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FRACTIONS
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Abstract. We adjust Arnoux’s coding, in terms of regular continued fractions, of the
geodesic flow on the modular surface to give a cross section on which the return map is
a double cover of the natural extension for the α-continued fractions, for each α ∈ (0, 1].
The argument applies in wide generality, as we illustrate with its application to the Rosen
continued fractions and their recently introduced α-variants.

1. Introduction

The α-continued fractions introduced by Nakada [33] give a one-dimensional family of
interval maps, Tα with α ∈ [0, 1]. This family has been the focus of a recent spate of
publications, focusing especially on the entropy of the maps. Here we answer a natural
question arising in this context: For α ∈ (0, 1] there is a cross section of the geodesic flow
on the modular surface for which Tα is a factor.

Kraaikamp, Schmidt and Steiner [26] determined an explicit planar model Tα : Ωα → Ωα

of the natural extension of the α-continued fraction map for positive α. Denote by µ the
measure on R2 given by (1+xy)−2dxdy. They also showed that µ is a Tα-invariant measure
on Ωα; let h(Tα) denote the entropy of the interval map with respect to να, the invariant
probability measure for Tα (given by normalizing the marginal measure induced by µ).
The following is Theorem 2 in [26]: For any α ∈ (0, 1],

(1) h(Tα)µ(Ωα) = π2/6 .

With T 1M denoting the unit tangent bundle of the modular surface (see below for
definitions), we show the following.

Theorem 1.1. For any α ∈ (0, 1], Equation (1) holds if and only if there exists a cross

section Σ̃α ⊂ T 1M to the geodesic flow with the following two properties:

(1) There is a two-to-one (a.e.) map πα : Σ̃α → Ωα that projects the normalized

transverse invariant measure on Σ̃α induced by Liouville measure to µα ;
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(2) Denote by Φα the first return map to Σ̃α of the geodesic flow, the following diagram
commutes:

Σ̃α
Φα−−−→ Σ̃α

πα

y yπα
Ωα

Tα−−−→ Ωα

.

Since a system is by definition a factor of its natural extension, with Equation (1) we
have the following.

Corollary 1.2. For α ∈ (0, 1], the system defined by Tα is a factor of a cross section of
the geodesic flow on the modular surface.

That whenever Tα is the factor of a cross section for the geodesic flow there is an equation
of the form of Equation (1) is well-known to be a consequence of a formula of Abramov,
see Section 5.3 for related ideas. Here we show that given the planar natural extensions,
the entropy condition shows that there is indeed a corresponding cross section. We were
lead to this by the construction given in [5]; however, in that setting, the fact that the map
on the cross section was a first return was evident. That this is true in our more general
setting requires Equation (1).

We show that for each α 6= 0, the natural extension of Tα is double covered by a corre-
sponding cross section of the geodesic flow on the modular surface — it is this cardinality
two that accounts for the difference in the constant in Equation (1) from the volume of the
unit tangent bundle of the modular surface. On the fiber over an x with Tα(x) given by a
matrix of determinant −1 acting on x in the standard linear fractional manner, the first
return of the flow switches sheets, over x where the map is given by a matrix of determinant
+1 the flow returns to the same sheet. The case of α = 1 is that of the regular continued
fractions, and is thus the case that is treated in [5] (and, using different techniques, by
Adler-Flatto and Series, see below); there, above any x the flow changes sheet. For all
other values of α, there are x above which one returns to the sheet of departure.

Our techniques are easily adapted to the special case of α = 0. The interval map T0

is known as the by-excess continued fraction map, defined on the interval [−1, 0] it has
an infinite invariant measure given by (1 + x)−1dx. Although one thus cannot define the
entropy of T0, Luzzi and Marmi [27] show that its entropy in what they call Krengel’s sense
is zero. For all x, T0(x) is given by some matrix of positive determinant and indeed, one
can extend our discussion here to show that the natural extension of the system of T0 can
be expressed as a cross section of the geodesic flow on the modular surface, with the cross
section of infinite measure.
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The study of the intertwined nature of continued fractions and the geodesic flow on the
modular surface has a rich history. One of the first significant steps was E. Artin’s [6] coding
of geodesics in terms of the regular continued fraction expansions of the real endpoints of
their lifts. Hedlund [17] then used this to show the ergodicity of the geodesic flow on the
modular surface. A few years later, E. Hopf proved ergodicity for the geodesic flow on any
hyperbolic surface of finite volume, see his reprisal [19]. Adler and Flatto gave an explicit
cross section for the geodesic flow on the modular surface such that the regular continued
fraction map is given as a factor, see especially their [3]. (They also gave a cross section
for the so-called backwards continued fraction map, which is conjugate to the α = 0 map.)
Taking up on an approach revived by Moeckel [31], Series [39] gave a second approach for
the regular continued fraction case. Quite recently, D. Mayer and co-authors [30], [29] have
given explicit cross sections for the geodesic flow on the surfaces uniformized by the Hecke
triangle groups such that a variant, due to Nakada [34], of the Rosen continued fractions
[37] is given as a factor. (The second-named author first learned of such possibilities from
A. Haas, see the related treatment of another variant of the Rosen fractions in [15].) Other
related recent work has been done by Hilgert and Pohl [18]. For much of this history,
further motivation, and also the work of S. Katok and co-authors using various means to
code geodesics on the modular surface, see [20]. The papers [21], [22] and [23] treat an
infinite family of continued fraction maps related to the modular surface; these maps are
all locally given by the Möbius action of determinant one matrices.

As stated above, our work here is directly inspired by another approach to identifying
cross sections related to continued fractions, that of Arnoux [5]. That work can be viewed
as an elaboration of Veech’s [42] notion of “zippered rectangles” in the special case of sur-
faces of genus one. Here we proceed by, in a sense, extracting the algebraic expression for
the cross section determined in [5], and adjusting this appropriately so as to pass from the
planar models of the natural extensions given by [26] to our cross sections. Thus, whereas
the various cross sections mentioned in the previous paragraph were each constructed in
what can be called a geometric fashion, we use a more algebraic approach.

There has been a great deal of recent interest in the α-continued fractions maps, and
especially in the function associating to α the entropy of the corresponding map. Nakada
[33] computed the entropy of his maps for α ≥ 1/2. Kraaikamp [24] gave a more direct
fashion to compute these. Moussa, Cassa and Marmi [32] gave the entropy for the maps
with α ∈ [

√
2 − 1, 1/2). Luzzi and Marmi [27] presented numeric data showing that

the entropy function α 7→ h(Tα) behaves in a rather complicated fashion as α varies.
Nakada and Natsui [36] gave explicit intervals on which α 7→ h(Tα) is respectively constant,
increasing, decreasing. Carminati and Tiozzo [10] extended this work by describing the
intervals involved. The same authors have revisited the question of the shape of the entropy
function in terms of α in [11]. Luzzi and Marmi [27] also gave strong evidence that the
entropy function is continuous. (They furthermore gave numeric evidence that the function
is far from trivial, see the graphs they present in their Figures 4–8). Tiozzo [41] showed
continuity for α above a certain positive constant, Kraaikamp-Schmidt-Steiner [26] show
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the continuity for positive α. (After that work was completed, Tiozzo in an updated version
of [41] showed that Hölder continuity holds throughout the full interval.)

The proof of the continuity of α 7→ h(Tα) given in [26] proceeds by first showing Equa-
tion (1) so as then to turn to the key result, the continuity of the function α 7→ µ(Ωα)
(That the geometry, and even topology, of the Ωα change drastically is evidenced in Fig-
ure 6 of [26].) The proof of Equation (1) consists mainly in showing that for any α > 0,
the intersection Ωα ∩ Ω1 is nontrivial, and the return maps of each of Tα and T1 to this
intersection agree; from this one uses Abramov’s formula and the fact that the equation
certainly holds for α = 1. (The proof of continuity of α 7→ µ(Ωα) is much harder, in
briefest terms: the shape of Ωα is determined mainly by the Tα-orbits of α and α−1, there
are intervals of α such that these two orbits meet, and in a common fashion; continuity is
fairly straightforward for each of these intervals; the remaining set of α is such that the
key orbits can still be described symbolically, the difference in measure for nearby α, α′ is
bounded above using this description.)

Luzzi and Marmi [27] seem to be the first to ask in print if the α-continued fractions
arise as a factor of the geodesic flow on the modular surface. Folklore consensus seems to
be that determining whether the α-continued fractions are or not factors of a cross section
for the geodesic flow remained an important unsolved problem.

To show the robustness of our basic argument, in Section 6 we sketch a proof that the
Rosen continued fraction maps and certain of their α-type variants are also factors of cross
sections for the geodesic flow over the corresponding hyperbolic surface. Rosen [37] in-
troduced his analogs of the nearest integer continued fractions to assist in the study of
the Hecke triangle Fuchsian groups, see below for definitions. There has been increasing
interest in the past few decades in these continued fractions, see [38] for a sketch of the
history to the mid-1990s, and the aforementioned [30], [29] for some of the more recent
history; the α-Rosen continued fractions, that we treat as well, were introduced by Dajani,
Kraaikamp and Steiner [14] in 2009. Finally, in response to a referee’s prompting, we sketch
how our methods can be used to pass from results of [22] to give for each Katok–Ugarcovici
(a, b)-interval map (in a certain subset of their full parameter space) a cross section for the
geodesic flow on the modular surface that has the interval map as a factor.

In light of the extremely complicated geometry and topology of the various cross sections
that we determine, it would be interesting to know if the more geometric approaches to
the construction of cross sections giving interval maps as factors could be successful in our
setting.

Thanks The second-named author takes great pleasure in thanking Cor Kraaikamp and
Wolfgang Steiner for introducing him to the intricacies of the α-continued fractions and
for comments on this continuation of joint work. Thanks also go to Corinna Ulcigrai for
mentioning the interest in the question of relating cross sections and the Tα, and to an
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anonymous referee who insisted on the importance of it. Finally, we thank the various
referees for careful readings and also for the suggestions of certain additions to our original
bibliography.

2. Background

2.1. α-continued fractions. For α ∈ [0, 1], we let Iα := [α − 1, α] and define the map
Tα : Iα → Iα by

Tα(x) :=

∣∣∣∣1x
∣∣∣∣− ⌊ ∣∣∣∣1x

∣∣∣∣+ 1− α
⌋
, for x 6= 0 ; Tα(0) := 0 .

For x ∈ Iα, put

ε(x) :=

{
1 if x ≥ 0 ,
−1 if x < 0 ,

and dα(x) :=

⌊∣∣∣∣1x
∣∣∣∣+ 1− α

⌋
,

with dα(0) =∞.

Furthermore, for n ≥ 1, put

εn = εα,n(x) := ε(T n−1
α (x)) and dn = dα,n(x) := dα(T n−1

α (x)).

This yields the α-continued fraction expansion of x ∈ R :

x = d0 +
ε1

d1 +
ε2

d2 + · · ·
,

where d0 ∈ Z is such that x − d0 ∈ Iα. (Standard convergence arguments justify equality
of x and its expansion.) These include the regular continued fractions, given by α = 1 and
the nearest integer continued fractions, given by α = 1/2.

The standard number theoretic planar map associated to continued fractions is defined
by

Tα(x, y) :=

(
Tα(x),

1

dα(x) + ε(x) y

)
(x ∈ Iα, y ∈ [0, 1]) ,

and Ωα is the closure of the orbits of (x, 0) with x ∈ Iα.

Recall that µ is given by (1 +xy)−2dxdy and that Ωα is the planar region determined by
[26]. Let µα be the probability measure given by normalizing µ on Ωα, and να the marginal
probability measure obtained by integrating µα over the fibers {x} × {y | (x, y) ∈ Ωα},
Bα the Borel σ-algebra of Iα, and B′α the Borel σ-algebra of Ωα. That (Ωα, Tα,B′α, µα) is
a natural extension of (Iα, Tα,Bα, να) is shown in [26].

2.2. Geodesic flow on the modular surface. Much of the following can be found in
Manning’s chapter [28] in the text [7].

Using the Möbius action of SL2(R) on the Poincaré upper-half plane H, by identifying a
matrix with the image of z = i under it, we can identify SL2(R)/SO2(R) with H. Similarly,
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PSL2(R) = SL2(R)/± I can be identified with the unit tangent bundle of H. We are most
interested in the modular surface,M = SL2(Z)\H. The unit tangent bundle of the modular
surface, T 1M, can be identified as

T 1M = PSL2(Z)\PSL2(R) .

The geodesic flow in our elementary setting is a map on a surface’s unit tangent bun-
dle: Given a time t and a unit tangent vector v, since the unit tangent vector uniquely
determines a geodesic passing through the vector’s base point, we can follow this geodesic
for arclength t in the direction of v, the unit vector that is tangent to the geodesic at the
end point of the geodesic arc is the image, gt(v), under the geodesic flow. The hyperbolic
metric on H corresponds to an element of arclength satisfying ds2 = (dx2 + dy2)/y2 with
coordinates z = x+iy. In particular, for t > 0, the points z = i and w = eti are at distance
t apart. Since SL2(R) acts by isometries on H, the geodesic flow on its unit tangent bundle

is given by sending A ∈ PSL2(R) to Agt, where gt =

(
et/2 0
0 e−t/2

)
. Similarly, on T 1M

one sends the class represented by A to that represented by Agt.

There is a natural measure on the unit tangent bundle T 1H: Liouville measure is given
as the product of the hyperbolic area measure on H with the length measure on the circle
of unit vectors at any point. This measure is SL2(R)-invariant, and induces a finite mea-
sure on T 1M. With the standard choice of this Liouville measure, the volume of T 1M is
vol(T 1M) = π2/3, see say [5]. Normalized Liouville measure is the corresponding proba-
bility measure on T 1M. Gurevich and Katok [16] cite a fairly general result of Sullivan
[40] to state that the entropy with respect to normalized Liouville measure of the geodesic
flow on the modular surface is one.

A measurable cross section for the geodesic flow is a subset of the unit tangent bundle
through which almost every geodesic passes tranversely and infinitely often. The first
return map to a cross section C is the self-map Φ : C → C given by Φ(v) = gτ(v)(v) with
τ(v) > 0 minimal such that this image is indeed in C. By definition of C, this map is
defined almost everywhere on C. By a celebrated result of Ambrose [4], since the geodesic
flow leaves normalized Liouville measure invariant, there is a measure λ on C invariant
under the first return map such that normalized Liouville measure locally factors as the
product of λ with Lebesgue measure along geodesics. In subsection 4.2, we will refer to
this phenomenon as an Ambrose factorization.

Due to a result of Abramov [2], one defines the entropy of a flow {φt | t ∈ R} on a
probability space as the entropy of the time t = 1 map, h(φ1). A celebrated formula of
Abramov [1] then gives that the entropy of the first return map Φ to a cross section C is

h(Φ) = h(φ1)

∫
C
τ(v) dλ1 =

h(φ1)

λ(C)

∫
C
τ(v) dλ ,

where λ1 is the probability measure on C induced by λ.
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The integral of the return times over a cross section gives the volume of the total space. In
our setting, this volume is one since we considered normalized Liouville measure; Sullivan’s
result gives that h(φ1) = 1. Thus, we have

(2) h(Φ) = 1/λ(C) .

3. Louville measure as a Lebesgue measure

Recall that any locally compact Hausdorff topological group has an invariant measure
for left multiplication, this Haar measure is unique up to scaling. In this section, we
derive explicit formulas for the Haar measure on SL2(R). These formulas are presumably
well known, and can be verified by specializing known expressions for the Haar measure
on various classes of Lie groups. Here we derive them in a straightforward, elementary
fashion. This derivation then allows us to identify a transversal to the geodesic flow — see
the form of the matrices given in Lemma 3.4 — that is key to our construction of cross
sections.

Notation. Throughout this section, in order to use standard naming conventions of entries
of matrices, α denotes any real number.

Let Gγ ⊂ SL2(R) be the set

Gγ =

{(
α β
γ δ

)
| γ 6= 0

}
.

Proposition 3.1. The Haar measure h on Gγ is given, up to a constant, by

dh =
dα dγ dδ

|γ|

Lemma 3.2. The natural left action of the group SL2(R) on the set M2(R) of 2× 2 real
matrices preserves the measure induced by Lebesgue measure on R4 under the standard
identification of M2(R) with R4.

Proof. Left multiplication on M2(R) by a matrix M =

(
a b
c d

)
∈M2(R), defines a linear

transformation, whose matrix with respect to the canonical basis is
a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d

 .

The determinant of this new matrix is (ad − bc)2, and thus equals 1 when M ∈ SL2(R).
That is, the left multiplication preserves Lebesgue measure. �
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Proof of Proposition 3.1. Let ∆ be the determinant αδ − βγ. On the subset of matrices
with γ 6= 0, the map (α,∆, γ, δ) 7→ (α, (αδ −∆)/γ, γ, δ ) is injective, and thus (α, γ, δ,∆)
gives local coordinates on this subset. The Jacobian of this map equals |γ−1|, and thus
Lebesgue measure m on M2(R) ≡ R4 is given in these coordinates by

dm = dα dβ dγ dδ =
dα dγ dδ d∆

|γ|
.

Now, left multiplication by elements of SL2(R) preserves ∆ on M2(R). Therefore, re-
stricting to the hypersurface where ∆ = 1 (that is to SL2(R)), we find that the measure
dα dγ dδ
|γ| is invariant by left multiplication. This of course implies that the measure is a Haar

measure. �

Remark 3.3. There are obviously three related expressions: dα dβ dδ
|β| etc. By a Jacobian

change-of-coordinates calculation, one easily shows that each of these expressions defines
the same measure on the intersection of their respective domains of definition.

We emphasize that the above directly proves the invariance of the measure under left
(and, for that matter, also right) multiplication. That is, we have naively solved for an
explicit expression of Haar measure.

Lemma 3.4. Let G+
γ be the connected component of Gγ defined by γ > 0, and let Σ ⊂ G+

γ

be defined by γ = 1. Consider local coordinates x, y by letting each A ∈ Σ be given as

A =

(
x xy − 1
1 y

)
.

Then G+
γ has local coordinates (x, y, t) by way of

M = Agt

with A ∈ Σ and gt as above. Furthermore, dx dy dt gives Haar measure restricted to G+
γ .

Proof. Suppose that M =

(
α β
γ δ

)
∈ G+

γ . Then letting t = 2 log γ gives A = M g−t ∈ Σ.

Clearly, the set Agt for all A ∈ Σ, t ∈ R comprises all of G+
γ .

The map (x, y, t) 7→ (α, γ, δ) = (xet/2, et/2, ye−t/2 ) has Jacobian of absolute value γ/2.
Since Haar measure restricted to G+

γ is (any nonzero constant times) dh = dα dγ dδ
γ

, we

deduce that dx dy dt does give Haar measure here. (The change in normalization constant
by a factor of 2 is innocuous here.) �

For an element M ∈ SL2(R), let [M ] denote the corresponding element of PSL2(R).
Then since Haar measure SL2(R) induces Liouville measure on T 1H, and G+

γ projects
one-to-one to a set of full measure in PSL2(R), we have the following.

Theorem 3.5. Under the identification of T 1H with PSL2(R), Liouville measure on the
full measure set { [M ] |M ∈ Gγ } is proportional to dx dy dt where x, y, t are as above.
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(We identify the above implied constant of proportionality in Subsection 5.3.)

One can give another parametrization by remarking that a matrix

(
α β
γ δ

)
in PSL2(R)

corresponds to an horizontal tangent vector pointing to the right if and only if γ = δ, and
to the left if and only if γ = −δ. The set of such matrices gives a section, since any geodesic
which is not vertical has a highest point, where the tangent vector is horizontal. One can
parametrize such a geodesic by its origin β

δ
and its extremity α

γ
. A simple computation

shows that the set of such matrices, in the case γ = δ, is parametrized by

(
X√
X−Y

Y√
X−Y

1√
X−Y

1√
X−Y

)
Applying the geodesic flow as above gives a parametrization of half of the group of the

form

 Xe
t
2√

X−Y
Y e

−t
2√

X−Y
e
t
2√

X−Y
e
−t
2√

X−Y

 .

A Jacobian computation proves that the Haar measure, in these coordinates, is propor-
tional to dX dY dt

(X−Y )2
. Note that the measure dX dY

(X−Y )2
has a clear geometric signification : the

base point of the corresponding unit tangent vector is X+Y
2

+ iX−Y
2

, so this measure is
proportional to the measure defined by the hyperbolic metric on the upper half-plane.

A small modification consists in changing Y into −1/Y , giving the following result.

Proposition 3.6. Any element of PSL2(R) such that γ and δ have same sign can be
written in a unique way (up to sign): Xe

t
2√

X+ 1
Y

e
−t
2

−Y
√
X+ 1

Y

e
t
2√

X+ 1
Y

e
−t
2√

X+ 1
Y

 .

In these coordinates, the Haar measure can be written

dX dY dt

(1 +XY )2
.

Thus, we have sketched a geometric interpretation of the density function for the measure
µ on R2 that is sometimes referred to as the “standard number theoretic” measure. (This
latter name comes from the fact that the orbits of points of the form (x, 0) in planar
models of natural extensions with µ an invariant measure reveal Diophantine approximation
properties of the related interval maps.) Note that a similar derivation of an invariant
measure for Rosen continued fractions from Liouville measure for the geodesic flow has
been given by Mayer and Stroemberg in Section 5 of [30].
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It is easy to give explicit formulas to change between these systems of coordinates; we
use such a change of coordinates in the next section, the function Z, to transform the
invariant measure to Lebesgue measure.

4. The cross section

The goal of this section is, for each α ∈ (0, 1], to define a subset Σ̃α of the unit tangent
bundle of the modular surface and to give an explicit self-map induced by the geodesic
flow.

4.1. An alternate natural extension. Let the function Z : R2 \ {(x, y) | y 6= −1/x} →
R2 be defined by Z(x, y) = (x, y/(1+xy) ) and let Σα = Z(Ωα). An elementary calculation
shows that Z conjugates Tα to the bijection:

Σα → Σα(3)

(x, y) 7→ ( fα(x), ε(x) x(1− xy) ) .

A second elementary calculation shows that µ projects to give Lebesgue measure, which is
thus invariant for this induced map. (Alternately, one can directly verify this invariance.)

4.2. Definition and main results. Given (x, y) ∈ R2, let

A−1(x, y) =

(
1 y
−x 1− xy

)
and

(4)

A+1(x, y) =

(
x 1− xy
−1 y

)
.

Define the following subsets of PSL2(R):

Aα,−1 = { [A−1(x, y)] | (x, y) ∈ Σα} and Aα,+1 = { [A+1(x, y)] | (x, y) ∈ Σα} .

In Lemma 5.1 we show that almost all A,A′ in
⋃
σ∈{−1,+1} Aα,σ lie in distinct PSL2(Z)-

orbits. We let Σ̃α,σ denote the set of the classes in PSL2(Z)\PSL2(R) represented by the
various elements of the Aα,σ and let

Σ̃α =
⋃

σ∈{−1,+1}

Σ̃α,σ .

Let ` on Σ̃α be induced by Lebesgue measure on Σα. The previous section applies to show

that the geodesic flow starting from Σ̃α gives an Ambrose factorization of (some positive
constant multiple of) Liouville measure of the form `× dt.
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Denote a point of Σ̃α by (x, y, σ) in the obvious fashion. Our main result is given by the
following two statements; we prove Theorem 4.1 in Section 5.

Theorem 4.1. For any α ∈ (0, 1], the first return map of the geodesic flow to Σ̃α is given
by

Φα : Σ̃α → Σ̃α

(x, y, σ) 7→ ( fα(x), ε(x) x(1− xy),−ε(x)σ ) .

By the discussion in Subsection 4.1, the following holds. Note that Z−1(x, y) = (x, y/(1−
xy) ) on its domain of definition.

Lemma 4.2. For α ∈ (0, 1], let

πα : Σ̃α → Ωα

(x, y, σ) 7→ (x, y/(1− xy) ) .

Then πα is a 2 : 1 surjection, and the following is a commutative diagram.

Σ̃α
Φα−−−→ Σ̃α

πα

y yπα
Ωα

Tα−−−→ Ωα

5. First return map

In this section we give the remaining steps to prove the main result, in particular showing
that Φα is a first return map. To show that this step is in general necessary, in the final
subsection we give an example (which can easily be generalized) of an interval map that is
not given as the factor of first return to a cross section for the geodesic flow.

Notation. We use asterisks to denote entries of a determinant one matrix that are not
germane to the argument at hand.

5.1. Classes are distinct. We first show that the classes parametrized by the various

(x, y, σ) ∈ Σ̃α are almost always distinct. This implies that

(5) `(Σ̃α) = 2µ(Ωα) .

Lemma 5.1. Let α ∈ (0, 1). For almost all distinct A,A′ in
⋃
σ=±1 Aα,σ the PSL2(Z)\PSL2(R)

classes represented by A,A′ are distinct.
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Proof. case 1. Suppose that both A,A′ ∈ Aα,−1.

If M ∈ SL2(Z) is such that MA = ±A′, then writing A,A′ in accordance with (4) and
multiplying on the right by A−1 gives

M = ±
(

(1− xy) + xy′ −y + y′

∗ ∗

)
.

Since M ∈ SL2(Z), we find that y′−y ∈ Z. Substitution into the (1, 1)-element easily leads
to the conclusion that x ∈ Q. (Should in fact y = y′, then one easily finds that x = x′.)

case 2. If both A,A′ ∈ Aα,+1, then we find

M = ±
(

∗ ∗
−y + y′ 1− xy + xy′

)
,

and again x ∈ Q. (Here also, y = y′ implies that x = x′.)

case 3. If A ∈ Aα,−1 and A′ ∈ Aα,+1, then again x ∈ Q, as

A′A−1 = ±
(

∗ ∗
1 + xy + xy′ y + y′

)
.

(The equality y = −y′ can only hold on set of the measure zero where y = 0. This as
every Ωα lies in the upper (closed) half-plane and is below the curve y = −1/x; that is,
the coordinates (x, y) used here are such that y ≥ 0.)

Thus, in all cases, symmetry shows that distinctness holds unless y = y′ = 0 (and
x+ x′ ∈ Z), or both x, x′ belong to the countable set Q. �

5.2. Flow does give Φα as in Theorem 4.1.

Lemma 5.2. For each A = (x, y, σ) ∈ Σ̃α, the geodesic flow for time t = −2 log |x| sends
A to ( fα(x), ε(x) x(1− xy),−ε(x)σ ).

Proof. Consider A =

(
1 y
−x 1− xy

)
representing a class of Σ̃α,−1. Since t = −2 log |x|

gives et/2 = ε/x where ε = ε(x), the geodesic flow gives Agt =

(
ε/x εxy
−ε εx(1− xy)

)
. When

ε = −1, this is equivalent to(
0 1
−1 d

)
Agt =

(
1 −x(1− xy)

−(−d− 1/x) ∗

)
,

where we choose d = dα(x). When ε = 1, we choose a different PSL(2,Z)-orbit represen-
tative of Agt, to wit: (

1 d
0 1

)
Agt =

(
−d+ 1/x ∗
−1 x(1− xy)

)
.
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Similarly, for A =

(
x 1− xy
−1 y

)
representing a class in Σ̃α,+1, if ε = −1, we find(

d −1
1 0

)
Agt =

(
−d− 1/x ∗
−1 −x(1− xy)

)
.

If ε = 1, we have (
1 0
d 1

)
Agt =

(
1 x(1− xy)

−(−d+ 1/x) ∗

)
.

Due to the bijection of (3), and the definition of the Σ̃α,σ, the result holds. �

5.3. The map Φα is given by the first return. Let `α be the probability measure on

Σ̃α induced by Lebesgue measure `. The system (Σ̃α, `α,Φα) is a skew product with finite
fiber over (Ωα, µα, Tα). Their entropies are thus equal: h(Φα) = h(Tα). Since a system and
its natural extension have the same entropy, Equation (1) gives h(Φα)µ(Ωα) = π2/6.

By Equation (2), Theorem 3.5 and Equation (5), the first return map of the geodesic

flow to Σ̃α has entropy equal to

1

λ(Σ̃α)
=

1

κ `(Σ̃α)
=

1

2κµ(Ωα)
,

where κ is a normalizing constant independent of α. But, (Σ̃1, `1,Φ1) is given by the first
return of the geodesic flow (by, say, [5]), and we thus find that 1/κ = π2/3. Therefore, for

all positive α, we find that the entropy of the first return map to Σ̃α equals h(Φα). But,
Φα is given (locally) by powers of this first return map, and thus the equality of h(Φα)
with the entropy of the first return map holds if and only if the two maps are equal a.e.
— see §10.6 Theorem 2 (3) of [13]. That is, Φα is the first return map.

5.4. Non-first return interval maps. To reassure the reader that our efforts in the
previous subsection are not absurd, we sketch the existence of an interval map that is
piecewise fractional linear with integral coefficients with the planar model of its natural
extension double covered by a cross section for the geodesic flow on T 1M but for which
the map is not given by the nth return map for any single n.

We begin with the regular continued fractions. For simplicity, let I = I1 and T =
T1. Denote cylinder sets in the usual manner: ∆[ a1, . . . , an ] is the subset of the unit
interval of elements whose first n partial quotients are the ai . In particular, the T -image
of ∆[ a1, . . . , an ] is ∆[ a2, . . . , an ] whenever n ≥ 2. Using the partition of I given by

A1 = ∆[1] , and the various An =
⋃

k>1,l>1

∆[k, 1, . . . , 1︸ ︷︷ ︸
n−2 times

, l] with n ≥ 2 ,

let

g : I → I



14 PIERRE ARNOUX AND THOMAS A. SCHMIDT

be defined by
g(An ) = T n(An) .

That is, on each An we define g to be the n-fold composition of T with itself.

Again simplifying notation, let T : Ω → Ω be the planar natural extension for T . For
each n ≥ 1, define An to be the subset of Ω lying over An . Let G : Ω → Ω be defined by
letting G restricted to An be the n-fold composition of T with itself.

As usual, for simplicity’s sake, we refer to dynamical systems merely by space and
function, each time the mentioned have sigma-algebra of Borel subsets; invariant measures
in the following are (the normalization of) dµ = (1 +xy)−2 dxdy and its marginal measure.

We let Σ̃ = Σ̃1 as defined in Subsection 4.2.

Lemma 5.3. The map G : Ω → Ω is a natural extension for g. Furthermore, Σ̃ ⊂ T 1M
is partitioned by sets indexed by N such that the map on Σ̃, sending any element of the nth

partition set to its nth return under the geodesic flow to Σ̃, gives a double cover of G.

Proof. The union of the An is clearly all of Ω , up to a set of measure zero. We claim that
also the union of the T n−1(An ) is Ω , up to measure zero. To see this, first note that for
n ≥ 2,

T n−1An = I \∆[1] = [0, 1/2) .

Now, let Nd =

(
0 1
1 d

)
; thus, for (x, y) ∈ An with x ∈ ∆[k],

T n−1(x, y) = (T n−1(x), Nn−2
1 Nk · y ) .

A proof by induction shows that for j ≥ 1,

N j
1 =

(
fj−2 fj−1

fj−1 fj

)
where f0 = 0, f1 = 1, f2 = 1, fj+2 = fj+1 + fj is the Fibonacci sequence. Since Nk · y =
1/(y + k), we have that

T n−1An = [0, 1/2)×Nn−2
1 · [0, 1/2) .

But, Nn−2
1 · 0 = fn−2/fn−1 and Nn−2

1 · 1/2 = fn/fn+1. Thus, if n ≥ 2 is even, we have for
n ≥ 2,

T n−1An = [0, 1/2)×


(fn−2/fn−1, fn/fn+1] if n is even;

(fn/fn+1, fn−2/fn−1] otherwise.

For n > 1, the sets T n−1An are disjoint, and their union is [0, 1/2) × (0, 1] \ {
√

5−1
2
};

since A1 = [1/2, 1]× [0, 1], the union of the T n−1An for n ≥ 1 is indeed Ω, up to measure
zero.

With this claim, and the fact that G is given by applying T to T n−1Ω, we have that G is
bijective, up to measure zero. Since µ is an invariant measure for T , it is also an invariant
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measure for G. Since T on Ω is a natural extension for T , the images under the various
T n, n ∈ N of the pull-back of the Borel sigma-algebra on I gives the Borel sigma-algebra
on Ω. Recall (see the proof of Theorem 1 of [26] on p. 2219 there) that this holds since
points can be separated by the integral powers of T ; it is easily show that this is also true
for G, and from this it follows that G : Ω→ Ω does give the natural extension of g : T → I.

Finally, we have that Ω is double covered by Σ̃ in such a way that on fibers above An
the nth-return by the geodesic flow projects to give G.

�

6. Hecke triangle surfaces and Rosen fractions

An analysis of the proofs above (combined with using the aforementioned result of Sul-
livan [40] in fuller generality — see the Theorem on p. 276 there), gives the result of this
section.

6.1. Rosen fractions are factors of cross sections. The Rosen continued fractions [37]
are defined as follows . Let q ∈ Z, q ≥ 3 and λ = λq = 2 cos π

q
. Put Iq := [−λ/2, λ/2 ) and

define the map Tq : Iq → Iq by

(6) Tq(x) :=

∣∣∣∣1x
∣∣∣∣− λ⌊ ∣∣∣∣ 1

λx

∣∣∣∣+ 1/2

⌋
, for x 6= 0; Tq(0) := 0.

For x ∈ Iq , put d(x) := dq(x) =
⌊∣∣ 1
λx

∣∣+ 1/2
⌋

and as usual, ε(x) := sgn(x). Furthermore,
for n ≥ 1 with T n−1

α (x) 6= 0 put

εn(x) = εn = ε(T n−1
α (x)) and dn(x) = dn = d(T n−1

α (x)).

This yields the α-Rosen continued fraction of x :

x =
ε1

d1λ+
ε2

d2λ+ . . .

,

where ε ∈ {±1} and di ∈ N.
Rosen introduced his continued fractions to study the Hecke groups. The Hecke (triangle
Fuchsian) group Gq with q ∈ {3, 4, 5, . . . } is the group generated by(

1 λq
0 1

)
and

(
0 −1
1 0

)
,

with λq as above.

Theorem 6.1. For each q ≥ 3, the Rosen fraction map of index q is given as the factor
of a cross section of the geodesic flow on the unit tangent bundle of Gq\H.

Proof. Due to the general nature of Sullivan’s result, Equation (2) holds for the first return
map to any cross section C for the geodesic flow on unit tangent bundle of Gq\H for any
q. For each q, Burton-Kraaikamp-Schmidt [9] determined a planar natural extension on a
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region Ωq with the measure µ as above. It is easily verified that the analog of Equation

(3) holds, and we thus define Σ̃q completely analogously to the Σ̃α above. The analog of
Lemma 5.1 goes through, as for any fixed q, all elements of Gq have their entries lying
in the (countable!) algebraic number field Q(λq). The analog of Lemma 5.2 holds upon
replacing each occurrence of d there by the appropriate d times λq. Finally, the result
holds, since Nakada [35] showed that the entropy of the Rosen continued fraction map
equals one-half times the quotient of the volume of the unit tangent space of Gq\H by the
µ-area of Ωq. �

6.2. Cross sections and α-Rosen fractions. Dajani, Kraaikamp and Steiner [14] intro-
duced the α-Rosen fractions, a generalization combining the idea of Nakada’s α-continued
fractions with Rosen’s continued fractions.

Let q ∈ Z, q ≥ 3 and λ = λq = 2 cos π
q
. For α ∈

[
0, 1

λ

]
, we put Iq,α := [λ(α − 1), λα )

and define the map Tα : Iq,α → Iq,α by

(7) Tα(x) :=

∣∣∣∣1x
∣∣∣∣− λ⌊ ∣∣∣∣ 1

λx

∣∣∣∣+ 1− α
⌋
, for x 6= 0; Tα(0) := 0.

For x ∈ Iq,α , put d(x) := dα(x) =
⌊∣∣ 1
λx

∣∣+ 1− α
⌋

and ε(x) := sgn(x). Furthermore, for
n ≥ 1 with T n−1

α (x) 6= 0 put

εn(x) = εn = ε(T n−1
α (x)) and dn(x) = dn = d(T n−1

α (x)).

The α-Rosen continued fraction of x is then defined in what now is the obvious fashion.
Fixing α = 1

2
results in the Rosen fractions. On the other hand, fixing q = 3 and

considering general α , we have Nakada’s α-expansions.

Using direct methods, similar to those of [9] for the classical Rosen fractions, planar
natural extensions Ωq,α with invariant measure µ as above for certain of the α-Rosen
fractions are given in [14]. For each index q, Kraaikamp-Schmidt-Smeets [25] determine
the value α0 = α0(q) such that [α0, 1/λ] is the maximal interval containing 1/2 with Ωq,α

being connected for each value of α in this interval. The “quilting” of Ωq,1/2 = Ωq to
determine these Ωq,α is then fairly straightforward; [25] find a subinterval containing 1/2
on which entropy is constant, since also µ-measure of Ωq,α is constant. They also give an
argument (see Lemma 12 there) that easily implies the analog of Equation (1) for these
values of q and α. Combining these results with Nakada’s entropy calculation for the
classical Rosen maps, we have the following.

Theorem 6.2. For each q > 3, let α0(q) be as in [25]. Then for each q and α ∈
[α0(q), 1/λq ] the α-Rosen fraction map of index q is given as the factor of a cross sec-
tion of the geodesic flow on the unit tangent bundle of Gq\H.
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7. Additional remarks

7.1. The volume of the unit tangent bundle on the modular surface. This vol-
ume, for the normalization of the Haar measure used in this paper, can be derived by an
elementary computation.

Indeed, when we consider the special case of T1, the classical Gauss map, we see that
one can find a cross section of the geodesic flow which is a double cover of a surface
parametrized by {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1

1+x
}. This cross section defines a fundamental

domain of the action of PSL2(Z) on PSL2(R).

With this parametrization, the return time has been seen above to be −2 log x, and the
invariant measure is Lebesgue measure; hence the measure of the unit tangent bundle is

2
∫ 1

0

∫ 1
1+x

0 −2 log x dy dx = π2

3
.

7.2. Katok–Ugarcovici (a, b)-fractions. The reason we need a two-to-one covering of
the natural extension in the main theorem is that the linear maps underlying the trans-
formations Tα are in GL2(Z) and not necessarily in SL2(Z); they can have determinant
-1. But GL2(Z) does not act by orientation preserving isometries on the hyperbolic plane.
In an earlier version of this work, we suggested the study of a variant of the family of
α-continued interval maps, each given by determinant one matrices. We thank a referee
for pointing out that this family of interval maps is a subfamily of those studied by Katok
and Ugarcovici in [21], [22] and [23].

In [23] they show that each of their (a, b)-interval maps is a (1–1) factor of a cross section
for the geodesic flow on the modular surface. This last step relies on verifying that each
(a, b)-continued fraction gives an appropriately good coding of geodesics on the modular
surface. Hoping that the reader will find the comparison of interest, we now sketch how we
would have passed to a cross section of geodesic flow on the modular surface for a certain
subfamily studied in [22].

We first remind the reader of some notation, definitions and results of [22]. For each
(a, b) in

P = {(a, b) ∈ R2 | a ≤ 0 ≤ b, b− a ≥ 1, −ab ≤ 1}
and any real x, let

(8) bxea,b =


bx− ac if x < a

0 if a ≤ x < b

dx− be if x ≥ b ,

where bxc denotes the integer part of x and dxe = bxc + 1. Then the (a, b)-interval map
on [a, b), is

f̂a,b(x) = −1

x
−
⌊
−1

x

⌉
a,b

if x 6= 0,

and f̂a,b(0) = 0.
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In the case where 1 ≤ −1

a
≤ b + 1 and a − 1 ≤ −1

b
≤ −1, explicit planar natural

extensions (denoted D̂a,b there) are given in Theorem 9.1 of [22]. (Each of the planar
domains is composed of finitely many rectangles, a feature that is not shared with all of
the α-continued fraction maps.) In Theorem 9.2 there, it is shown that the entropy of the
(a, b)-interval map is the quotient of π2/3 by the µ-measure of the planar natural extension.

We now form a single copy of this natural extension, of the form

Σ̃ = { [A−(Z(x, y) ) ] | (x, y) ∈ D̂a,b } ,
where again the square brackets denote right PSL(2,Z) classes; the map Z is as defined
in § 4.1; and, A−(x, y) is as given in (4). The first case of the proof of Lemma 5.2 applies,

where now we set d =
⌊
− 1
x

⌉
a,b

— thus, flow times −2 log |x| define a self-map on Σ̃ that

is a 1–1 factor of the natural extension map on D̂a,b. That this self-map is in fact a first
return map follows again as in §5.3.

References

[1] L.M. Abramov, The entropy of a derived automorphism, Dok. Akad. Nauk. SSSR. Vol. 128
(1959) 647–650. English translation: Amer. Math. Soc. Transl. Ser. 2 49 (1966), 162–166.

[2] , On the entropy of a flow, Dok. Akad. Nauk. SSSR. Vol. 128 (1959) 873–875. English
translation: Amer. Math. Soc. Transl. Ser. 2 49 (1966), 167–170.

[3] R. Adler and L. Flatto, Geodesic flows, interval maps, and symbolic dynamics, Bull. Amer.
Math. Soc. (N.S.) 25 (1991), no. 2, 229–334.

[4] W. Ambrose, Representation of ergodic flows, Ann. of Math. (2) 42, (1941), 723–739.
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