Elementary calculus shows that the graph of x 7→ C · x has a tangent line with
slope 1 of equation y = x + µ + 2. Since ν < 2, the tangent line lies below the line y = x + t.
Since the map has a pole at x = 0, it easily follows that the claim holds. The claim implies that
there is a leftmost subinterval sent outside of Iα by C; we can partition Iα by applications of
powers of C−1 to this leftmost subinterval (with the rightmost image subinterval restricted to
its intersection with Iα). In particular, it follows that there always does indeed exist an l such
that Cl · x /∈ Iα.
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1.5. Continued fraction perspective. The main aim of this subsection is to assure the reader
that the Tm,n,α indeed yield continued fractions, and therefore are reasonably called continued
fraction-like maps.

Since

C · x =
−µx+ 1

−x
=
−1

x
+ µ,

we immediately find that

(3) x =
1

µ− C · x
,

Now

C2 · x = C · (C · x) =
−1

C · x
+ µ,

yielding that

(4) C · x =
1

µ− C2 · x
.

Now (3) and (4) yield that

x =
1

µ− 1

µ− C2 · x

.

After l times we find

(5) x =
1

µ− 1

µ−
. . .− 1

µ− Cl · x

.

Since Ak ·x = x+kt, we see that Tα(x) = Ak ·(Cl ·x) = Cl ·x+kt, yielding that C` ·x = Tα(x)−kt.
Substituting this in (5) gives

x =
1

µ− 1

µ−
. . .− 1

µ− 1

µ+ kt− Tα(x)

.

Continuing in this way we find a continued fraction expansion of x with partial quotients given
by µ and µ+ kt, with k ∈ N.

1.6. Digits, cylinders, admissible words, ordering. When studying the dynamics of our
maps, the orbits of the interval endpoints of Iα are of utmost importance. We define

`0 = (α− 1)t and `i = T iα(`0), for i ≥ 1 ,

r0 = αt and rj = T jα(r0), for j ≥ 1 .

1.6.1. Cylinders, notation for digit sequences, full cylinders.
The cylinders for the map Tα are

∆(k, l) = ∆α(k, l) := {x |Tα(x) = AkCl · x } .
See Figure 1 for a representation of some explicit cylinders. Note that since each of A,C are
of positive determinant, Tα is an increasing function on each of its cylinders. We call (k, l) the
α-digit of x if x ∈ ∆α(k, l). Define

bα[1,∞) = (k1, l1)(k2, l2) . . .



6 KARIANE CALTA, COR KRAAIKAMP, AND THOMAS A. SCHMIDT

∆α(−1, 1) ∆α(−2, 1) ∆α(k, 1)

`0

`0

`0

`0

r0

r0

r0

b

b

b

· · · · · ·

· · · · · · · · · · · ·

· · · · · · · · ·

• • •

• •

• •

0

0

0

1

1

(−1, 1) (−2, 1) (1, 1) (−1, 2) (k, 2)

(−k, 1) (2, 1) (1, 1) (−k, 2) (2, 2) (1, 2)

Figure 1. Schematic representation of cylinders for three values of α when
m = n = 3. Top: α < γ3,3; middle α < ε3,3; bottom: α > ε3,3. For the bottom
two, (k, l) denotes ∆α(k, l).

to be the sequence of digits for the orbit of `0 = (α− 1)t; that is, `0 ∈ ∆(k1, l1), `1 ∈ ∆(k2, l2),
etc. Similarly, define bα[1,∞) as the word giving the digits of the orbit of r0.

A cylinder ∆α(k, l) is called full if its image under Tα is all of Iα. Since the action by C has
a pole at x = 0, for all α 6= 0, 1 there are full cylinders ∆α(k, 1) with k ∈ Z of arbitrarily large
absolute value.

The only cylinder with l = 1 and k < 0 that could be non-full is the leftmost cylinder of Iα,
thus the cylinder of `0(α). Let

b = bα = C−1 · `0(α).

Note that since `0(α) < 0, one has b < 1/µ. If b /∈ Iα, then the rightmost cylinder of Iα has
l = 1, k > 0 and may be non-full. If b ∈ Iα, then all cylinders of index (k, l), l = 1, k > 0 are
full; indeed, (with possible exception of the rightmost cylinder) the cylinder of index (k, 2) is
full if and only if the cylinder of index (k, 1) is (this, as C acts so as to send ∆α(k, l + 1) to
∆α(k, l) ). Continuing with analysis of this type shows that in general, the only candidates for
non-full cylinders are those of index {(k, l), (k, l + 1), . . . , (k,m − 1), (k′, l′)} where (k, l) is the
α-digit of `0(α) and (k′, l′) that of r0(α). Note that the Tα image of ∆α(k, l + j) is exactly the
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D H1,1L

D H2,1L

D H1,2L
D H2,2L

g^2

G

Figure 2. The unions of the various ∆3,3,α(k, l), see Subsection 1.6. Each
Iα is given as a vertical fiber (of coordinate x = αt with t = t3,3 = 2), from
the left endpoint at the bottom up to the right endpoint at the top of the
fiber. For each α such that they exist, the ∆α(k, 2) have limiting value as
|k| → ∞ of 1. Similarly, the ∆α(k, 1) have limiting value as |k| → ∞ of 0. Here

2ε3,3 = G = (1 +
√

5)/2 and 2γ3,3 = g2 = (G − 1)2 correspond to the main
division points in the interval of the parameter α.

Tα image of ∆α(k, l), which is [`1, r0). (These are what one calls right full cylinders.) Also, the
Tα image of ∆α(k′, l′) is [`0, r1). (It is a left full cylinder.)

1.6.2. Admissibility and orders, definitions. A word U in the letters A, C is called admissible
for a pair α and x ∈ Iα if U = AkuClu · · ·Ak1Cl1 and for each j, with 1 ≤ j ≤ n, one has
AkjClj · · ·Ak1Cl1 · x = T jα(x). Note that this is equivalent to having for each j both that (1)
AkjClj · · ·Ak1Cl1 · x ∈ Iα and (2) lj is minimal such that CljAkj−1Clj−1 · · ·Ak1Cl1 /∈ Iα. We
also simply say that such a word U is admissible for α if there exists an x ∈ Iα such that U is
admissible for the pair α, x.

The α-alphabet is the set of possible single digits for x ∈ Iα, that is all (k, l) such that
∆α(k, l) 6= ∅. The standard ordering of real numbers then induces an ordering of this alphabet:
(k, l) ≺ (k′, l′) if ∆α(k, l) lies to the left of ∆α(k′, l′). (Confer Figures 1 and 2; in this second
figure the order on each Iα is rather from bottom to top.)

The analysis for the setting of fullness of cylinders also yields that for k > 0, ∆α(−k, 1) lies
to the left of any ∆α(−k − j, 1) with j > 0, as well as to the left of any ∆α(k′, 1), with k′ > 0.
Similarly, ∆α(k′, 1) lies to the left of any ∆α(k′ − j, 1), j < k′. Now since C acts in an order
preserving manner, we find that any ∆α(k, l) lies to the left of all ∆α(k, l + 1). We thus find
that for each α, the ordering on the α-alphabet is a restriction of the following order.
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(1, 2) � (2, 2) � · · · � (N, 2) � · · ·
− − −−−−−−−−−−−−−−
� · · · � (−M, 2) � · · · � (−2, 2) � (−1, 2)

−−−−−−−−−−−−−−−−
� (1, 1) � (2, 1) � · · · � (N, 1) � · · ·
− − −−−−−−−−−−−−−−
� · · · � (−M, 1) � · · · � (−2, 1) � (−1, 1).

Table 1. The full order. Here m = 3, n ≥ 3.

For each α, the α-alphabet is a (strict) subset of (Z \ {0} )×{1, 2, . . . ,m− 1}. We define the
full order on (Z \ {0} )× {1, 2, . . . ,m− 1} by

(6)
(k, l) ≺ (k′, l′) if and only if (i) l < l′,

or (ii) l = l′ and one of k < k′ < 0, k < 0 < k′, or 0 < k′ < k.

Thus, when m = 3 and n ≥ 3, the full ordering is given in Table 1. This ordering extends to
the set of all words (including infinite words) in the usual lexicographic manner.

The α-alphabet depends only on the first digits of `0(α) and r0(α), as we now prove.

Lemma 2. Fix m,n, α. Then the α-alphabet depends only on the first digits of `0(α) and r0(α).
More precisely, denote the cylinders of `0(α) and r0(α) by (−k, 1), (k′, l′), respectively. Then

the α-alphabet is

{(k′ + j, l′) | j ≥ 0} ∪
⋃

1≤l≤l′
{(−k − j, l) | j ≥ 0} ∪

⋃
1≤l<l′

{(j, l) | j > 0}.

Proof. Since `0(α) ∈ ∆α(−k, 1), all indices corresponding to cylinders between ∆α(−k, 1) and
x = 0 are certainly in the alphabet. These indices are (−k− j, 1), with j > 0. The pre-images of
these cylinders under powers of C are also cylinders of Tα, up to and including the l′th power.
If l′ = 1, then all corresponding to cylinders between 0 and ∆α(k′, 1) are in the alphabet. If
l′ > 1, then all (j, 1) with j > 0 are present, and so are all preimages under powers of C are
also cylinders of Tα, up to and including the (l′ − 1)st power. The cylinders between the pole

of Cl
′

and ∆α(k′, l′) have their indices in the language, and we have accounted for all possible
indices. �

1.6.3. Relating admissibility and orders. If x ∈ Iα, then each of Tα(x), T 2
α(x), . . . is also in Iα.

This is directly related to the notion of admissibility. (Experts will note that we could discuss
the following in terms of cylinders of rank greater than one.)

Lemma 3. Fix m,n, α. A word AkuClu · · ·Ak1Cl1 , with each (ki, li) in the α-alphabet, is
admissible for α if and only if

bα[1,u−j+1] � (kj , lj) · · · (ku, lu) � bα[1,u−j+1]

for each 1 ≤ j ≤ u.
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Proof. The forward direction is straightforward as we show first. By definition, admissibility
implies that there is an x ∈ Iα whose α-digit sequence begins (k1, l1), (k2, l2), . . . , (ku, lu). Thus,
each Akj−1Clj−1 · · ·Ak1Cl1 · x has α-digit sequence beginning (kj , lj) · · · (ku, lu), and each of

these is in Iα. Since the endpoints of Iα correspond to bα[1,∞) and bα[1,∞), and the ordering in the

language corresponds to the usual ordering of real numbers, the inequalities hold.
On the other hand, if a word U has its exponents defining letters in the α-alphabet all of

which are indices of full cylinders, then it is easy to show that U is admissible for α. Indeed,
given this full cylinder condition, we can choose any xu ∈ ∆α(ku, lu) and then iteratively find
some xi ∈ ∆α(ki, li) such that AkiCki · xi = xi+1. Then U is admissible for x1.

Suppose that there is some positive number f ≤ u of non-full cylinder indices among the
(ki, li); let us enumerate these (ki1 , li1), . . . , (kif , lif ). Each of these is thus in {(k, l), (k, l +
1), . . . , (k,m − 1), (k′, l′)} where (k, l) is the α-digit of `0(α) and (k′, l′) that of r0(α). Recall
that Tα( ∆α(k′, l′) ) = [`1, r0) and Tα( ∆α(k, l+j) ) = [`0, r1) for each (k, l+j) in the α-alphabet.

Since bα[1,u−if ] � (kif , lif ), (kif+1, lif+1), . . . , (ku, lu) � bα[1,u−if ], canceling the respective com-

mon first digit, we find that either `1 begins with an α-digit sequence that is less than or equal
to (kif+1, lif+1), . . . , (ku, lu), or else r1 begins with a sequence that is greater than or equal to
it. In both cases, there is thus a subinterval of points xif ∈ ∆α(kif , lif ) whose α-digit sequence
begins (kif , lif ), (kif+1, lif+1), . . . , (ku, lu). We now continue iteratively, noting that if some of
the ij give consecutive integers, then we will need to cancel more than one digit at steps in this
argument. �

The following two results are key tools for proving admissibility of digits by induction, see
for example § 4.4.1.

Lemma 4. Suppose N ∈ N and for some α′, α′′, with 0 ≤ α′ < α′′ ≤ 1, one has bα
′

[1,N ] = bα
′′

[1,N ].

Then bα[1,N ] = bα
′

[1,N ] for all α ∈ [α′, α′′].

Proof. Fix some α ∈ (α′, α′′). Recall that for any β ∈ [0, 1], the initial digit of `0(β) is (−k, 1)
for some k > 0. Since the real numbers `0(β) strictly increase with β, the initial digit of `0(α)
is the same as that shared by `0(α′) and `0(α′′). Since also the r0(β) are increasing, Lemma 2

yields that the α-alphabet contains the α′-alphabet. In particular, each of the N digits in dα
′

[1,N ]

is contained in the α-alphabet.
Again from the increasing nature of the endpoints `0, r0, we find for each j ≤ N both

bα[1,N−j+1] � bα
′′

[1,N−j+1] and bα
′

[1,N−j+1] � bα[1,N−j+1]. Thus by Lemma 3, the admissibility of

bα
′

[1,N ] for α′, α′′ implies the admissibility of this sequence for α. Finally, bα[1,N ] = bα
′

[1,N ] for

otherwise we would contradict the increasing nature of `0 (with respect to one of α′, α′′). �

The following is proven mutatis mutandi.

Lemma 5. Suppose N ∈ N and for some α′, α′′, with 0 ≤ α′ < α′′ ≤ 1, one has bα
′

[1,N ] = bα
′′

[1,N ].

Then bα[1,N ] = bα
′

[1,N ] for all α ∈ [α′, α′′].

2. Dynamics in the case of α = 0 for all signatures

Calta-Schmidt [CS] study the dynamics of what in our notation is T3,n,α with α = 0, and of
its natural extension. We briefly generalize that work in this section (our T (x) gives their g(x)
upon restricting to m = 3).
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1.5

2.0
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Figure 3. A trace of 20,000 consecutive orbit elements to show the natural
extension of the determinant plus one map when (m,n) = (5, 7) and α = 0.
Red points: initial orbit of vertex of x-coordinate `0 = −t; green points: second
piece of this orbit; magenta: third piece; blue: fourth and final, before returning
to initial red vertex. Vertical lines: dotted at `1, and right ends of cylinders for
k = 1 and k = 2. Cyan line segment: the anti-diagonal y = −x. Thus, here
`0 < `6 < `12 < `18 < `1 < `7 < `13 < `19 < `2 < `8 < `14 < `20 < `3 < `9 <
`15 < `21 < `4 < `10 < `16 < `22 < `5 < `11 < `17.

Fix integers m,n (both greater than 2), let I := Im,n,0, thus I = [−t, 0]. We have

T := Tm,n,0 : I→ I

x 7→ A−kC · x ,

where k = k(x) is the unique positive integer such that T (x) ∈ I. Notice that T (x) =
−kt + 2 cosπ/m − 1/x. Let ∆k := ∆α=0(−k, 1). For k ≥ 2 we have the full cylinders
∆k = [ 1

µ−(k−1)t ,
1

µ−kt ); that is, T sends each surjectively onto I. Setting ν = 2 cosπ/n, we

have that ∆1 = [−t,−1/ν ) and its image under T is the interval [−ν + 1/t, 0). The T -orbit of
x = −t is of central importance, thus let

`j = T j(−t) for j = 0, 1, . . . .

The following element is key to the study of this orbit and therefore to many arguments in
this paper.

(7) W = A−2C (A−1C)n−3
[
A−2C(A−1C)n−2

]m−2
.
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Since A−1C = B and Bn = Id (projectively),

W = A−1B Bn−3
[
A−1BBn−2

]m−2

= A−1B−2
[
A−1B−1

]m−2

= A−1B−2
[
BC−1B−1

]m−2

= A−1B−2B
[
C−1

]m−2
B−1

= A−1B−1C2B−1

= A−1B−1(AB)2B−1

= A−1B−1ABA .

Now, since A · (−t) = 0, and B · 0 = ∞, while A fixes ∞, we certainly have that W fixes
x = −t. Substituting A−1C for B gives the form that we will use several times below.

(8) W = A−1C−1ACA .

We claim that the right hand side of (7) is the admissible word for the corresponding element
in the T -orbit of `0 = −t. That is, all `j lie in ∆1 other then `n−2+k(n−1) for 0 ≤ k ≤ m− 3 and
also `2n−4+(m−3)(n−1); all of these latter orbit entries lie in ∆2. Furthermore, `2n−4+(m−3)(n−1)

is the left endpoint of ∆2, and thus `2n−3+(m−3)(n−1) = `0. To justify this, we show:

(i) (A−1C)n−3 · `0 < −1/ν < (A−1C)n−2 · `0 ;

(ii) [A−2C(A−1C)n−2]m−2 · `0 = −ν ;

(iii) A−2C(A−1C)n−2 · (−ν) =∞ .

Since A−1C ·x is increasing and has no pole in I, (i) implies that `j = (A−1C)j ·`0 for 0 ≤ j ≤ n−2
is correct. Likewise, (iii) implies that x 7→ A−2C(A−1C)n−2 · x is increasing on (−t,−ν), and
combined with (ii) that for each j < m − 2 we have `0 < [A−2C(A−1C)n−2]j · `0 < −ν <
−ν + 1/t = `1. This in turn gives the correctness of the various `j corresponding to the sub-

words of [A−2C(A−1C)n−2
]m−2

. That the remaining factors of (7) correspond to the T -orbit
is easily argued, especially since the fact that W fixes x = −t combines with (ii) to show that
[A−2C (A−1C)n−3]−1 · `0 = −ν.

Note that (iii) is immediate, as the pole of A−2C(A−1C)n−2 is that of A−1C(A−1C)n−2 =
B−1, and certainlyB·∞ = −ν. As well, [A−2C(A−1C)n−2]m−2 = (A−1B−1)m−2 = (A−1B−1)−2,
as A−1B−1 is a conjugate of C−1 and thus has order m. From this, we find that

[A−2C(A−1C)n−2]m−2 · `0 = (BA)2 · (−t) = BC · 0 = B · ∞ = −ν ,

and (ii) also holds. Finally, we have `0 = −t < −ν < −ν + 1/t = `1 = B · `0 and since
B · −1/ν = 0, B · 0 = ∞, B · ∞ = −ν, we find that `0 < B3 · (−1/ν) < `1, and now (i) easily
follows.

We thus have that the ordering of the T -orbit of `0 as real numbers is as given in Table 2.
Note that the orbit elements contained in ∆2 are found as final entry from each column.

We let Ω be the the union of mn − m − n rectangles whose bases lie on the x-axis with
endpoints being consecutive elements in the orbits of `0 under the real ordering, beginning with
[`0, `n−1], along with [`(m−3)(n−1)+n−2, 0], and whose heights we label Li, 1 ≤ i ≤ mn−m− n,
also in accordance with the real order of the bases.
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`0 < `n−1 < `2n−2 < · · · < `(m−2)(n−1)

<`1 < `n < `2n−1 < · · · < `(m−2)(n−1)+1

...
...

...

<`n−3 < `2n−2 < `3n−3 < · · · < `(m−2)(n−1)+n−3

<`n−2 < `2n−3 < `3n−4 < · · · < `(m−3)(n−1)+n−2

Table 2. The T -orbit of `0 ordered as real numbers, when α = 0.

Set L1 = 1/t; Lm−1+i = (RA−1CR−1) · Li for any 1 ≤ i < (m − 1)(n − 2); and, Li =
(RA−2CR−1) ·Li−1+(n−2)(m−1) for 2 ≤ i ≤ m−1. Since these relations accord with T = Tm,n,0,

and −t being fixed by W gives that 1/t is fixed by RWR−1, we have that the left upper vertex
Ω is (−t, 1/t) and in fact the left upper vertex of the ith rectangle is (−1/Li, Li), thus showing
that Ω has infinite µ-measure. We have seen that `mn−m−n−1 = −1/ν, and hence find that the
rightmost element of that orbit has value

`(m−3)(n−1)+n−2 = [(A−1C)n−3A−2C]−1 · (−1/ν) = B−1AB3 · (−1/ν) = B−1A · (−ν) = −1/t .

Therefore, the rightmost rectangle has height Lmn−m−n = t. One can show that T is bijective
on Ω up to a set of measure zero. We will return to this point in our next paper.

Remark 6. In [CS], an acceleration of the α = 0 interval map (when m = 3) is defined. This
new interval map is shown to be ergodic with respect to a finite invariant measure (that is
absolutely continuous with respect to Lebesgue measure).

3. Dynamics in the case of α = 1 for all signatures

0.5 1.0 1.5 2.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.2

0.5 1.0 1.5 2.0 2.5 3.0

-0.6

-0.4

-0.2

0.2

Figure 4. Plots showing the domains of the natural extensions for (m,n) =
(3, 3) and (m,n) = (4, 5) when α = 1. Vertical lines marked at x = µ and
x = µ+ 1/t in both cases.

This case is dominated by

(9) U = ACm−2(AC−1)n−2 .

We now let the interval be I := Im,n,α=1 = [0, t).

Proposition 7. For all m,n ≥ 3, the map Tm,n,1 has

(1) U as the admissible word for the orbit of t = r0(t);
(2) exactly one non-full cylinder, ∆(1, n− 1) = [µ+ 1/t, t];
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(3) full cylinders of the form ∆(k, l) for all l ∈ {1, . . . ,m − 2} and k ∈ N, as well as
∆(k,m− 1) for k > 1.

Proof. We first claim that all possible exponents of C are seen, thus that for each l ∈ {1, . . . ,m−
1}, there are non-empty cylinders ∆(k, l) = ∆1(k, l) and in fact for each l these are indexed by
k ∈ N. A first application of C sends all of (0, 1/µ) to negative values, and in particular outside
of I. As well, since 1/µ is sent to 0, these images are brought back into I by positive powers
of A. Furthermore, this shows that each of the cylinders ∆(k, 1), k ∈ N is full. Therefore, also
now the cylinders ∆(k, l), k ∈ N are full for all 1 ≤ l ≤ m− 2.

We turn attention to the case of l = m − 1. In fact, there are full cylinders ∆(k, n − 1)
for all k > 1 and the sole non-full cylinder is ∆(1, n − 1), as we now briefly explain. Since
CA−1 · 0 = µ + 1/t < t, one has that ∆(1, n − 1) = [µ + 1/t, t]. As well, since of course
A2C ·(µ+1/t) = A·0 = t, the cylinders ∆(k, n−1) for all k > 1 are all indeed full (and their union
is [µ, µ+1/t]). It remains only to consider the orbit of t, which we know begins by t 7→ ACm−1 ·t.
We observe that ACm−1 = AC−1 = AB−1A−1, and is thus clearly an elliptic matrix of order n.
We now translate by A so as to consider the the orbit of 0 under powers of B−1. This elliptic
matrix fixes a point of real part −ν/2 and rotates a hyperbolic n-gon; one also easily verifies
that −ν 7→ ∞ 7→ 0 7→ −1/ν is part of the orbit of the vertices of the n-gon. The predecessor of
−ν is B ·−ν = −ν+ 1/ν. We translate back to I by A, and thus this predecessor corresponds to
µ+ 1/ν, a value that is visibly greater than µ+ 1/t. In conclusion, the Tm,n,1-orbit of t begins
with (ACm−1)s ·t for 1 ≤ s ≤ n−2. But, (ACm−1)n−2 ·t = (CA−1)2 ·t = CA−1C ·0 = C ·∞ = µ.
That is, the orbit of t reaches the right endpoint of the (full) cylinder ∆(2,m − 1), and thus
thereafter returns to t. �

4. Orbit synchronization on the interval α < γ3,n, n ≥ 3

We define γ3,n as the value of α such that

C−1 · `0(γ3,n) = r0(γ3,n).

In particular, for all α ≤ γ3,n, the point bα lies outside of Iα. Since `0(α) < 0 for all α < 1, and
m = 3, it follows that 0 < r0(γ3,n) < 1. We define ε3,n such that

A−1C · `0(ε3,n) = r0(ε3,n).

One finds that `1(α) = A−1C · `0(α) holds for all 0 ≤ α < ε3,n. Elementary calculations show

that for all n ≥ 3, r0(ε3,n) ≥ (1 +
√

5)/2, and thus this equation holds in particular for all
α < γ3,n.

In this section we prove the following.

Theorem 8. For m = 3 and n ≥ m, the set of α ∈ (0, γ3,n) such that there exists i = iα, j = jα
with T i3,n,α( r0(α) ) = T j3,n,α( `0(α) ) is of full measure.

4.1. Right cylinders and (potential) synchronization intervals. Basic motivation for our
approach to synchronization of the Tα-orbits of r0(α) and `0(α), with α < γ, comes from the
following. We will eventually show for this range of our parameters that synchronization depends
on right and left digits being related by

(10) C−1AC =

(
1 0
−t 1

)
.

Lemma 9. Fix m = 3, n ≥ 3, α < γ, and i, j ∈ N. Suppose that `i−1 = C−1AC · rj−1. Then

(1) `i = rj,
(2) `i−1 ≥ rj−1 with equality if and only if both equal zero.
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0.5 1.0 1.5 2.0

-2

-1

1

2

y=x

y=x-2

Figure 5. The first image of the endpoints. In blue is the graph of x 7→
T3,3,α(x − t), with x = αt; the blue curves thus give the values of `1(α). In
red that of x 7→ T3,3,α(x); the red curves thus give the values of r1(α). (Here
t = t3,3 = 2.) Gray vertical lines at x = γ3,3t = (G− 1)2, x = ε3,3t = G, where

G = (1 +
√

5)/2. The dotted cyan curve is the image of the left endpoint under
C−1 (giving the values of bα) and thus for αt > γ3,3, above this curve a next
digit begins with a C2. Large dot has x-coordinate δ3,nt, see §6.

Proof. There is some u ∈ Z\{0}, that `i = AuC ·`i−1 (recall that since α < γ3,n, the exponent l is
always one). This thus equals AuC C−1AC ·rj−1 = Au+1C ·rj−1. In particular Au+1C ·rj−1 ∈ Iα.
We conclude that rj = Au+1C ·rj−1 . From this, we find `i = rj . Since C−1AC clearly fixes zero,
see (10), it follows that `i−1 = rj−1 holds if either is zero; otherwise, the fact that the exponent
of A is greater when passing from rj−1 to rj than from `i−1 to `i (in light of the ordering of
digits, (6)) shows that `i−1 > rj−1. �

Definition 10. We say synchronization occurs at α if there exist i, j such that rj = `i. A
synchronization interval is an interval of α values for each which synchronization holds with the
same pair of indices i, j. (We will assume that at least for one α in the interval, both i, j are
minimal.)

Example 11. Fix n = 3. Let ζ = (5−
√

21)/2 and η = (−1 +
√

21)/10. (Thus ζ = 0.20871 · · · ,
η = 0.35825 · · · .) One finds that for all α ∈ [ζ, η):

d
α

[1,∞) = 1, · · · and dα[1,∞) = −1,−2,−2,−1, · · ·

and furthermore, for all such α the group identity given in Lemma 47 implies r2(α) = `5(α).
Note that here AC · r0(ζ) = `0(ζ). Confer Figure 5, in which 2α = 2ζ gives the intersection

point with the line y = x− 2 of the first red branch to the left of x = 2 γ3,3.
Also in Figure 5, the visible intersection of this red branch with the blue branch (which

corresponds to `1 = A−1C ·`0) marks a point of what one could call “accidental” synchronization.

That is, for α = (2−
√

2)/2 = 0.29289 · · · , we have r1(α) = `1(α). Of course, this implies that
each of these is periodic. In particular, this and indeed any accidental synchronization occurs
at an algebraic value of α.



SYNCHRONIZATION FOR AN INFINITE CLASS OF CONTINUED FRACTION TRANSFORMATIONS 15

We seek synchronization intervals of the form [ζ, η), where the endpoints are identified by
R · r0(ζ) = r0(ζ) and LA · `0(η) = r0(η), for certain R,L ∈ G3,n. Our synchronization intervals
form a subset of full measure; to prove this, it will be very helpful to have the digits of the ζ, η.
The following is key to finding these digits.

Lemma 12. Fix m = 3, n ≥ 3, an interval [ζ, η] ⊆ (0, γ3,n) and i, j ∈ N. Suppose that there are
R,L,L′ ∈ G3,n (none of which is the identity) such that

(a) L = C−1ACR,
(b) R · r0 = rj−1 and L′ · `0 = `i−2, for all α ∈ [ζ, η],
(c) LA · `0 = `i−1 for all α ∈ [ζ, η), while LA · `0(η) = r0(η),
(d) R · r0(ζ) = `0(ζ).

Then

(i) `i−1(η) = A−1LA · `0(η) = `0(η),
(ii) rj(η) = Ak+1C · rj−1(η) = r1(η), where k is such that AkC · r0(η) = r1(η)

(iii) A−2CLA · `0(ζ) = `1(ζ).

Proof. For any α, the identity (a) implies LA · `0 = C−1ACR · r0.
Recall that for all α, r0(α) /∈ Iα. Now set α = η. Hypotheses (b,c) imply that `i−1 =

A−1LA · `0 = `0. Now, if r1 = AkC · r0, then r1 = AkCLA · `0, which again by (a) gives
r1 = AkC C−1ACR · r0 = Ak+1CR · r0. Now (b) gives Ak+1C · rj−1 = r1.

Finally, (d) with `1 = A−1C · `0 yield `1(ζ) = A−1CR · r0(ζ). Hypothesis (a) now yields that
A−2CLA · `0(ζ) = `1(ζ). �

2 ζ 2 η 2ω

y=x

y=x-2

L

R

Figure 6. Determining the synchronization interval [ζ, η) = [ζk,v, ηk,v). Here,
m = 3, n = 3, and k = 1, v = 1. The labels L,R mark respectively the curves
y = L1,1 · r0(α), y = R1,1 · r0(α) where α = x/2 = x/t3,3. (See Definitions 14
and 24 for Rk,v and Lk,v in general.) Red gives the single branch of y = r1(α)

while blue colors the two branches of y = `4(α) for (5−
√

21)/2 < x < g2. The
x-axis is shown as a dotted line.

We will be describing synchronization subintervals of α ∈ [0, 1] in terms of common initial
portions of the digits of r0(α).

Definition 13. (1) If the α-digits for some x are all of the form (ki, 1), it is convenient to
suppress the notation indicating that the exponent of C is simply one. We refer then to
simplified digits, and uniformly use a d instead of a b in notation referring to simplified
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digits. Thus the statement dα[1,∞) = k1, k2, . . . is equivalent to bα[1,∞) = (k1, 1)(k2, 1) . . .

and similarly for expressions involving d. Of course, sequences of simplified digits are
ordered by way of the order (6).

(2) Given s ∈ N and integers c1, c2, . . . , cs and d1, d2, . . . , ds−1, let v = c1d1 · · · ds−1cs and
for any k ∈ N, define the upper (simplified) digit sequence of k and v as

d(k, v) = kc1 , (k + 1)d1 , · · · , (k + 1)ds−1 , kcs .

Let now σ be the left-shift. (For example, σ(v) = d1c2d2 · · · ds−1cs.)

For any s ∈ N, let b[1,s] denote the prefix of length s of bα[1,∞), and similarly for b[1,s].

Definition 14. For each k ∈ N and each v = c1d1 · · · ds−1cs, we define the following.

(1) The length of d(k, v) is S(v) := | d(k, v) | = cs +
∑s−1
i=1 (ci + di). Notice that S(v) is

indeed independent of k.

(2) The α-cylinder of k, v is

Ik,v = {α | dα
[1,S(k,v)]

= d(k, v)} .

That is, Ik,v is the set of all α, such that the initial simplified digits of r0(α) are
kc1 , (k + 1)d1 · · · (k + 1)ds−1 , kcs .

(3) The right matrix of k, v is

Rk,v = (AkC)cs (Ak+1C)ds−1(AkC)cs−1 · · · (Ak+1C)d1(AkC)c1 .

(4) The potential synchronization interval associated to k, v is Jk,v = [ζ, η) where ζ = ζk,v
and η = ηk,v are such that

Rk,v · r0(ζ) = `0(ζ) and r0(η) = C−1ACRv · r0(η) .

Note that if α ∈Jk,v, then Rk,v · r0(α) = rS(v)(α).

4.2. Tree of words and a partition. From Lemma 12, we have that

d
ηk,v
[1,∞) = kc1 , (k + 1)d1 , · · · , (k + 1)ds−1 , kcs , k + 1, · · ·

and furthermore, this sequence continues with the digits of r1(ηk,v). Thus, this sequence is

periodic with pre-period d(k, v) and period k + 1, kc1−1, (k + 1)d1 , · · · , (k + 1)ds−1 , kcs . This
period is expressible in terms of the word v′, which we now define.

Definition 15. For each s > 1 and each word v = c1d1 · · · cs−1ds−1cs, define

v′ =

{
1(c1 − 1)d1c2 · · · cs−1ds−1cs if c1 6= 1 ,

(d1 + 1)c2 · · · cs−1ds−1cs otherwise .

We interpret this also to mean that when v = c with c > 1 then v′ = 1(c− 1), and when v = 1
then v′ = 1.

As necessary, we extend the notion d(k, v) in the natural manner to include the setting of
infinite words, and also extend the notion of Rk,v to include more general words.

Lemma 16. Let k ∈ N and v = c1d1 · · · cs−1ds−1cs. If ηk,v ∈ Ik,v, then d
ηk,v
[1,∞) = d(k, v(v′)∞).
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1 2 3 · · ·

1s1 1q1 · · · 111 · · · 2(11)u−112 313

1s1[(s+ 1)1]ts1 1q1[(q + 1)1]sq1 1q1[(q + 1)1]sq1[(q + 1)1]sq1 111(21)u11 313(1213)u13

1q1[(q + 1)1]sq1{[(q + 1)1]s+1q1}t[(q + 1)1]sq1

Θ−1

Θq

Θs Θ1

Θ−1

Θu−1

Θ−1

Θ0

Θt Θs
Θu

Θu

Θt
D

Θ0 D

D

Figure 7. Each vertex of the directed tree V, see Definition 18, has countably
infinite valency. A small portion of V, with some values of D (of Definition 24),
is indicated.

Proof. For simplicity, let η = ηk,v. From Lemma 12 (ii), the simplified digit of r0(η) following

d(k, v) is k + 1, and thereafter the simplified digits begin with the sequence of r1(η). This can

be expressed as dη[1,∞) = d(k, v) (k + 1) d(k, v)[2,S].

When v = c1 = c we have S = c and we find dη[1,∞) = kc, (k + 1), kc−1 (when c = 1, we take

this to mean k, k + 1.) For longer v, we must group the new occurrence of k+ 1. This grouping
depends on whether c1 = 1 or not. In either case, one indeed finds that d

ηk,v
[1,∞) = d(k, v(v′)∞). �

Definition 17. Set Θ−1(c1) = c1 + 1 and Θq(1) = 1q1 for q ≥ 1. For c > 1, set Θq(c) =
c[1(c − 1)]q1c for any q ≥ 0. (To avoid double labeling and also to stay within our desired
language, Θ0(1) is undefined; note that Θ1(1) = 111, compare with Θ0(c) = c1c for c > 1.)

We now recursively define values of the operators Θq. Suppose v = Θp(u) = uv′′ for some
p ≥ 0 and some suffix v′′. Then define for any q ≥ 0

Θq(v) = v(v′)qv′′ .

Definition 18. Let V denote the set of all words obtainable from v = 1 by finite sequences of
applications of the various Θq. We call v the parent of each Θq(v), and also refer to Θq(v) as a
child of v. See Figure 7 for a portion of this directed tree.

The following result gives the basic structure of the collection of potential synchronization
intervals.

Theorem 19. We have the following partition

(0, γ3,n) =

∞⋃
k=1

Ik,1 .

Furthermore, for each k ∈ N and each v ∈ V, the following is a partition:

Ik,v = Jk,v ∪
∞⋃
q=q′

Ik,Θq(v) ,

where q′ = 0 unless v = c1, in which case q′ = −1.

We postpone the proof of this theorem until page 27.

When n = 3, the first statement of the theorem describes the partition given by the intervals
of definition of the leftmost red branches of Figure 5. See also Figure 8.
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Jk,v
Jk,Θq(v) Jk,Θq−1(v)

Ik,Θ0(v)

ζk,v ηk,v ζk,Θq(v) ηk,Θq(v) ζk,Θq−1(v) ηk,Θq−1(v) ζΘ0(v) ωk,v

• • • • • • • •

Ik,v

Ik,Θq(v)

Figure 8. A hint of the partition of a general α-cylinder Ik,v. That ωk,Θq(v) =
ζk,Θq−1(v) holds for appropriate v is part of Lemma 35.

4.2.1. Palindromes. The notation ←−v denotes the word formed by taking the letters of v in
reverse order. Thus, v is a palindrome if and only if v =←−v .

Proposition 20. Suppose v ∈ V. Then:

(1) v is a word in at most three letters;
(2) v is a palindrome;
(3) if v = Θq(u) for some q ≥ 1, then v = uxu for some palindrome x.
(4) if u is the parent of v, then there is a palindrome y such that v′ = yu;
(5) with this same y, one has v′v′′ = yv;
(6) if further v 6= c1, then there are palindromes a, z such that v′′ = az, y = z′a.

Proof. The first statement naturally has two cases: if c1 = 1 then we claim that all ci = 1 and
all dj are contained in {d1 + 1, d1}; if c1 > 1 then all dj = 1 and ci ∈ {c1, c1 − 1}. We prove
this by induction. Our bases cases are: Θ−1(c1) = c1 + 1 and Θq(1) = 1q1 for q ≥ 1; for c > 1,
set Θq(c) = c[1(c − 1)]q1c for any q ≥ 0. The statement clearly holds here. Thereafter, v, v′

are words in these small alphabets, and v′′ is a subword of v hence every Θq(v) has the desired
property.

Note that Statement (3) follows from (2). Also Statement (4) implies (5), as (yu)v′′ =
y(uv′′) = yv. It remains to prove Statements (2), (4) and (6).

Beyond easily handled cases of short v, there are naturally three cases to consider.
Case 1. Suppose v = Θh

0 (c) for some h ≥ 1 and some c > 1. Induction gives v = Θh
0 (c) = c(1 c)h.

This is obviously a palindrome, that is (2) holds. We find

v′ = 1(c− 1)(1 c)h = 1(c− 1)1 c(1 c)h−1 = 1(c− 1)1 Θh−1
0 (c) = yu,

where y = 1(c − 1)1 and u = Θh−1
0 (c). But, here v = Θ0(u) is the parent of v, and hence

Statement (4) also holds in this case.
Set z = c and a = 1. Then y = z′a and v′′ = 1 c = az. Therefore, (6) also holds in this case.

Case 2. Suppose v = Θq(u) for some q ≥ 1.
If u = c1, all of (2), (4) and (6) are easily verified.
Assume now that (2), (4) and (6) hold for u, in the sense that u = Zaz, u′′ = az with u,Z, a, z

and z′a all palindromes. Since u =←−u , we have u′ = (zaZ)′ = z′aZ. Therefore,
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v = Θq(u) = u(u′)qu′′ = u(u′)q−1u′(az) = u(u′)q−1z′aZ(az) = u(u′)q−1z′au = u(z′aZ)q−1z′au.

Since z′a and Z are palindromes, we find that v is a palindrome; that is (2) holds.
Set y = (z′aZ)qz′a. This is clearly also a palindrome. Since

v′ = (z′aZ)qz′au

(4) also holds.

Now, v = uv′′ gives v′′ = (z′aZ)q−1z′au. Let a = (z′aZ)q−1z′a and z = u. Then v′′ = az and
y = z′a. That is, (6) holds.

Case 3. Suppose that v = Θ0(u) and v 6= Θh
0 (c) for any h ≥ 1 and any c = c1. Assume that

(2), (4) and (6) all hold for u in the sense described in the proof of the previous case.
We find

v = uu′′ = (Zaz)az

and thus
←−v =

←−
u′′←−u =←−az u = zaZaz.

Thus (2) holds in this case.
Now,

v′ = u′u′′ = (z′aZ)az = (z′a)u.

Thus (4) holds; since v′′ = u′′, (6) also holds. �

Remark 21. We thus have for v ∈ V, other than those v of the form v = c1,{
v = uv′′ = uaz

v′ = yu = z′au.

In the case of v = Θq(u) with q ≥ 1, we have z = u. (Thus in the previous proposition, x is a.)

The child Θq(v) has length less than twice the length of v only when q ∈ {−1, 0}. The
following addresses the setting of q = 0.

Lemma 22. Suppose that u is a child of Z ∈ V. Then the palindrome Θ0(u) is characterized by
the property of u being both a prefix and a suffix, and these subwords having exactly the subword
Z in common.

Proof. Let v = Θ0(u). Since v′′ = u′′, we can write u = Zaz and v = uaz = Zazaz with each of
Z, u, a, z palindromes. Now, v = (Zaz)az = zaZaz. We have v = zaZaz︸︷︷︸

u

= zaZ︸︷︷︸
u

az. Thus the

property does indeed characterize Θ0(u). �

Lemma 23. If v ∈ V, then v′ ≺ v′′.
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c

c(1 c)h−1 h− 1

c(1 c)h h

Θh−1
0

D

Θ0 Θ−1

D

u

v D(v)

v(v′)qv′′ Θq( D(v) )

Θq≥1 Θq≥1

D

u 6= c1

v D(v)

vv′′ Θ0( D(v) )

Θ0 Θ0

D

Figure 9. Taking derived words, v 7→ D(v), respects parent-child relations.
See Lemma 25.

Proof. One directly verifies the result for any v = c1 and for any v = Θq(c1). The remaining
possibilities can be divided into two cases.

Case 1. When v = Θq(u) for some q ≥ 1, we can write v = uau. We find v′ = (u′a)u = a
←−
u′u,

and v′′ = au. Writing u = c1d1 · · · cs−1ds−1cs, from Definition 15 and that fact that u is a

palindrome show that
←−
u′ and u agree until the relationship is determined by d1c1 � (d1 + 1) or

d1c1 � d1(c1 − 1) 1, when c1 = 1 or c1 > 1 respectively.

Case 2. Suppose that v = Θ0(u). Then as in Lemma 22 we can write v = uaz = zau, v′′ = az.

We have v′ = z′au = a
←−
z′u. As in the previous case, we find that v′ ≺ v′′. �

4.2.2. Derived words. We will often argue by induction on the length of v. These arguments
rely on the following map, D , giving the derived word D(v) of v.

Definition 24. Let v = c1d1 · · · ds−1cs.

(i) If c1 = c > 1, and v is such that d1 = 1 and the set of ci, 1 ≤ s, is contained in the set
of two letters {a = c1, b = c1 − 1}, express

v = (a 1)e1(b 1)f1 · · · (b 1)fg−1(a 1)eg−1a.

(ii) if c1 = 1, and v is such that the set of dj , 1 ≤ j < s is contained in the set of two letters
{a = d1, b = d1 + 1}, express

v = (1 a)e1(1 b)f1 · · · (1 b)fg−1(1 a)eg1.

In both cases, let
D(v) = e1f1 · · · fg−1eg .

Note that (the proof of) part (1) of Proposition 20 shows that D(v) is defined for each v ∈ V.
We call the various subwords (c1 1)ei , (c1 − 1 1)fj , (1 d1)ei , (1 d1 + 1)fj full blocks for v.

Lemma 25. The map D sends V to itself, preserving the parent-child relationship. That is, if
u ∈ V and v = Θq(u), then there is a q′ such that D(v) = Θq′( D(u) ). Moreover, q′ = q unless
v = Θh

0 (c) for some h ≥ 1.

Proof. Just as in the proof of Proposition 20, there are easily verified base cases which we leave
to the reader. We treat three main cases, see Figure 9.

Case 1. Suppose v = Θh
0 (c) for some h ≥ 1 and some c > 1. We have v = c(1 c)h. Certainly,

D(v) = h + 1, and D( Θh−1
0 (c) ) = h. We note that Θ−1(h) = h + 1, and of course that

v = Θ0( Θh−1
0 (c) ). That is, the result holds in this case.
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Case 2. Suppose v = Θq(u), with q ≥ 1 for some u ∈ V. Although this part of the proof is
fairly straightforward, it has perforce a panoply of variables representing words; the reader may
wish to consult (11), below, as a guide.

We can write D(v) = D(u(u′)qu′′ ) = D(u(u′)q−1y u ). Calculation, simply using the defini-
tion of D , shows that D(u(u′)qu′′ ) has prefix D(u). The definition also yields that the derived
word of any palindrome is also a palindrome, thus here D(v) also has suffix D(u). Direct calcu-
lation shows that for any words u, x and any p ≥ 1, D(u(u′)px) = D(u) { [D(u)]′ }pX for some
X. By Proposition 20, there is some palindrome Y such that [D(u)]′ = YD(Z) where D(Z)
is the parent of D(v). Therefore, D(v) = D(u(u′)q−1y u ) = D(u) [YD(Z)]q−1XD(u) for some
(new) X. Since D(v) is a palindrome, we have X = Y . Again by Proposition 20, YD(u) =
YD(Z)[D(u)]′′ = [D(u)]′ [D(u)]′′. Therefore, D(v) = D(u) { [D(u)]′ }q−1 [D(u)]′ [D(u)]′′ =
Θq( D(u) ).

As a summary, we have

(11)

D(u(u′)qu′′) = D(u(u′)q−1u′u′′)

= D(u(u′)q−1yu)

= D(u) {[D(u)]′}q−1XD(u)

= D(u) [YD(Z)]q−1XD(u)

= D(u) [YD(Z)]q−1YD(u)

= D(u) {[D(u)]′}q−1YD(Z)[D(u)]′′

= D(u) {[D(u)]′}q[D(u)]′′

= Θq( D(u) ).

Case 3. Suppose that v = Θ0(u) and v 6= Θh
0 (c) for any h ≥ 1 and any c = c1. Lemma 22 and

the definition of D yield the result in this case. �

4.2.3. Fullness of branches. We aim to describe symbolically T3,n,α-orbits, and in particular to
determine intervals in the parameter α where initial segments of such orbits share common digits.
For any word determining sequences of digits, we must determine the endpoints of the parameter
interval along which the word does describe admissible sequences of digits, see Figure 11. The
following notion is key to this.

Definition 26. Let u a word with alternating letters ci, dj . (We allow prefixes of words v
including those that end with some dj .)

(1) If u begins with say c1 and ends in some dj , then powers of u are again alternating
words in the letters ci, dj . In the case that u = c1 · · · cj begins with c1 and ends in some
cj , then we define u2 = c1 · · · (cj + c1) · · · cj and similarly for higher powers.

(2) We say that u is full branched if for any prefix u[1,`] of u, the inequality u∞ � u∞[1,`]
holds. We denote the longest prefix of u that is full branched by f(u).

Note that an equivalent definition is: f(u) is the longest prefix of u satisfying ( f(u) )∞ =
min{(u[1,`] )∞ : u[1,`] is a prefix of u}.

(3) We define ωk,u as the α-value such that Rk,f(u) · r0(ωk,u) = r0(ωk,u). That is, r0(ωk,u)

has the (Tα-inadmissible) simplified digit expansion ( d(k, f(u) ) )∞.
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3 1 · 3 1 · 3 1 · 3 1 · · ·
3 1 3 1 2+3 1 3 1 3

3 1 3 1 · 3 1 3 1 · · ·
3 1 3 1 2 1 ·3 1 3

3 1 3 1 2 1 ·3 1 3 1 2 1
3 1 3 1 2 1 3 1 · 3 1 3 · · ·

Figure 10. Naive calculations for f( Θ1(313) ). From left to right, finding:
(31)∞ ≺ (31312)∞; (3131)∞ � (313121)∞; (313121)∞ ≺ (31312131)∞. The
beginning of second copies of words are marked with a dot.

Example 27. (1) Recall that the leftmost red branches in Figure 5 are branches of r1(α)
as a function of r0(α), with α < γ3,3. These branches agree with portions of the
graphs y = AkC · x and x = r0(α). For each k, the corresponding branch intersects
with y = x − t on the left, and y = x on right. The leftmost of these two points is
x = r0(ζk,1). Certainly for every α between such a set of intersection points, we have
r0(α) = k, · · · . On the other hand, by definition f(1) = 1, and thus r0(ωk,1) is the fixed
point of AkC · x. That is, r0(ωk,1) is our right intersection point. Furthermore, for all
α ∈ [ζk,1, ωk,1) we have y = r1(α) is given by r1(α) = AkC · r0(α). That is, the first
simplified digit of r0(α) is k. In other words, Ik,1 = [ζk,1, ωk,1).

Being a fixed point, r0(ωk,1) = k, k, . . . , is purely periodic with period k. Note
however that this is not a Tα-admissible expansion, as were it so then r1 for this value
of α would equal r0. But, r0(α) /∈ Iα!

(2) Now suppose c > 1. By definition, f(c) = c, that is v = c1 is full branched. Therefore,
for each k, ωk,c is such that r0(ωk,c) is the fixed point of (AkC)c. Of course, (AkC)c has
the same fixed point as AkC. That is, ωk,c = ωk,1. Related to this, there are values of α
sufficiently close to ωk,1 so that for each of these α, the first c simplified digits of r0(α)
are all equal to k. Equivalently, r0(α), r1(α), . . . , rc(α) are all in ∆α(k, 1). And, this
is also to say that d(k, c) gives the first c simplified digits of r0(α). The reader should
easily find α in the complement of Ik,c inside of Ik,1.

(3) Consider v = 111. We consider each prefix in turn. Of course u = 1 is full-branched. We
next compare (11)∞ = 11·11·11· · · · with 1∞; by our convention for powers, we certainly
find that (11)∞ ≺ 1∞. We next compare (11)∞ with (111)∞ = 111 · 111 · 111 · · · · =
121212 · · · ; certainly (11)∞ ≺ (111)∞. Therefore, f(111) = 11. Compare this with
Figure 11.

(4) Consider v = Θ1(313) = 313(1213)13. Arguing just as for the previous case, we find
that (31)∞ is the minimal element of {3∞, (31)∞, (313)∞}. Since 3131 = (31)2, we
certainly have that (31)∞ = (3131)∞, and thus this latter is our current candidate for
the maximal length full branched prefix of v. We compare it with (31312)∞. We find that
these infinite words agree in their first four letters, but in the fifth (a “cj”-position) they
differ. Confer Figure 10. Since 31313 ≺ 31315, we find that (3131)∞ ≺ (31315)∞. We
thus now compare (3131)∞ with (313121)∞. Confer Figure 10. we find that (313121)∞

is the smaller. One easily sees that is it also smaller than (3131213)∞. We now compare
it with (31312131)∞. See Figure 10. Again, (313121)∞ is the smaller. One easily sees
that also (313121)∞ ≺ v∞. Therefore, f(v) = (313121)∞.

The following shows that certain phenomena illustrated in the above examples hold in general.

Lemma 28. If v ∈ V is of length greater than one, then f(v) has even length. In this case, for
each k ∈ N, a simplified digit expansion for r0(ωk,v) is d(k, ( f(v) )∞ ).

Proof. Our convention for powers of words shows that any prefix u of odd length greater than
one, thus having initial letter c1 and final letter some ci, has its second power including the
letter cj + c1. Already u2 is larger than the prefix (c1d1)∞. The first statement thus holds.
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For any word u = c1d1 · · · dj , we have

d(k, u∞ ) = [kc1 , (k + 1)d1 , · · · , (k + 1)dj ]∞ = d(k, u )∞.

Thus, since ωk,v is defined to be ( d(k, f(u) ) )∞, the result holds. �

2 ζ

L

R

2 η 2ω

Figure 11. A non-full branch. Here n = m = 3, v = 111 and k = 1; we
have that ω1,111 is determined by the fixed point of R1,11. The labels L,R
mark respectively the curves y = L1,111 · r0(α), y = R1,111 · r0(α) where α =
x/2 = x/t3,3. Red gives branches of y = r3(α), while blue colors the two
branches of y = `9(α); Magenta gives the branches of y = r2(α). The left

portion has 2(9 −
√

15)/7 < x < (11 − 6
√

2)/7. The right “zooms in” to
0.35910 < x < 0.35915. (This interval lies between the vertical gray lines in
both portions.) The x-axis is shown as a dotted line. Black curves give y = x
and y = x− 2. (This example is in fact the longest interval Ik,v where Rk,v is
not full for any n ≥ 3, k ∈ N, v ∈ V.)

The next result indicates the utility of the notion of full branchedness.

Lemma 29. Let v ∈ V and fix k ∈ N. The α-cylinder set Ik,v is a subset of [ζk,v, ωk,v).

Proof. The set of α such that dα
[1,S(k,v)]

= d(k, v) is contained in the interval [ζ, ω) such that

Rk,v · r0(ζ) = `0(ζ) and Rk,v · r0(ω) = r0(ω). (Note that this is implied by the connected nature
of each of the ∆(k, l), confer Figure 2.) The left endpoint here is exactly ζ = ζk,v.

Now, the definition of the α-cylinder Ik,v as the set of those α such that the digit sequence
determined by k and v are α-admissible implies that Ik,v is contained in the intersection of the
corresponding α-cylinders for k and the prefixes u of v. In particular, the least right endpoint of
these cylinders gives an upper bound of the right endpoint of Ik,v. But, each of these cylinders

has its right endpoint bounded above by its own corresponding fixed point, d(k, u∞). Hence,
we find that the right endpoint of Ik,v is less than or equal to the least of these d(k, u∞). Since

this least point is d(k, ( f(v) )∞), we are done. �

Lemma 30. Fix m = 3, and n ∈ N. Then γ3,n = ω1,1.

Proof. Let γ = γ3,n By definition, C−1 · `0(γ) = r0(γ). Applying AC to both sides of this
equality yields r0(γ) = AC · r0(γ). Since f(1) = 1, we have that r0(ω1,1) = AC · r0(ω1,1) and
thus γ3,n = ω1,1. �

Recall that the full blocks of v are defined in Definition 24.

Lemma 31. Suppose v ∈ V is of length greater than one. Then f(v) ends with a full block of v.
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Proof. When c1 = 1, we have 1 d1 � 1 (d1 + 1). When c1 > 1, we have c1 1 � (c1 − 1) 1.
We treat the case of c1 = 1, the other case being similar. First, if D(v) = e1 then one

easily verifies that f(v) = (1 d1)e1 . Otherwise, the argument of Lemma 28 showing that v of
length greater than one have f(v) of even length, gives here that f(v) ends with some power of
[1 (d1 + 1)]. Suppose we have a prefix of v which ends with a non-full block of this type, say
w = (1 d1)e1 [1 (d1 + 1)]f1 · · · [1 (d1 + 1)]fi−j . Then the square of w has the intermediate term
[1(d1 + 1)]fi−j(1 d1)e1 , whereas the prefix that completes w to the end of the block [1 (d1 + 1)]fi

agrees with w2 up to a replacement of (1 d1) by [1 (d1 + 1)]. That is, this new prefix is smaller
than w2, and thus certainly its infinite power is smaller than w2. The result thus holds in this
case. �

Proposition 32. Suppose v ∈ V. Then

f( Θq(v) ) =


(c 1)h if q = 0, v = Θh

0 (c),

v(v′)q−1y if q ≥ 1, and y as in Proposition 20,

(ua)h+1 if q = 0, v = Θh
0 ◦Θp(u), p ≥ 1, and Θp(u) = uau.

In particular, for all v ∈ V, the word v is a prefix of ( f(v) )2.

Proof. Direct evaluation, as in Example 27 shows that f(c 1 c) = c 1. Now suppose the result
holds for some h − 1 ≥ 1; the only remaining (even length) candidate prefixes that could be
f(v) are (c 1)h−1 and (c 1)h. Since these words have the same infinite powers, by definition the
longer of these, that is (c 1)h, is f(v).

For q ≥ 1, base cases can be directly verified. We now use induction on the length of v, and
thus assume f( Θq( D(v) ) ) = D(u) {[D(u)]′}q−1Y , with Y as in (11). From (11), we then have

D( v(v′)q−1yv ) = f( Θq( D(v) ) ) D(u).

Since the blocks of v of exponent ei are larger than the blocks of exponent fi, one finds that
f( Θq(v) ) can be no longer than v(v′)q−1y. Since f( Θq(v) ) ends with a full block, f( Θq(v) ) can
also be no shorter than v(v′)q−1y. Thus, the result holds.

We can indeed assume that Θp(u) = uau, see Remark 21. From the previous case, f( Θp(u) ) =
ua. One easily finds that Θh

0 ◦ Θp(u) = u(au)h+1. Thus, we seek to prove that f(u(au)h+1 ) is
formed by dropping the suffix u. Here also, we can apply D , as the verification for bases cases
is straightforward.

That ( f(v) )2 has prefix v is easily checked in each case. �

The following result could well be placed earlier, but is not used until directly hereafter.

Lemma 33. Let k ∈ N and v = c1d1 · · · cs−1ds−1cs. If ζk,v ∈ Ik,v then d
ζk,v
[1,∞) = d(k, v), d

ζk,v
[1,∞).

Furthermore, if v =←−v , then r0(ζk,v) is the fixed point of R
k,
←−
v′

.

Proof. By definition, ζk,v is such that Rk,v · r0(ζk,v) = `0(ζk,v) and hence r0(ζk,v) is the fixed
point of ARk,v = Ak+1C(AkC)cs−1 (Ak+1C)ds−1(AkC)cs−1 · · · (Ak+1C)d1(AkC)c1 . When v is
a palindrome, that is when v = ←−v , this matrix is indeed R

k,
←−
v′

. (Note that when v = 1 this

matrix must be interpreted as Ak+1C.) The definition of ζk,v also shows that the sequence of

upper simplified digits of ζk,v is formed by d(k, v) followed by the digits of `0(ζk,v). That is,

d
ζk,v
[1,∞) = d(k, v), d

ζk,v
[1,∞). �
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Corollary 34. Fix k ∈ N. Suppose that v = Θp(u) for some u ∈ V and some p ≥ 1. Then for
h ≥ 0, we have ωk,Θh0 (v) = ωk,v. Furthermore, limh→∞ ζk,Θh0 (v) = ωk,v.

Proof. Proposition 32 implies that ( f( Θh
0 (v) ) )∞ = (ua)∞ = ( f(v) )∞. Lemma 28 now implies

that ωk,Θh0 (v) = ωk,v. For each h, Lemma 33 shows that ζk,Θh0 (v) has prefix d(k,Θh
0 (v) ) =

d(k, u(au)h+1 ). Therefore, the second statement holds as well. �

Lemma 35. Suppose that v ∈ V. Then for q ∈ N (except when (v, q) = (1, 1) ) ),

f(Θq(v)) =
←−−−−−−−
(Θq−1(v) )′.

Furthermore, for each k ∈ N, ωk,Θq(v) = ζk,Θq−1(v).

Proof. Proposition 32 gives f(Θq(v)) = v(v′)q−1y, with notation as there. Now ( Θq−1(v) )′ =

v′(v′)q−1v′′ = (v′)q−1yv. Since both Θq−1(v) and y are palindromes,
←−−−−−−−
(Θq−1(v) )′ = v(v′)q−1y.

Therefore,
←−−−−−−−
(Θq−1(v) )′ = f(Θq(v)).

By definition, r0(ωk,Θq(v)) is the fixed point of Rk,f(Θq(v)). By Lemma 33, r0(ζk,Θq−1(v)) is
fixed by Rk,←−w , where w = (Θq−1(v) )′. Therefore, ζk,Θq−1(v) = ωk,Θq(v). �

The following illustrates how Θ1(1) plays a role similar to the Θ0(c), c > 1.

Lemma 36. For each k, c ∈ N,

ωk,c 1 c = ζk,c+1 .

Proof. Since f(c 1 c) = c 1, this follows since Ak+1C(AkC)c · r0(α) = r0(α) is equivalent to
(AkC)c+1 · r0(α) = `0(α). �

Lemma 37. Suppose that v ∈ V. Then v (v′)∞ ≺ ( f(v) )∞.

Proof. The result is immediate for v = c1. We treat our usual remaining cases.

Case 1. Suppose v = Θh
0 (c) for some h ≥ 1 and some c > 1. We have v = c(1 c)h, and

f(v) = (c 1)h. Since v (v′)∞ = c(1 c)h [ 1 (c− 1) 1 1]∞ ≺ (c 1)h+2, the result holds in this case.

Case 2. v = Θp(u), p ≥ 1. Write v = uau in our usual decomposition. Then v′′ = au and
f(v) = ua. We find

( f(v) )3 = uau au a = vv′′a � vv′,
thus certainly ( f(v) )∞ � v (v′)∞.

Case 3. Finally, suppose v = Θh
0 (uau). Thus, v = u(au)h+1, v′′ = au and f(v) = (ua)h+1.

Hence, ( f(v) )2 = u(au)h+1 · au · a(ua)h−1 = vv′′a(ua)h−1. Since v′′ � v′, it follows that
( f(v) )2 � vv′, and thus ( f(v) )∞ � v (v′)∞. �
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4.3. The complement of the potential synchronization intervals is a Cantor set.

Proposition 38. For all v ∈ V, and all k ∈ N, both

Ik,v = [ζk,v, ωk,v) and Ik,v ⊃Jk,v .

Proof. Fix k ∈ N. We argue by induction on the length of the word v. Recall that by Lemma 16,
ηk,v ∈ Ik,v implies that d(k, v(v′)∞) gives the sequence of simplified digits of r0(ηk,v).

The base cases, given by v = c1, are easily verified.

Case 1. Suppose v = Θh
0 (c) for some h ≥ 1 and some c > 1. We have v = c(1 c)h. We

begin by assuming the result for both words c, c + 1. We then have ηk,c < ζk,c+1 < ωk,c+1 =
ωk,c. Therefore, there must be proper extensions of the word c1 = c that are admissible on

[ηk,c, ζk,c+1). By Lemma 16, d
ηk,c
[1,∞) = kc, (k + 1), kc−1; that is, c 1 is admissible at this value of

α. Now, (AkC)c+1 ·r0(α) = `0(α) determines the value α = ζk,c+1. Equivalently, Ak+1C(AkC)c ·
r0(α) = r0(α).

From this last, we conclude that f(c 1 c) = c 1 is admissible throughout [ηk,c, ζk,c+1), with
arbitrarily high powers of c 1 admissible for α sufficiently close but smaller than ζk,c+1. (Recall
that ωk,c 1 c = ζk,c+1.) Since Θ0(c) = c 1 c is a prefix of (c 1)2, we find that there is an interval
with right endpoint ωk,c 1 c on which the word Θ0(c) is admissible. The left endpoint of this
interval is characterized as the leftmost α such that the third letter is remains admissible; it
must hence be ζk,c 1 c. Thus, our result holds when h = 1. We now partition the interval
[ηk,c, ζk,c+1) according to the highest power of c 1 that is admissible for α, from which the result
follows.

Case 2. v = Θp(u), p ≥ 1. Write v = uau in our usual decomposition. By hypothesis, d(k, v)

gives a prefix of dα[1,∞) for all α ∈ [ζk,v, ωk,v).

We have f(v) = ua, and the admissibility of v = uau implies the admissibility of ua on
[ζk,v, ωk,v). Thus for each α ∈ [ζk,v, ωk,v), there exists a maximal N = N(α) ∈ N such that

u(au)N gives a prefix of dα[1,∞). Since ωk,v corresponds to the fixed point of Rua, the values N(α)

are unbounded. Furthermore, if N(α) = α, then for all α′ ∈ [α, ωk,v) we have N(α′) ≥ N(α).
Thus, (since the hypothesis implies that N = 1 is realized) each N ∈ N is realized as N(α) for
some α ∈ Ik,v, and we can partition Ik,v by subintervals identified from the value of N(α).

Now, Θ0(v) = vv′′ = u(au)2, and hence Θ0(v) is admissible on [ζk,Θ0(v), ωk,v). Similarly, each

Θh
0 (v) is admissible on [ζk,Θh0 (v), ωk,v). By considering our ordering on words, it is clear that

ζk,Θh0 (v) < ηk,Θh0 (v) < ωk,v. Therefore, the result holds for all Θh
0 (v).

The admissibility v on all of Ik,v and the admissibility of Θ0(v) on exactly [ζk,Θ0(v), ωk,v)
implies that there must be a shortest extension of v = uau which is admissible for those α
immediately to the left of ζk,Θ0(v). Lemma 35 shows that f( Θ1(v) ) is this extension. The fixed
point of Rk,f( Θ1(v) ) is r0(ωk,Θ1(v)), and we again argue that arbitrarily high powers of this word,
f( Θ1(v) ), must be admissible just to the left of the corresponding value α, that is of ωk,Θ1(v).

Since any v = uau is always a prefix of the square of the corresponding f(v) = ua, we find
that all of Θ1(v) is admissible on an interval ending at ωk,Θ1(v). By definition of ζk,Θ1(v) it
follows that this interval is all of [ζk,Θ1(v), ωk,Θ1(v)). We iterate this argument for increasing
q, to give that for each q, Θq(v) is admissible on exactly [ζk,Θq(v), ωk,Θq(v)). The definition of
ηk,Θq(v) shows that it lies strictly between ζk,Θq(v) and ωk,Θq(v)).

Case 3. Suppose that v = Θh
0 (uau) for some uau of Case 2. Thus, v = u(au)h+1.

By the proof of Case 2, we can also assume our result for Θh+1
0 (uau) = Θ0(v). In partic-

ular, the left boundary of Ik,Θ0(v) does occur at ζk,Θ0(v). By Lemma 35, ωk,Θ1(v) = ζk,Θ0(v).
Arguments as in the previous case yield that all of Θ1(v) is admissible on an interval ending at
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ωk,Θ1(v), and that this interval is indeed [ζk,Θ1(v), ωk,Θ1(v)). In this case also, induction on q is
successful. That JΘq(v) ⊂ IΘq(v) is here also straightforward. �

We are now ready for the following.

Proof of Theorem 19. That (0, γ3,n) = ∪∞k=1 Ik,1 follows simply from the fact that for α ∈
(0, γ3,n) and x ∈ Iα, Tα(x) = AkC · x for some k. Proposition 38 shows that for all v ∈ V,
Ik,v = [ζk,v, ωk,v) can be partitioned by Jk,v = [ζk,v, ηk,v) and its complement. By Corollary 34
(and the complementary results proven in cases 1 and 3 of the proof of Proposition 38), we have
have that ωk,Θ0(v) = ωk,v. By Lemma 35, for all q ∈ N, ωk,Θq(v) = ζk,Θq−1(v). Therefore,
∪∞q=0 Ik,Θq(v) is a subinterval of Ik,v \Jk,v which has ωk,v as its right endpoint. Finally, the
definition of Θq(v) combined with Lemma 33 shows that limq→∞ ζk,Θq(v) = ηk,v. Therefore, the
left endpoint of the union is in fact the right endpoint of Jk,v. �

4.4. Potential synchronization intervals are intervals of synchronization. We now de-
fine Lk,v exactly so that the group identity of Proposition 49 gives that Lk,v = C−1ACRk,v,
and thus the main hypothesis of Lemma 12 will be satisfied. That synchronization does occur
along Jk,v is then only a matter of showing that Lk,vA · `0(α) is admissible at all α ∈Jk,v.

For further ease, we set

w = w3,n = (−1)n−2,−2, (−1)n−3,−2.

Note that the length of w is |w| = 2n − 3. One of our first goals is to show that as α tends
to zero, dα[1,∞) begins with ever higher powers of w. Recall from (8) that (for any m,n) the

element W = A−2C (A−1C)n−3
[
A−2C(A−1C)n−2

]m−2
, equals W = A−1C−1ACA. Just as

this is fundamental to understanding the case of α = 0, so is it key to the study of left-orbits
for small values of α. For ease of reference, the case of m = 3 is

W = A−2C (A−1C)n−3A−2C(A−1C)n−2 .

In the particular cases of m = 3, [CS] show that for all n the T3,n,α=0-orbit of `0(α) is purely
periodic of period w.

4.4.1. Left digits are admissible. For typographic ease, let

(12) C = Ck = (−1)n−3,−2, wk−1 and D = Dk = (−1)n−3,−2, wk .

Accordingly, we let

C̃ = C̃k = W k−1A−2C(A−1C)n−3 and D̃ = D̃k = W kA−2C(A−1C)n−3.

Definition 39. Suppose that v ∈ V and k ∈ N.

(1) The lower (simplified) digit sequence of k, v is

d(k, v) = wk, Cc1−1Dd1 · · · Dds−1Ccs , (−1)n−2 = (−1)n−2,−2, Cc1Dd1 · · · Dds−1Ccs , (−1)n−2 ,

of length

(2) S(k, v) = | d(k, v) | = n+ [(k− 1)(2n− 3) +n− 2]
∑s
i=1 ci + [k(2n− 3) +n− 2]

∑s−1
j=1 dj .

(3) The left matrix of k, v is

Lk,v = (A−1C)n−2 C̃csD̃ds−1 · · · D̃d1 C̃c1−1W kA−1

= (A−1C)n−2 C̃csD̃ds−1 · · · D̃d1 C̃c1A−2C(A−1C)n−2A−1.
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Note that Proposition 49, below, implies that Lk,v = C−1AC Rk,v.

Our aim is to show the admissibility of d(k, v) on Jk,v. In the following, we give both the
left and right simplified digit sequence for each of the endpoints of Jk,v. The right sequences
follow from the results above. We present them here for ease of comparison.

Lemma 40. Let v = c1d1 · · · cs ∈ V and k ∈ N. Suppose that d(k, v) is admissible on Jk,v. Set
ζ = ζk,v and η = ηk,v. Then

dζ[1,∞) = d(k, (
←−
v′ )∞ ) ;

dζ[1,∞) = d(k, v), dζ[1,∞) ;

dη[1,∞) = wk, Cc1−1Dd1 · · · Dds−1Ccs , (−1)n−3,−2 ;

dη[1,∞) = d(k, v(v′)∞) .

Proof. Lemma 33 yields the expressions for dζ[1,∞) and dη[1,∞).

We first show that the expansions for `0(ζ), `0(η) are correct assuming admissibility of d(k, v)
for all α ∈ [ζ, η).

Letting L = Lk,v, Lemma 12 gives A−2CLA · `0(ζ) = `1(ζ). Thus, the digits of `0(ζ) are
periodic, with preperiod of length one. Since w = (−1)n−2,−2, (−1)n−3,−2, we find

dζ[1,∞) = −1, (−1)n−3,−2, (−1)n−3,−2, wk−1, Cc1−1Dd1 · · · Dds−1Ccs , (−1)n−2,−2

= wk, Cc1−1Dd1 · · · Dds−1Ccs , (−1)n−2,−2, (−1)n−3,−2, (−1)n−3,−2, wk−1

= wk, Cc1−1Dd1 · · · Dds−1Ccs , w, (−1)n−3,−2, wk−1

= wk, Cc1−1Dd1 · · · Dds−1Ccs−1,D, C

= wk, Cc1−1Dd1 · · · Dds−1Ccs−1,D, Cc1Dd1 · · · Dds−1Ccs−1D .

Since v is a palindrome, this last is indeed the infinite sequence d(k, (
←−
v′ )∞ ).

Note that in the special case that v = c1, c > 1, we find d
ζk,c
[1,∞) = wk, Cc−1, w, C = wk, Cc−2,D, C

and d
ζk,1
[1,∞) = wk+1, (−1)n−3,−2, wk = wk+1,D.

Since LA · `0(η) = r0(η), we have that A−1LA fixes `0(η) and hence dη[1,∞) is indeed purely

periodic, with the indicated period. �

Lemma 41. Fix j ∈ N and 0 ≤ i < |w|. If there is some α ≤ γ3,n such that dα[1,j|w|+i] =

wj w[1,i], then dα
′

1,j|w|+i = wj w[1,i] for all α′ < α.

Proof. (Of course, if i = 0, then w[1,i] is the empty word.) Since it is shown in [CS] that all
powers of W are admissible when α = 0, there are thus branches of digits corresponding to each
W k · `0, A−1CW k · `0, (A−1C)2W k · `0, . . . , (A−1C)n−3W k · `0 and A−2C(A−1C)n−3W k · `0 that
continue to the right from α = 0. For each, by Lemma 4, admissibility at α thus guarantees
admissibility at each α′ ≤ α. �
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Lemma 42. Fix k ∈ N. We have

d
ωk,1
[1,∞) = wk, (−1)n−3,−2, wk−1 = wk, C .

The digits dα[1,n−3+k|w| ] = wk, (−1)n−3 are admissible for all α ≤ ωk,1.

Proof. Since f(1) = 1, the definition of ωk,v yields Ak−1CA · `0(ωk,1) = `0(ωk,1). Lemma 47,
below, shows that Ak−1CA = C−1A−1C(A−1C)n−2W k−1. For α ≤ γ3,n, we certainly have that
`1(α) = A−1C · `0(α), thus `1(ωk,1) = A−2C(A−1C)n−2W k−1 · `0(ωk,1). Thus, the Tα-orbit of
`0(ωk,1) is periodic, with minimal preperiod of length one. Elementary manipulations give the
claimed expression for the simplified digits, assuming admissibility.

We have that the graph of the function x 7→ A−2C(A−1C)n−2W k−1A−1 ·x meets the vertical
line x = r0(ωk,1) at y = `1(ωk,1). Since the Tωk,1-cylinder ∆(−2, 1) is full, there is also a

point y ∈ Iωk,1 where the graph of the function x 7→ (A−1C)n−2W k−1A−1 · x meets x =

r0(ωk,1). By Lemma 41, this implies that (A−1C)n−2W k−1 · `0(ωk,1) is admissible. It follows

that A−2C(A−1C)n−2W k−1 · `0(ωk,1) is also admissible. The rest of wk, (−1)n−3,−2, wk−1 is
determined by periodicity and is thus also admissible.

The second statement now follows immediately from Lemma 41. �

Remark 43. Note that the above yields d
ωk+1,1

[1,∞) = d
ζk,1
[1,∞), in accordance with the fact that

f(1) = 1 implies ωk+1,1 = ζk,1.

In the following proof and occasionally thereafter, we will have need of the following.

Definition 44. For any word z, let z[−1], z[−2] denote the excision of the last two letters, or last
letter, from z respectively.

Proposition 45. Suppose that v ∈ V and k ∈ N. Then for all α ∈Jk,v,

dα
[1,S)

= d(k, v) .

Proof. For all v, we will exhibit α′ < ζk,v and α′′ > ηk,v such that both dα
′

[1,∞) and dα
′′

[1,∞) are

known to be admissible (by induction), and share as a common prefix all but the final letter of
d(k, v ). By Lemma 4, the admissibility of these first S(k, v) − 1 digits then holds on [α′, α′′].
Since we already know the admissibility of our right digits, Lemma 46, below, applies and we
can conclude admissibility of all of d(k, v ) on Jk,v. See Table 3 for a summary of the pairs
α′, α′′ used for the various cases of v.

Base cases. Consider v = c1 = c. The lower simplified digit sequence d
ωk,1
[1,∞) = wk, C agrees

with d(k, c) = wk, Cc−1, (−1)n−2 through to its penultimate digit. When v = 1, Lemma 42
shows that these shared digits are admissible for all α ≤ ωk,1 ; therefore our proof template

succeeds in this case. For c > 1, by induction d
ηk,c−1

[1,∞) = wk, Cc−2, (−1)n−3,−2 is admissible, and

has d(k, c) as a prefix.

Suppose v = c 1 c. Here we use α′ = ηk,c, and α′′ = ωk,c 1 c. Since d
ηk,c
[1,∞) = wk, Cc−1D, it has the

prefix wk, Cc−1DCc, w. This in turn has d(k, c 1 c) as a prefix. Lemma 36 and Lemma 40 give

that d
ωk,c 1 c

[1,∞) = d
ζk,c+1

[1,∞) = wk, Cc−1,D, C. This agrees with d(k, c 1 c) through to the penultimate

digit of this latter. Thus the admissibility holds on Jk,c 1 c.



30 KARIANE CALTA, COR KRAAIKAMP, AND THOMAS A. SCHMIDT

v α′ α′′

1 0 ωk,1

c > 1 ηk,c−1 ωk,c = ωk,1

Base cases c 1 c, c ≥ 1 ηk,c ωk,c 1 c = ζk,c+1

Θq(c), q ≥ 2 ηk,c ζk,Θq−1(c)

Θ1(c), c > 1 ηk,c ζk,Θ0(c)

Case 1 Θh
0 (c) ηk,Θh−1

0 (c) ζk,c+1

Case 2 Θq ◦Θp(u), p, q ≥ 1 ηk,Θp(u) ζk,Θq−1◦Θp(u)

Case 3 Θh
0 ◦Θp(u), p ≥ 1 ηk,Θh−1

0 ◦Θp(u) ζk,Θp−1(u)

Table 3. Admissibility of d(k, v) on Jk,v is shown by finding α′ < ζk,v <
ηk,v < α′′ such that dα[1,∞) agrees with d(k, v) through to its penultimate digit

for both α = α′, α′′. See the proof of Proposition 45.

Suppose v = Θq(c), q ≥ 1 and c > 1. We again use α′ = ηk,c. The sequence d
ηk,c
[1,∞) and D = C, w,

here dα
′

[1,∞) has the prefix wk, (Cc−1D)q+1Cc, w. This in turn has d(k,Θq(c)) as a prefix. Let α′′ =

ζk,Θq−1(c). Then dα
′′

[1,∞) = wk, (Cc−1D)q+1C, which has the prefix wk, (Cc−1D)q+1Cc, (−1)n−3,−2.

It thus agrees with d(k,Θq(c)) through to the penultimate digit of this latter. Thus the admis-
sibility holds. One checks that the same form of α′, α′′ works for v = Θq(c), q ≥ 2 and c = 1.

Case 1. Suppose v = Θh
0 (c), h ≥ 2 for some c > 1. We have v = c(1 c)h. We induce on h,

setting α′ = ηk,Θh−1
0 (c). Then, dα

′

[1,∞) has the prefix wk, Cc−1, (DCc)h, (−1)n−3,−2, which agrees

through to the penultimate digit of d(k, v). One easily checks that setting α′′ = ζk,c+1 yields

dα
′′

[1,∞) of prefix d(k, v).

Case 2. Suppose that the result holds for v = uau = Θp(u) with u ∈ V and p ≥ 1. We prove
that the result holds for Θq(v), q ≥ 1. We take α′ = ηk,v and α′′ = ζk,Θq−1(v) if q ≥ 1. To
appropriately restrict the use of d(k, v) to prefixes u of v ∈ V, note that we must in particular

suppress the final digit of −1; we denote this by d′(k, u). Recall that v′ = a
←−
u′u, v′′ = au and

that u both begins and ends with the letter c1.

When c1 > 1, from
←−
u′ = u[−1](c1 − 1) 1 we find

d
ηk,v
[1,∞) = d(k, v(v′)∞) = d(k, v(v′)qa

←−
u′u (v′)∞)

= d′(k, v(v′)qau[−1]) Cc1−1DCc1 · · · .

On the other hand, still with c1 > 1, we have

d(k,Θq(v) ) = d′(k, v(v′)qau[−1]) Cc1 .

Recall that D = C, w, thus Cc1−1D = Cc1 , w; we see that d(k,Θq(v) ) is indeed a prefix of d
ηk,v
[1,∞).

When c1 = 1, d(k,Θq(v) ) = d′(k, v(v′)qau[−1])Dd1C while d
ηk,v
[1,∞) = d′(k, v(v′)qau[−2])Dd1+1 C · · · .

Thus, since C is a prefix of D, we find that here also d(k,Θq(v) ) is a prefix of d
ηk,v
[1,∞).
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Since Θq−1(v) = v(v′)q−1v′′ is a palindrome,
←−−−−−−−
(Θq−1(v) )′ = v(v′)q−1a

←−
u′ . By Proposition 20,

v′v′′ = a
←−
u′v, we find

(13)
(
←−−−−−−−
(Θq−1(v) )′ )∞ = v [(v′)q−1v′v′′ ]∞

= v [ (v′)qv′′ ]∞.

Thus Lemma 40 yields d
ζk,Θq−1(v)

[1,∞) = d(k, v [ (v′)qv′′ ]∞ ). Therefore, d′(k, v(v′)qv′′), (−1)n−3,−2

is a prefix of d
ζk,Θq−1(v)

[1,∞) . That is, d
ζk,Θq−1(v)

[1,∞) agrees with d(k,Θq(v)) exactly through to its

penultimate digit.

Case 3. Again suppose that v = Θp(u) = uau in our usual notation. Then v′′ = (u′)pu′′, and
one finds that Θh

0 ◦Θp(u) = Θp(u) [(u′)pu′′]h. For these words, we use α′′ = ζk,Θp−1(u). Indeed,

from (13), d
ζk,Θp−1(u)

[1,∞) agrees with d(k,Θh
0 ◦Θp(u) ) exactly through to its penultimate digit.

Since ( Θh−1
0 ◦Θp(u) )′ = u′ [(u′)pu′′]h, we find that

(14) Θh−1
0 (v) · ( Θh−1

0 (v) )′ = Θh
0 (v) · u′[(u′)pu′′]h.

Therefore, Lemma 40 yields that α′ = ηk,Θh−1
0 (v) allows the proof to succeed. �

Lemma 46. With notation as above, suppose that for all α ∈ [ζk,v, ηk,v], both

(a) dα
[1,S]

= d(k, v);

(b) dα[1,S−1] agrees with the initial subword of length S − 1 of d(k, v).

Then for all α ∈ [ζk,v, ηk,v) we have dα[1,S] = d(k, v).

Proof. By the first hypothesis, there is some χ = χk,v such that Rv · r0(χv) = 0. Since
C−1ACRk,v = Lk,v and it is trivially verified that C−1AC fixes zero, we find that Lk,v ·`0(χ) = 0.
In particular, we find that dχ[1,S] = d(k, v).

Now by continuity and the fact that Möbius functions are increasing functions, we can invoke
the second conclusion of Lemma 9 on an interval around χ to find in particular that Lk,v ·`0(α) >
Rv · r0(α) holds from α = ζk,v until Lk,v · `0(α) = r0(α). But, this describes exactly the interval
[ζk,v, ηk,v). �

4.5. There are no other points of synchronization. Suppose that α < γ3,n is not in any
Jk,v and is also not equal to any ηk,v. There is some k such that α ∈ Ik,1, but of course
α /∈ Jk,1; there is thus a unique q1 such that α ∈ Ik,Θq1 (1). Again, α /∈ Jk,Θq1 (1) and thus
there is a unique q2 with α ∈ Ik,Θq2◦Θq1 (1). Clearly this process iterates, and we find that there
is an infinite sequence of qi such that α ∈ ∩∞j=1 Ik,Θqj ◦···◦Θq1 (1). Recall that for any v ∈ V and

any q, Θq(v) has v as a prefix. Therefore, the sequence of the qi uniquely determines both dα[1,∞)

and dα[1,∞). In particular, dα[1,∞) has digits only in {k, k + 1}, while dα[1,∞) has digits only in

{−1,−2}. Therefore, the two orbits cannot synchronize.
Note that when α is some ηk,v then again dα[1,∞) has digits only in {k, k + 1}, while dα[1,∞)

has digits only in {−1,−2}.
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4.6. The non-synchronization set is of measure zero. Although we have proven that the
complement of the Jk,v is a Cantor set, it is then still possible that it could be a so-called
fat Cantor set thus one of positive measure. We will easily show that the non-synchronization
points have left expansions that involve only −1 and −2 as simplified digits. We will argue by
way of the maps of [CS] that the set of such α is of measure zero.

The Tα-orbit of `0(α) is always in the set of points whose simplified digits are −1 or −2. In
particular, this orbit certainly remains in [−t, 0). But [−t, 0) is the interval of definition of the
map g = g3,n studied in [CS], where g(x) = AkC ·x with k defined exactly so that this image lies
in [−t, 0). Therefore, for any α whose Tα orbit of `0(α) remains in the set with simplified digits
−1 or −2 (note that every point in such an orbit is less than zero), this Tα-orbit is the g-orbit of
β := `0(α). Furthermore, [CS] shows that g is ergodic with respect to what is naturally called
a Gauss measure, although this measure is infinite. A so-called acceleration of g, a map f on
[−t, 0) is then shown in [CS] to be ergodic with respect to a finite measure (which is equivalent
to Lebesgue). The process of acceleration involves taking well-defined subsequences of g-orbits.
We thus find that the f -orbit of β remains of small digits, and due to the Ergodic Theorem, β
lies in a measure zero subset.

5. The group element identities for the setting α < γ3,n

We gather key group identities, used above, in this section.

Lemma 47. Fix m = 3. For integers a, k ≥ 1 and u ∈ Z, we have

AuC(AkC)a = Au−1C (A−1C)n−2 [W k−1A−2C(A−1C)n−3]a−1W kA−1 .

Proof. For a = 1, we give an induction proof. We use repeatedly (8): W = A−1C−1ACA. First,

AuCACA = AuC CAW = AuC3 (C−1A) W = AuC3(A−1C)n−1W ,

giving the case of k = 1, as m = 3. Now, we complete the proof in the case of a = 1 by induction:

AuCAk+1C = (AuCAkC) C−1AC

= Au−1C(A−1C)n−2W k (A−1C−1AC)

= Au−1C(A−1C)n−2W k+1A−1 .

Recalling that with m = 3, we have W = A−2C (A−1C)n−3A−2C(A−1C)n−2, the induction
step for increasing values of a is given by

AuC(AkC)a+1 = Au−1C(A−1C)n−2[W k−1A−2C(A−1C)n−3]a−1W kA−1 AkC

= Au−1C(A−1C)n−2[W k−1A−2C(A−1C)n−3]aA−2C(A−1C)n−3A−1C Ak−1C

= Au−1C(A−1C)n−2[W k−1A−2C(A−1C)n−3]a

×A−2C(A−1C)n−3A−2C(A−1C)n−2W k−1A−1

= Au−1C(A−1C)n−2[W k−1A−2C(A−1C)n−3]aW kA−1 ,

where in the passage from the second to the third line we have applied the identity in the case
of a = 1. �

Lemma 48. With m = 3, for any integer k ≥ 1 we have

WA−1 ·AkCA−1C = A−2C (A−1C )n−3W k A−2C .
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Proof. We show this by induction.
Recall (8): W = A−1C−1ACA. Our base case is k = 1, where we find

WA−1 ·A1CA−1C = A−1C−1ACACA−1C

= A−1C−1ACACAA−2C

= A−1C−1AC(CAA−1C−1)ACAA−2C

= A−1(C−1A)C2AWA−2C

= A−1(A−1C)n−1C2AWA−2C

= A−2C(A−1C)n−3A−1CC2AWA−2C

= A−2C(A−1C)n−3WA−2C

We have used that C = AB gives A−1C is of order n, and that C3 is the projective identity.
Now assume that the identity holds for k. We find

WA−1 ·W k+1A1CA−1C = (WA−1A) AkCA−1C

= W AW−1A−2C(A−1C)n−3W kA−2C

= W AW−1A−1 (A−1C)n−2W kA−2C

= W AW−1A−1 (C−1A)2W kA−2C

= W AW−1A−1 (C−1A)2(W−1W )W kA−2C

= W AW−1A−1 C−1A(C−1AA−1C−1)A−1CA W k+1A−2C

= W A(W−1)A−1 C−1AC−2A−1CA W k+1A−2C

= W (AA−1)C−1(A−1CAA−1 C−1A)C−2A−1CA W k+1A−2C

= W (C−3)A−1CA W k+1A−2C

= (W ) A−1CA W k+1A−2C

= A−1C−1AC(AA−1)CA W k+1A−2C

= A−1C−1A(C2)A W k+1A−2C

= A−1(C−1A)2 W k+1A−2C

= A−1(A−1C)n−2 W k+1A−2C

= A−2C(A−1C)n−3 W k+1A−2C.

�

Proposition 49. With m = 3, for any integer u we have

AuC(AkC)as (Ak+1C)bs−1 (AkC)as−1 · · · (Ak+1C)b1 (AkC)a1

= Au−1CA−1C[(A−1C)n−3W k−1A−2C]as [(A−1C)n−3W kA−2C]bs−1 [(A−1C)n−3W k−1A−2C]as−1 · · ·

· · · [(A−1C)n−3W kA−2C]b1 [(A−1C)n−3W k−1A−2C]a1−1(A−1C)n−3W kA−1 .

Proof. Lemma 47 yields that each

(Ak+1C)b(AkC)a = (Ak+1C)b−1AkC(A−1C)n−2(W k−1A−2C(A−1C)n−3)a−1W kA−1.



34 KARIANE CALTA, COR KRAAIKAMP, AND THOMAS A. SCHMIDT

Thus, if b > 1 we have

(Ak+1C)b(AkC)a = (Ak+1C)b−2AkC(A−1C)n−2W kA−2C(A−1C)n−3(W k−1CA−2C)a−1W kA−1

...

= AkC(A−1C)n−2 [W kA−2C(A−1C)n−3]b−1[W k−1CA−2C(A−1C)n−3]a−1W kA−1 ,

giving a formula that is also valid when b = 1.
Therefore,

(Ak+1C)bj (AkC)aj (Ak+1C)bj−1 (AkC)aj−1

= AkC(A−1C)n−2 [W kA−2C(A−1C)n−3]bj−1[W k−1CA−2C(A−1C)n−3]aj−1W kA−1

×AkC(A−1C)n−2 [W kA−2C(A−1C)n−3]bj−1−1[W k−1CA−2C(A−1C)n−3]aj−1−1W kA−1

= AkC(A−1C)n−2[W kA−2C(A−1C)n−3]bj−1[W k−1CA−2C(A−1C)n−3]aj−1W k−1

×WA−1AkCA−1C

× [(A−1C)n−3W kA−2C]bj−1−1(A−1C)n−3[W k−1CA−2C(A−1C)n−3]aj−1−1W kA−1

= AkC(A−1C)n−2 [W kA−2C(A−1C)n−3]bj−1[W k−1A−2C(A−1C)n−3]aj−1W k−1

×A−2C(A−1C)n−3W kA−2C

× [(A−1C)n−3W kA−2C]bj−1−1[(A−1C)n−3W k−1A−2C]aj−1−1(A−1C)n−3W kA−1

= AkCA−1C [(A−1C)n−3W kA−2C]bj−1[(A−1C)n−3W k−1A−2C]aj

× [(A−1C)n−3W kA−2C]bj−1(A−1C)n−3[(A−1C)n−3W k−1CA−2C]aj−1−1(A−1C)n−3W kA−1 ,

where for the penultimate line we apply Lemma 48.
We now repeatedly use Lemma 48 so as to find that

(Ak+1C)bs−1 (AkC)as−1 · · · (Ak+1C)b1 (AkC)a1

= AkCA−1C [(A−1C)n−3W kA−2C]bs−1−1 [(A−1C)n−3W k−1A−2C]as−1 · · ·

· · · [(A−1C)n−3W kA−2C]b1 [(A−1C)n−3W k−1A−2C]a1−1(A−1C)n−3W kA−1 .

Now multiply both sides on the left by AuC(AkC)as . On the right hand side, we collect an
AkC and thus apply Lemma 47 to replace AuC(AkC)as+1 by
Au−1CA−1C [(A−1C)n−3W k−1A−2C]as(A−1C)n−3W kA−1. The final A−1 of this substitution
is now adjacent to the leftmost A−1C in the above display, and thus we can combine and regroup
to find the desired expression. �

6. Synchronization for α > ε3,n, n ≥ m

Fix m = 3 and n ≥ 3. Let ε = ε3,n be such that A−1C · `0(ε) = r0(ε). Then the parameter
subinterval [ε, 1) is partitioned by subintervals indexed by k ≥ 2 and characterized by `1(α) =
A−kC · `0(α). (When n = 3, one finds that ε3,3 = G/2, see Figure 5.)

Theorem 50. For m = 3 and n ≥ m, let ε = ε3,n. The set of α ∈ (ε, 1) such that there exists

i = iα, j = jα with T i3,n,α( r0(α) ) = T j3,n,α( `0(α) ) is of full measure.

Synchronization for these large values of α holds in a manner closely analogous to that for
small α. We will find that the intervals indexed by exactly the same set of words V, although
the indexing will depend on negative integers and be given in terms of left digits. There are
differences: in particular, each potential synchronization interval is the union of what could
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fairly be called two distinct synchronization intervals. The right orbit requires an extra step
before synchronization on one of the two subintervals.

It will naturally be important to know the initial digits of r0(α) in this range. For this, define
δ = δ3,n as the value of α such that C−1 · `0(δ) = A−1C · `0(δ). (Note that δ3,n < ε3,n, see
Figure 5.) Thus, CA−1CA−1 ·r0(δ) = `0(δ). That is, (AC2)n−2 ·r0(δ) = `0(δ). By Proposition 7,
(AC2)n−2 · r0(α) is admissible for α = 1 and we conclude that (AC2)n−2 · r0(α) is admissible
for all α ∈ ( δ, 1] and in particular for all α > ε3,n.

6.1. Synchronization intervals have Cantor set complement. For these large α, synchro-
nization is signaled by left and right digits being related by C−1AC−1.

Lemma 51. Fix m = 3. Suppose that α is such for all x ∈ Iα, dα(x) = (k, `) with ` ∈ {1, 2}.
Fix i, j ∈ N. Suppose that `i−1 = C−1AC−1 · rj−1 and C · rj−1 ∈ Iα. Then

(i) If rj = AC2 · rj−1 then `i = rj+1;
(ii) otherwise, `i = rj

Proof. Since C · rj−1 ∈ Iα, there is some u such that rj = AuC2 · rj−1.
If rj = AC2 · rj−1 then C · `i−1 = C · (C−1AC−1 · rj−1) ∈ Iα. Therefore, there is some s such

that `i = AsC2 · `i−1. But then `i = AsC2 · (C−1AC−1 · rj−1) = AsCAC2 · rj−1 = AsC · rj .
By definition, A−s · `i /∈ Iα, it follows that C · rj /∈ Iα and therefore we conclude that rj+1 =
AsC · rj = `i.

If rj = AuC2 · rj−1 with u 6= 1, then C · `i−1 = AC2 · rj−1 /∈ Iα. Therefore, there is some
s such that `i = AsC · `i−1. We find that `i = AsC · (C−1AC−1 · rj−1) = As+1C2 · rj−1. We
conclude that u = s+ 1 and `i = rj . �

2ω 2 η 2 ζ2δ

y=x

y=x-2

L

R

x

Figure 12. Determining the synchronization interval [η, ζ), when α > ε3,n.
Here, m = 3, n = 3, and k = 2, v = 1. The labels L,R mark respectively the
curves y = L−2,1 · r0(α), y = R−2,1 · r0(α) where α = x/2 = x/t3,3. These are

y = `1(α) (in blue) and y = r2(α) (in red) for G < x < (−1 +
√

21/2). The
dotted cyan curve is the image of the left endpoint under C−1 (giving the values
of bα). The x-axis is shown as a dotted line. For α > δ = δ−2,1, synchronization
occurs after an extra step in the orbit of r0.

The result (ii) below leads to the conclusion that synchronization intervals for large α can be
described by the same set of words as for small α.
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Lemma 52. Fix m = 3, an interval [η, ζ] of α such that r1 = AC2 · r0 holds on this interval,
and i, j ∈ N. Suppose that there are matrices R,L,L′ (none of which is the identity) such that

(a) L = C−1AC2R,
(b) R · r0 = rj−1 and L′ · `0 = `i−2, for all α ∈ [η, ζ],
(c) LA · `0 = `i−1 for all α ∈ [η, ζ), while `i−1(ζ) = A−1LA · `0(ζ) = `0(ζ),
(d) R · r0(η) = C−1 · `0(η).

Suppose further that A−kC · `0(η) = `1(η). Then

(i) rj(η) = A−kC2 · rj−1(η) = `1(η);

(ii) `i(η) = A−(k+1)C · `i−1(η) = `1(η);
(iii) rj(ζ) = AC2 · rj−1(ζ) and rj+1(ζ) = AC · rj(ζ) = r1(ζ).

Proof. The equality rj−1(η) = C−1 · `0(η) implies that rj(η) = A−kC2 · rj−1(η) = `1(η). At

α = η we also have rj−1 = CA−1C · `i−1, therefore A−kC2 · rj−1 = A−(k+1)C · `i−1 allows one
to easily confirm the admissibility of this expression for `i(η), as well as that `i(η) = `1(η).

Finally, rj−1(ζ) > C−1 · `0(ζ) and hence rj(ζ) = AsC2 · rj−1(ζ) for some s. This gives
rj(ζ) = AsC2 · (CA−1C · r0(ζ) ) = As−1C · r0(ζ). But, r1 = AC2 · r0 holds throughout this
region of large α; in particular, C · r0(α) ∈ Iα here. Therefore, s = 1 and rj(ζ) = C · r0(ζ). It
then follows that rj+1(ζ) = AC · (C · r0(ζ) ) = r1(ζ). �

Definition 53. Let V be as in the treatment of α < γ3,n. For each k ∈ N and v = c1d1 · · · ds−1cs ∈
V, we define the following.

(1) The lower (simplified) digit sequence of −k, v is

d(−k, v) = (−k)c1 , (−k − 1)d1 , · · · , (−k − 1)ds−1 , (−k)cs ,

(2) The α-cylinder of −k, v is

I−k,v = {α | d
α

[1,|v| ] = d(−k, v)} .

(3) The left matrix of −k, v is

L−k,v = (A−kC)cs (A−k−1C)ds−1(A−kC)cs−1 · · · (A−k−1C)d1(A−kC)c1A−1 .

(4) The synchronization interval associated to −k, v is J−k,v = [η, ζ) where η = ηk,v and
ζ = ζk,v are such that

L−k,vA · `0(ζ) = r0(ζ) and CA−1CL−k,v · r0(η) = C−1 · `0(η) .

The following implies that the complement of the union of the Jk,v is a Cantor set. This is
the main result of this subsection.

Theorem 54. We have the following partition

[ε3,n, 1) =

∞⋃
k=2

I−k,1 .

Furthermore, for each k ≥ 2 and each v ∈ V, the following is a partition:

I−k,v = J−k,v ∪
∞⋃
q=q′

I−k,Θq(v) ,

where q′ = 0 unless v = c1, in which case q′ = −1.
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We defer the proof of this result until page 38.

Note that one extends the definition of d(−k, v) to infinite words in the obvious fashion.

Lemma 55. Let k ∈ N and v ∈ V. Assume that η−k,v, ζ−k,v ∈ I−k,v. Then d
η−k,v
[1,∞) =

d(−k, v(v′)∞) and d
ζ−k,v
[1,∞) is purely periodic of period d(−k,

←−
v′ ).

Proof. The result for η−k,v follows from Lemma 52 (ii). The definition of ζ−k,v gives the second

result, since d(−k,
←−
v′ ) = (−k)c1 , (−k − 1)d1 , · · · , (−k − 1)ds−1 , (−k)cs−1, (−k − 1). �

The following is an immediate implication of the definition of the ordering (6).

Lemma 56. Fix m = 3. For any v, w words and for any k ∈ N, we have

v ≺ w if and only if d(−k, v) � d(−k,w) .

Definition 57. Define ω−k,v such that d
ω−k,v
[1,∞) is purely periodic of period d(−k, ( f(v) ), where

f(v) is the full branched prefix of v.

Lemma 58. Let v ∈ V and fix k ≥ 2. The α-cylinder set I−k,v is a subset of (ω−k,v, ζ−k,v].

Proof. The set of α such that dα[1,|v|] = d(k, v) is contained in the interval (ω, ζ] such that

L−k,vA · `0(ω) = `0(ω) and L−k,vA · `0(ζ) = r0(ζ). The right endpoint here is exactly ζ = ζ−k,v.
Due to the order reversing relationship between words and simplified digits with −k < 0, the

proof of Lemma 29 shows that ω−k,v is a greatest lower bound for I−k,v. �

Lemma 59. Suppose that v = Θp(u) for some u ∈ V and some p ≥ 1. Fix k ≥ 2. Then for
q ∈ N, ζ−k,Θq−1(v) = ω−k,Θq(v).

Proof. From Lemma 35, f(Θq(v)) =
←−−−−−−−
(Θq−1(v) )′. Now Lemma 55 and the definition of ω−k,Θq(v)

yield the result. �

Lemma 60. For all v ∈ V and all h ∈ N, ω−k,Θh0 (v) = ω−k,v.

Proof. Proposition 32 shows that f( Θh
0 (v) ) = f(v) for all v ∈ V. The result thus holds. �

The following result, and its proof, are completely analogous to Proposition 38 where the
case of small α is treated.

Proposition 61. For all v ∈ V, and all k ≥ 2, both

I−k,v = (ωk,v, ζ−k,v] and I−k,v ⊃J−k,v .
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Proof. Fix k. We argue by induction of the length of the word v. We have already seen that
η−k,v ∈ I−k,v implies d(−k, v(v′)∞) gives the sequence of simplified digits of `0(η−k,v). The
base cases, given by v = c1, are easily verified.

Case 1. Suppose v = Θh
0 (c) for some h ≥ 1 and some c > 1. We have v = c(1 c)h. The

argument as for Proposition 38 goes through (compare with the remaining cases).

Case 2. Suppose v = uau in our usual decomposition. Since f(v) = ua, we have L−k,uaA ·
`0(ω−k,v) = `0(ω−k,v). This equality then implies that given N , there are α sufficiently close
to, and larger than, ω−k,v such that d(−k, u(au)N ) is admissible for α. It follows that we
can partition I−k,v by subintervals corresponding to the values N . Now, Θ0(v) = vv′′ =
uauau, and hence Θ0(v) is admissible on [ω−k,v, ζk,Θ0(v)). Similarly, each Θh

0 (v) is admissible on
[ω−k,v, ζk,Θh0 (v)). By considering our ordering on words, it is clear that ζk,Θh0 (v) > ηk,Θh0 (v) > ωk,v.

We now proceed inductively for larger values of q. To begin, the admissibility v on all of
I−k,v and the admissibility of Θ0(v) on exactly [ω−k,v, ζk,Θ0(v)) implies that there must be
a shortest extension of v = uau admissible for those α immediately to the right of ζk,Θ0(v).

Lemma 59 shows that f( Θ1(v) ) is this extension. Since d
ω−k,Θ1(v)

[1,∞] is purely periodic of period

d(−k, ( f(Θ1(v)) ), arbitrarily high powers of this period give admissible expansions for α just to
the right of ω−k,Θ1(v). Recall that Proposition 32 shows that any v = uau is always a prefix of
the square of the corresponding f(v) = ua; we hence find that all of Θ1(v) is admissible on an
interval beginning at ω−k,Θ1(v). We iterate this argument for increasing q, to give that for each
q, Θq(v) is admissible on [ζk,Θq(v), ωk,Θq(v)).

From Lemmas 37 and 56 we can conclude that η−k,Θq(v) > ω−k,Θq(v). It follows that
J−k,Θq(v) ⊂ I−k,Θq(v).

Case 3. As in the proof of Proposition 38, the remaining case is that v = Θh
0 (uau). Thus,

v = u(au)h+1 in our usual decomposition. The right endpoint of I−k,Θh+1
0 (uau) is at ζ−k,u(au)h+2 .

Lemma 55 now yields that the left endpoint of Ik,Θh0 (uau) \Ik,Θh+1
0 (v) is the point with purely

periodic lower simplified digit expansion of period d(k, vu′a). In the proof of Proposition 38 we
showed that f( Θ1 ◦Θh

0 (u) ) = vu′a. Therefore, ω−k,Θ1(v) = ζ−k,Θh+1
0 (uau) and also since Θ1(v) is

a prefix of the square of vu′a, it follows that d(−k,Θ1(v) ) is admissible on [ω−k,Θ1(v), ζ−k,Θ1(v)).
That η−k,Θ1(v) belongs to this interval is easily shown.

Induction shows the result for Θq(v) when q ≥ 1. �

We are now ready for the following.

Proof of Theorem 54. That [ε3,n, 1) = ∪∞k=1 I−k,1 is simply a consequence of the fact that for
each α in this range, there is some k such that Tα( `0(α) ) = A−kC · x.

Proposition 61 shows that for all v ∈ V, I−k,v = [ω−k,v, ζ−k,v) can be partitioned by J−k,v =
[η−k,v, ζ−k,v) and its complement. Recall Lemma 60 states that for all h, we have ω−k,Θh0 (v) =

ω−k,v. By Lemma 59 (and the complementary results in the proof of Proposition 61), for all
q ∈ N, ωk,Θq(v) = ζk,Θq−1(v). Therefore, ∪∞q=0 I−k,Θq(v) is a subinterval of I−k,v \J−k,v which
has ω−k,v as its left endpoint. Finally, the definition of Θq(v) combined with Lemma 55 shows
that limq→∞ ζk,Θq(v) = ηk,v. Therefore, the right endpoint of the union is in fact the left
endpoint of Jk,v. �

6.2. Synchronization holds on a set of full measure.
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6.2.1. Right digits are admissible; synchronization occurs on each J−k,v. We now define R−k,v
exactly so that the group identity of Proposition 72, below, gives that L−k,v = C−1AC2R−k,v,
and thus the main hypothesis of Lemma 52 is satisfied. That synchronization does occur along
J−k,v is then only a matter of showing that Rk,v · r0(α) is admissible at all α ∈J−k,v.

For further ease, we set

u = u3,n = (1, 2)n−2, (1, 1).

Note that the length of u is |u| = n−1. As α tends to one, bα[1,∞) begins with ever higher powers

of u, compare with Proposition 7.
For typographic ease, for k ≥ 2 let

E = Ek = (1, 1)uk−2(1, 2)n−3, F = Fk = (1, 1)uk−1(1, 2)n−3 and G = (1, 2)(1, 1)(1, 2)n−3 .

Note that EG = F , and Ek+1 = Fk. We also use that uk−1(1, 2)n−3 = [(1, 2)n−2, (1, 1)]k−1(1, 2)n−3 =
(1, 2)n−2, (1, 1)[(1, 2)n−2, (1, 1)]k−2(1, 2)n−3 = (1, 2)n−2E .

We accordingly let

Ẽ = Ẽk = (AC2)n−3Uk−2AC, F̃ = F̃k = (AC2)n−3Uk−1AC and G̃ = (AC2)n−3ACAC2.

Definition 62. Suppose that v = c1d1 · · · cs ∈ V and k ≥ 2.

(1) The upper digit sequence of −k, v is

b(−k, v) = (1, 2)n−2Ec1Fd1 Ec2 Fd2 · · · Ecs−1 Fds−1 Ecs ,
whose length is denoted

(2) S(−k, v) = | b(−k, v) |
(3) The right matrix of −k, v is

R−k,v = ẼcsF̃ds−1 Ẽcs−1F̃ds−2 · · · Ẽc2F̃d1 Ẽc1(AC2)n−2.

Note that Proposition 72, below, implies that L−k,v = C−1AC2R−k,v.

We will prove admissibility of b(−k, v) on J−k,v by induction, similar to our proof of admis-
sibility of d(k, v) on J−k,v. However, the role of the various ηk,v will now be played by certain
points lying to the left of the corresponding η−k,v, the β−k,v,N introduced in the next statement.

Lemma 63. Let v = c1d1 · · · cs ∈ V and k ∈ N. Suppose that b(−k, v) is admissible on J−k,v.
Set ζ = ζ−k,v and η = η−k,v. Then for each N ∈ N, there exists β−k,v,N less than η such that

bβ−k,v,N
[1,(1+S)N ]

= [ b(−k, v)(1, 1) ]N .

Furthermore,

bζ[1,∞) =


b(−k, v),GEc1 if v = c1,

b(−k, (
←−
v′ )∞ ) otherwise.

Proof. The definition of η−k,v shows that ACR−k,v fixes r0(η−k,v). Therefore, for each N ∈ N,

there exists α = α′N < η−k,v and sufficiently close, with bα
[1,(1+S)N ]

= [ b(−k, v)(1, 1) ]N .

Lemma 52, (iii) yields bζ[1,∞) = b(−k, v), (1, 2)(1, 1)bζ[2,∞). This sequence is of course peri-

odic. The prefix uk−1(1, 2)n−3 of b(−k, v) can be rewritten as (1, 2)n−2(1, 1)uk−2(1, 2)n−3, thus

(1, 2)(1, 1)bζ[2,∞) has the prefix (1, 2)(1, 1)(1, 2)n−3(1, 1)uk−2(1, 2)n−3 = G E . This prefix is fol-

lowed by the complement of the prefix uk−1(1, 2)n−3 of b(−k, v). The case of v = c1 is now
easily verified.
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For general v, bζ[1,∞) = b(−k, v),G E Ec1−1 Fd1 Ec2 Fd2 · · · Ecs−1 Fds−1 Ecs . This last equals

b(−k, (c1d1 · · · ds−1(cs − 1)1)∞ ). Since v is a palindrome, this in turn equals

b(−k, (csds−1 · · · d1(c1 − 1)1)∞ ). Since csds−1 · · · d1(c1 − 1)1 =
←−
v′ , the result holds. �

Lemma 64. Fix j ∈ N and 0 ≤ i < |u|. If there is some α ≥ ε3,n such that bα[1,j|u|+i] = uju[1,i],

then bα
′

[1,j|u|+i] = uju[1,i] for all α′ > α.

Proof. (Of course, if i = 0, then w[1,i] is the empty word.) Using Proposition 7 with Lemma 5,
one has that all powers of U are admissible when α = 1, there are thus branches of digits
corresponding to each power and appropriate suffix of U that continue to the left from α = 1.
For any of these, admissibility at any given α thus guarantees admissibility at each α′ ≥ α. �

Lemma 65. Fix k ≥ 2. We have

b
ω−k,1
[1,∞) = uk−1(1, 2)n−3 E .

Furthermore, the digits bα[1,n−3+(k−1)|u| ] = uk−1(1, 2)n−3 are admissible for all α ≥ ωk,1.

Proof. We first give one proof for k ≥ 3. Since f(1) = 1, ζ−k,1 = ω−(k+1),1. From

b
ζ−k,1
[1,∞) = uk−1, (1, 2)n−3 GEk

= uk−1, (1, 2)n−3G EkG

= uk(1, 2)n−3 Ek+1.

The following works for all k. For typographical ease, let ω = ω−k,1. Since f(1) = 1, by
definition, A−kC · `0(ω) = `0(ω). By Lemma 71, CA−1CA−kCA−1 = (AC2)n−3Uk−1. By
Lemma 65, (AC2)n−3Uk−1 · r0(ω) is an admissible expansion if it has value in Iω.

For any α, CA−1C · `0(α) = CA−1CA−1 · r0(α) = (AC2)n−2 · r0(α). Hence, (AC2)n−3Uk−1 ·
r0(ω) = CA−1CA−kCA−1 · `0(ω) = CA−1CA−1 · `0(ω) = (AC2)n−2 · r0(ω). Since (AC2)n−2

is a suffix of U , we have that (AC2)n−2 · r0(ω) is admissible. In particular it has value in Iω.
It follows that (AC2)n−3Uk−1 · r0(ω) is an admissible expansion. Furthermore, the equality
(AC2)n−2 · r0(ω) = (AC2)n−3Uk−2AC(AC2)n−2 · r0(ω) shows that (AC2)n−2 · r0(ω) is fixed by
(AC2)n−3Uk−2AC. Therefore,

b
ω−k,1
[1,∞) = (1, 2)n−2(1, 1)uk−2(1, 2)n−3 = uk−1(1, 2)n−3(1, 1)uk−2(1, 2)n−3 = uk−1(1, 2)n−3 E .

Lemma 64 yields that the digits bα[1,n−3+(k−1)|u| ] = uk−1(1, 2)n−3 are admissible for all α ≥
ω−k,1. �

Proposition 66. Suppose that v ∈ V and k ≥ 2. Then for all α ∈J−k,v,

bα
[1,S ]

= b(−k, v) .

Proof. By Lemma 5, for each v it suffices to find α′ < η−k,v and α′′ > ζ−k,v such that bα
′

[1,S ]
=

bα
′′

[1,S ]
= b(−k, v). See Table 4 for a summary of the choices of α′, α′′ in the various cases.

Since α′ is always of the general form β−k,u,N , we note immediately that the identity F = EG
yields
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v α′ α′′

1 1 ω−k,1

c > 1 β−k,c−1,2 ω−k,1

Base cases c 1 c, c ≥ 1 β−k,c,3 ζ−k,c+1

Θq(c), q ≥ 2 β−k,c,q+3 ζ−k,Θq−1(c)

Θ1(c), c > 1 β−k,c,4 ζ−k,Θ0(c)

Case 1 Θh
0 (c) β−k,Θh−1

0 (c),2 ζ−k,c+1

Case 2 Θq ◦Θp(u), p, q ≥ 1 β−k,Θp(u),q+3 ζ−k,Θq−1◦Θp(u)

Case 3 Θh
0 ◦Θp(u), p ≥ 1 β−k,Θh−1

0 ◦Θp(u),3 ζ−k,Θp−1(u)

Table 4. Admissibility of d(−k, v) on J−k,v is shown by finding α′ > ζ−k,v >

η−k,v > α′′ such that b
α

[1,∞) has prefix b(−k, v) for both α = α′, α′′. See the
proof of Proposition 66. Compare with Table 3.

[ b(−k, v)(1, 1) ]N

= b(−k, v)[FEc1−1 Fd1 Ec2 Fd2 · · · Ecs−1 Fds−1 Ecs ]N−1(1, 1)

= b(−k, v)[EGEc1−1 Fd1 Ec2 Fd2 · · · Ecs−1 Fds−1 Ecs ]N−1(1, 1)

= b(−k, v)E [GEc1−1 Fd1 Ec2 Fd2 · · · Ecs−1 Fds−1 Ecs+1]N−2

· EGEc1−1 Fd1 Ec2 Fd2 · · · Ecs−1 Fds−1 Ecs(1, 1)

= b
′
(−k, v(v′)N−2)X,

(15)

where X = EGEc1−1 Fd1 Ec2 Fd2 · · · Ecs−1 Fds−1 Ecs(1, 1) and we admit to our abuse of notation

by writing b
′
.

Base cases. Consider v = c1 = c. Since b
ω−k,1
[1,∞) has b(−k, 1) as a prefix, Lemma 64 yields the

result when v = 1. From (15), one finds that for c ≥ 2, b(−k, c) is a prefix of [b(−k, c−1)(1, 1)]2,

which in turn is a prefix of b
β−k,c−1,2

[1,∞) . Lemma 65 shows that also the right digit sequence of

ω−k,1 has each b(−k, c) as a prefix. Therefore, the result holds for all v of length one.

When v = c 1 c, we use α′ = β−k,c,3, and α′′ = ζ−k,c+1. Since b(−k, v) = uk−1, (1, 2)n−3 (EcG)1 Ec,
(15) leads to [ b(−k, v)(1, 1) ]3 having b(−k, v) as a prefix. Lemma 63 yields that b

ζ−k,c+1

[1,∞) also

has b(−k, v) as a prefix.

Suppose v = Θq(c), q ≥ 1 and c > 1. Thus, b(−k, v) = uk−1, (1, 2)n−3 (EcG)q+1 Ec. We set

α′ = β−k,c,N , with N = q+2. Using (15), one shows that b
α′

[1,(1+S)N ]
has b(−k, v) as a prefix. We

set α′′ = ζ−k,Θq−1(c). Lemma 63 yields that bα
′′

[1,∞) has prefix b(−k,Θq−1(c))GEc+1. The result

thus holds in this case. Since c = 1 gives b(−k, v) = uk−1, (1, 2)n−3 EGFq−1 E , again using (15)
shows that the same argument succeeds.
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Case 1. Suppose v = Θh
0 (c), h ≥ 2 for some c > 1. We have v = c(1 c)h and thus b(−k, v) =

uk−1, (1, 2)n−3 EcG (Ec+1G)h−1 Ec. Lemma 63 easily yields that b
ζ−k,c+1

[1,∞) has b(−k, v) as a prefix.

That is, we can take α′′ = ζ−k,c+1. With α′ = β−k,Θh−1
0 (c),2 from (15) one finds that bα

′

[1,∞) also

has b(−k, v) as a prefix.

Case 2. Suppose that the result holds for v = uau = Θp(u) with u ∈ V and p ≥ 1. We
prove that the result holds for Θq(v), q ≥ 1. By Lemma 63, for general k and v, one has

b
ζ−k,v
[1,∞) = b(−k, (

←−
v′ )∞ ), and thus (13) gives b

ζ−k,Θq−1(v)

[1,∞) = b(−k, v [ (v′)qv′′ ]∞ ), which clearly

has b(−k,Θq(v) ) as a prefix. Therefore, we can take α′′ = ζ−k,Θq−1(v).

We first specialize to c > 1, that v′ = a
←−
u′u = au[−1](c1 − 1) 1u, v′′ = au and that u both

begins and ends with the letter c1. Since terms in general b(−k, v) corresponding to any dj = 1

vanish, a final v′ appearing inside of b
′

in (15) has a prefix coming from v′′. From this, one finds
that [b(−k, v)(1, 1)]q+3 has b(−k,Θq(v) ) as a prefix. That is, we can take α′ = β−k,v,q+3.

We now consider the case of c = 1, where v′ = au[−2](d1 + 1) and v′′ = au. In (15) we can

let the first Fd1 corresponding to the final power of v′ revert to E G Fd1−1 so as to confirm that
here also a final v′ contributes a subword that has as a prefix the contribution of v′′. Using this,
[b(−k, v)(1, 1) ]q+3 has b(−k,Θq(v) ) as a prefix. That is, we can take α′ = β−k,v,q+3.

Case 3. Suppose that Θp(u) = uau in our usual notation. Recall that Θh
0 ◦ Θp(u) =

u [(u′)pu′′]h+1. As in Case 2, Lemma 63 and (13) give b
ζ−k,Θp−1(u)

[1,∞) = b(−k, u [ (u′)pu′′ ]∞ ).

Thus, we use α′′ = ζ−k,Θp−1(u). From (14) and (15), we can take α′ = β−k,Θh−1
0 ◦Θp(u),3. �

6.2.2. There are no other points of synchronization. That all α > ε3,n for which there is synchro-
nization lie in the union of the J−k,v is shown as for the case of small α. We find that there is
some sequence of qi such that α ∈ ∩∞j=1 Ik,Θqj ◦···◦Θq1 (1). But, this implies that bα[1,∞) has digits

only in {(−k, 1), (−k − 1, 1)}, while bα[1,∞) has digits only in {(−1, 1), (−2, 1), (1, 2)}, with the

digit (1, 2) appearing infinitely often. Therefore, the two orbits obviously cannot synchronize.

6.2.3. The non-synchronization set is of measure zero. For α > ε3,n not in any J−k,v, there
is some k such that the Tα-orbit of `0(α) is always in the set of points whose simplified digits
are −k or −k − 1. In particular, this orbit certainly remains in [−t, 0) and we can argue as in
Subsection 4.6 to conclude that the set of these α values has measure zero.

7. Synchronization for γ3,n < α < ε3,n , n ≥ m

Recall that γ = γ3,n is characterized by C−1 · `0(γ) = r0(γ). Recall also that `1 = A−1C · `0
for all α ∈ [0, ε3,n). Thus, for γ3,n < α < ε3,n we use the notation of Section 6, but now with
k = 1 (and certain further technical adjustments as noted below).

Theorem 67. Fix m = 3 and n ≥ m. If n = 3, then there is synchronization for all α ∈
(γ3,3, ε3,3). If n > 3, then the set of α ∈ (γ3,n, ε3,n) for which there is not synchronization is
uncountable, but of Lebesgue measure zero.

For n ≥ 3, define V̌n ⊂ V to be the trimming of V such that for all v = c1d1 · · · cs ∈ V̌n,
ci ≤ n− 2 and furthermore such that the only word with prefix n− 2 is v = n− 2 itself. Define
each I−1,c1 to be as above, except that we insist on a left endpoint at least γ.
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Theorem 68. Fix m = 3 and n ≥ m. We have the following equality

[γ3,n, ε3,n) =

n−2⋃
v=1

I−1,v .

Furthermore, for each v ∈ V̌n \ {n− 2}, the following is a partition:

I−1,v = J−1,v ∪
∞⋃
q=q′

I−1,Θq(v) ,

where q′ = 0 unless v = c1, in which case q′ = −1. Moreover, I−1,n−2 = J−1,n−2 =
[γ3,n, ζ−1,n−2).

Proof. Note that for α = ζ−1,1, we have A−1C · `0(α) = r0(α), which is exactly the definition
of α = ε3,n. Arguing as we did for α > ε3,n shows that first equality of the theorem, giving the
basic partition, holds. Similarly, that J−1,v with the union of the I−1,Θq(v) partition I−1,v

holds since the proof of Theorem 54 is easily checked to extend to this case.
Recall that η−k,v is such that R−k,v · r0(η) = C−1 · `0(η), and thus η−1,n−2 is such that

r0(η−1,n−2) = C−1 ·`0(η−1,n−2). That is, η−1,n−2 = γ3,n. The statement I−1,n−2 = J−1,n−2 =
[γ3,n, ζ−1,n−2) thus follows. �

Proposition 69. Fix m = 3 and n ≥ m. For all v ∈ V̌n, synchronization occurs along J−1,v.

Sketch. Here also the arguments of the previous section give the proof, however we must make
minor adjustments. Note that U−1 = [AC(AC2)n−2]−1 = (AC2)2−n(AC)−1. Thus in this
setting of k = 1, any term of the form [(AC2)n−3Uk−2AC]a as in the statements of Lemma 71
and Proposition 72 becomes [(AC2)−1]a. Note that each such term is followed by an appearance
of (AC2)n−3; since each exponent a will arise as either cj or cj + 1 for some cj letter of some

v ∈ V̌ , we have a ≤ n − 2. Since an exponent of the form cj + 1 occurs only when the block
is also preceeded by an occurrence of AC2, the identity guarantees an expression that has only
positive powers of AC and of AC2. (Example 70 exhibits this phenomenon.) Thus our definition
of R−k,v extends to include the case of d = −1. Similarly, E1 must now denote (1, 2)−1 where we
recognize that occurrences of E1 are surrounded by (1, 2) occurring to a sufficiently high power
so that the usual arithmetic of exponents results in a sensible word. Note that the key relation
EG = F thus holds in this setting. �

Finally, both that synchronization only occurs along the J−1,v and that this is a set of full
measure follow from the arguments of the previous section.

Example 70. Note first that R−1,n−2 = CA−1C (A−1C)n−2A−1 = Id holds for all n ≥ 3. We
also have R−1,1 = (AC2)−1 · (AC2)n−2 = (AC2)n−3. Note that these calculations agree when
n = 3. Let n > 3 and let us calculate one longer right matrix:

R−1,111 = ẼF̃ Ẽ(AC2)n−2 = (AC2)−1·(AC2)n−3AC·(AC2)−1·(AC2)n−2 = (AC2)n−4AC(AC2)n−3.

8. Group element identities for the setting α > γ3,n

Analagously to Section 5, we gather group identities used in the preceding two sections, here
in this section.

Lemma 71. Suppose that m = 3, and k, a ∈ N. Then

CA−1C(A−kC)aA−1 = [(AC2)n−3Uk−2AC]a−1(AC2)n−3Uk−1 .
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Proof. We first prove the result when a = 1. As a base case, we consider k = 1. Since C = AB,
CA−1 is a conjugate of B and hence has order n. Therefore, CA−1C A−1C A−1 = (AC−1)n−3 =
(AC2)n−3. Now suppose that the identity holds for a = 1 and a value of k. Then

CA−1C(A−k−1C)A−1 = CA−1C(A−kC)A−1 AC−1 A−1CA−1

= (AC2)n−3Uk−1 AC−1A−1CA−1

= (AC2)n−3Uk,

since U = AC(AC2)n−2 = AC(CA−1)2 = AC2A−1CA−1 = AC−1A−1CA−1.
The proof of the result for general a has an induction step as follows.

CA−1C(A−kC)a+1A−1 = CA−1C(A−kC)aA−1 A−k+1CA−1

= [(AC2)n−3Uk−2AC]a−1(AC2)n−3Uk−1 A−k+1CA−1

= [(AC2)n−3Uk−2AC]a(AC2)n−2 (C−1AC−1 CA−1C) A−k+1CA−1

= [(AC2)n−3Uk−2AC]a(AC2)n−2C−1AC2 (AC2)n−3Uk−2

= [(AC2)n−3Uk−2AC]a(AC2)n−3AC(AC2)n−2Uk−2

= [(AC2)n−3Uk−2AC]a(AC2)n−3Uk−1.

�

Proposition 72. Fix m = 3 and k ∈ N. If s ∈ N, s > 1 and a1, . . . , as, b1, . . . , bs−1 ∈ N, then

CA−1C (A−kC)as (A−(k+1)C)bs−1 (A−kC)as−1 · · · (A−(k+1)C)b1 (A−kC)a1A−1

= [(AC2)n−3Uk−2AC]as [(AC2)n−3Uk−1AC]bs−1−1(AC2)n−3ACAC2

· [(AC2)n−3Uk−2AC]1+as−1 [(AC2)n−3Uk−1AC]bs−2−1(AC2)n−3ACAC2

...

· [(AC2)n−3Uk−2AC]1+a2 [(AC2)n−3Uk−1AC]b1−1(AC2)n−3ACAC2

· [(AC2)n−3Uk−2AC]a1(AC2)n−3Uk−1.

Proof. Note that we can rewrite the result of Lemma 71 as

CA−1C (A−kC)aA−1 = [(AC2)n−3Uk−2AC]a(AC2)n−2.

Therefore, for any a, b ∈ N,

CA−1C (A−kC)a (A−(k+1)C)b = CAC−1 (A−kC)aA−1 ·A−kC(A−(k+1)C)b−1

= [(AC2)n−3Uk−2AC]a(AC2)n−2 (C−1AC2 · CA−1C) A−kCA−1 ·A−kC(A−(k+1)C)b−2

= [(AC2)n−3Uk−2AC]a(AC2)n−3ACAC2 · (AC2)n−3Uk−1 ·A−kC(A−(k+1)C)b−2

= [(AC2)n−3Uk−2AC]a(AC2)n−3ACAC2 · (AC2)n−3Uk−2AC(AC2)n−3ACAC2

· CA−1C A−kC(A−(k+1)C)b−2

= [(AC2)n−3Uk−2AC]a(AC2)n−3Uk−1AC(AC2)n−3ACAC2 · CA−1C A−kC(A−(k+1)C)b−2

...

= [(AC2)n−3Uk−2AC]a(AC2)n−3 [Uk−1AC(AC2)n−3]b−1ACAC2 · CA−1CA−kC.

The result now follows by applying this repeatedly, beginning with CA−1C (A−kC)as (A−(k+1)C)bs−1 ,
along with a final application of Lemma 71 to the resulting final term. �
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9. To be continued

As already mentioned, in work in progress we apply the results of this paper to determine
the natural extensions of the T3,n,α as well the entropy functions α 7→ h(T3,n,α).
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