
Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Implementing the darcs patch formalism
...and verifying it

David Roundy

Cornell University

February 2006



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

The subject of this talk

Darcs a revision control system based on a formalism for
manipulating changes, which allows for a system that is
change-based rather than version-based. This talk will describe this
formalism.

I will also describe a new trick using “Generalized Algebraic Data
Types” (GADTs) to statically check the correctness of
change-manipulation code.



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Outline

1 Introduction to darcs

2 Patch relationships
Sequence
Parallel and antiparallel

3 Enforcing patch relationships
Introduction to GADTs
Phantom existential witness types

4 Patch properties
Inversion
Equality
Commutation properties

5 Application: a merge



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Darcs is a change-based revision control system, in contrast to the
more common history-based revision control systems.

darcs

has a friendly user interface

uses an “egalitarian” distributed model

allows “cherry picking” of changes

avoids “merge points”—no history



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Distributed rather than centralized

Centralized

Examples: CVS, Subversion,
Perforce

Distributed

Examples: darcs, Git, Bitkeeper,
monotone, arch



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Change-based rather than version-based

Version-based

Examples: Git, Bitkeeper, Monotone,
CVS, Subversion

Change-based

Examples: darcs



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Darcs terminology

A change is a logical entity.

A patch is a description of a change.

The state of a repository is defined by its set of changes.

A set of changes is stored as a sequence of patches.

Notation

A change is represented as a capital letter: A

A patch is represented by a capital letter with possibly primes
and/or a subscript: A, A′, A1

Sometimes the state (or context) before and after a patch is
represented by lowercase superscripts: oAa



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

The state of a repository is
defined by a set of changes.



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Patches are normally stored in sequence. For a sequential pair of
patches, the final state of the first patch is identical to the initial
state of the second patch.

Mathematical notation

ABC
or

oAaBbC c
.

Haskell notation

A :. B
or

A :- B :- C.



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Parallel and antiparallel

Parallel patches begin at the same state, and diverge to two
different states, while antiparallel patches begin at different states
and end at the same state. e.g. for the two patches:

oAa and oBb

A is parallel to B and A−1 is antiparallel to B−1.

Mathematical notation

A ∨ B
and

A−1 ∧ B−1
.

Haskell notation

A :\/: B
and

invert A :/\: invert B.



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Generalized Algebraic Data Types (GADTs)

“The solution to every problem is to create a new GADT.”

“Generalized Algebraic Data Type”

Also known as “guarded recursive data types” or “first-class
phantom types”

The common use example (which I won’t give here) is to
allow statically typesafe abstract syntax trees.

Allow runtime behavior to statically restrict a subtype.



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

A very quick glance at Haskell syntax

Types are capitalized, as in Int

Functions are lowercase

foo :: Int -> Char -> Bool

foo is a function that accepts an Int and a Char as arguments,
and returns a Bool

Type variables are lowercase

bar :: a -> a -> a

bar is a function that accepts two arguments of any type, and
returns a value of the same type.



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Algebraic Data Types

data Bool where
True :: Bool
False :: Bool

data Complex where
Cartesian :: Double -> Double -> Complex
Polar :: Double -> Double -> Complex
PureReal :: Double -> Complex

data Maybe a where
Just :: a -> Maybe a
Nothing :: Maybe a



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Generalized Algebraic Data Types (GADTs)

data Pair a b where
Pair :: a -> b -> Foo a b
SymmetricPair :: a -> a -> Foo a a

The latter constructor restricts the type, which allows us to write
typesafe code that wouldn’t be possible with the more general type
of a “Pair a b”.

foo :: Pair a b -> b
foo (Pair x y) = y
foo (SymmetricPair x y) = x -- Note the oddness!



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Phantom existential witness types

Phantom type

A type for which no data member is ever created. Most common
example is the use in the ST monad to statically ensure that
distinct states cannot be mixed.

Existential type

A type whose identity cannot be determined. The type is, however,
known to exist, and may be known to have certain properties (e.g.
be in a typeclass).

Witness type

A type whose existence is used to prove (“stand as witness”) that
something is true. Must be phantom.



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Patch Properties



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Inversion

Every darcs patch must be invertible.

Repercussions:

A “remove file” patch must either contain the entire contents
of the file, or one must only be able to remove a file after its
contents have been removed. (darcs chooses the latter)

A patch such as “copy file” is extra-complicated, since its
inverse, a “merge two identical files” patch has confusing
semantics (and thus the “copy file” patch would as well).

We can apply patches either forwards or backwards to reach a
particular version.

Other benefits to be seen later when merging...



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Inversion with phantom types as witnesses

The Haskell “Patch” type

data Patch a b where
...

This says that the Patch type is parametrized by two phantom
types.

No GADTs yet, but we gain some expressiveness in function
definitions:

Compare the Haskell code

invert :: Patch o a -> Patch a o

with the mathematical notation oAa and a
(
A−1

)o
.



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Inverse of a sequence

The inverse of a sequence of patches is the sequence of their
inverses, in reverse order.

(ABC )−1 = C−1B−1A−1

x = invert (a :- b :- c)
y = invert c :- invert b :- invert a
-- x and y are the same...



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Patch equality

If two patches are equal, then both their representation, initial
and final states are equal.

Conversely, if two of these three are true, then the third must
be also.

We need:

A function that accepts two parallel patches and determines if
they are equal by comparing their representation.

A function that accepts two anti-parallel patches and
determines if they are equal by comparing their representation.

Note: Checking the representation alone is not enough to
guarantee equality, since non-equal patches may have the same
representation when expressed in different contexts (e.g. “remove
the first line of a file”).



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

GADT witnesses and patch equality

GADT as witness of type equality

data EqCheck a b where
NotEq :: EqCheck a b
IsEq :: EqCheck a a

Two equality check operators

(=\/=) :: Patch a b -> Patch a c -> EqCheck b c
(=/\=) :: Patch a c -> Patch b c -> EqCheck a b

-- Implemented using unsafeCoerce#

example ((a :- b) :\/: (a’ :- c)) =
case a =\/= a’ of
IsEq -> example2 (b :\/: c)
...

(AB) ∨ (A′C )

A = A′

B ∨ C



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Commutation

Commutation is both a relationship and a function, which reorders
a pair of sequential patches. Commutation may fail.

Mathematical notation

AB ↔ B ′A′ or
oAaBb ↔o B ′xA′b

Haskell notation

commute :: Sequential o b -> Maybe (Sequential o b)

... do (a :- b :- c) <- abc
b’ :. a’ <- commute (a :. b)
c’ :. a’’ <- commute (a’ :. c)



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Commutation is self-inverting

Commutation—when successful—is self-inverting.

verify_commute (a :. b) | isJust (commute (a :. b)) =
isJust $ do b1 :. a1 <- commute (a :. b)

a’ :. b’ <- commute (b1 :. a1)
IsEq <- a’ =\/= a
IsEq <- b’ =/\= b -- could use =\/=



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Commutation of an inverse sequential pair

Commutation with the inverse of a sequential pair gives the same
result as the inverse of the commutation of the pair.

AB ↔ B1A1

B−1A−1 ↔ A−1
1 B−1

1

verify_commute (a :. b) | isJust (commute (a :. b)) =
isJust $
do b1 :. a1 <- commute (a :. b)

ia1 :. ib1 <- commute (invert b :. invert a)
IsEq <- b1 =\/= invert ib1
IsEq <- a1 =\/= invert ia1



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Commutation with patch and its inverse

Commutation with a patch and its inverse, if successful, does not
alter a patch. If the first commute is successful, then the other
must be also.

AB ↔ B1A1

A−1B1 ↔ BA−1
1

verify_commute (a :. b) | isJust (commute (a :. b)) =
isJust $ do b1 :. a1 <- commute (a :. b)

b’ :. ia1 <- commute (invert a :. b1)
IsEq <- b’ =\/= b
IsEq <- invert ia1 =\/= a1



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Permutivity

Permutivity is the property of the commute that means that any
commuted permutation is uniquely defined, regardless of the order
of commutation.

ABC ↔ AC1B1 ↔ C2A1B1 ↔ C2B2A2 ↔ B3C3A2 ↔ B3A3C

Ganesh has proven that if permutivity holds for any set of
sequence of three patches, then it holds for any sequence of N
patches.

Only applies to permutations that exist



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Application: a merge

A merge is an operation that takes two parallel patches, and
converts them into a pair of sequential patches.
Commutation of the sequential pair must allow recovery of both
original patches.

The merge of A ∨ B is
AB1 ↔ BA1

Using the property of commutation with a patch and its inverse:

B−1A↔ A1B
−1
1

which allows us to compute the merged result using only the merge
and invert functions.



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Application: a merge

The merge of A ∨ B is
AB1 ↔ BA1

Using the property of commutation with a patch and its inverse:

B−1A↔ A1B
−1
1

which allows us to compute the merged result using only the merge
and invert functions.

merge :: Parallel a b -> Maybe (AntiParallel b a)
-- Input is A and B, output is A_1 and B_1
merge (a :\/: b) =

do a1 :. ib1 <- commute (invert b :. a)
return (a1 :/\: invert ib1)



Introduction to darcs Patch relationships Enforcing patch relationships Patch properties Application: a merge

Conclusions

“The solution to every problem is to create a new GADT.”

Patch manipulation is lots of fun.

GADTs are also lots of fun.

Witness types allow us to prevent large classes of bugs.

Interested darcs users:

Meet at 1:00 outside this building for a brainstorming discussion of
what features really ought to be added to darcs.


	Introduction to darcs
	 
	Distributed rather than centralized
	Change-based rather than version-based

	Patch relationships
	Sequence
	Parallel and antiparallel

	Enforcing patch relationships
	Introduction to GADTs
	Phantom existential witness types

	Patch properties
	Inversion
	Equality
	Commutation properties

	Application: a merge
	 

	 

