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The calculation of conditional statistics for the purpose of data assimilation in large-scale systems
requires an approximation to the dynamical evolution of probability distributions. In this paper,
two approximation schemes are considered: moment-closure methods and empirical-ensemble meth-
ods. In the first paper of this series, a mean-field conditional analysis was proposed to incorporate
the results of measurements. Within that approximation, it is found to be advantageous to con-
struct moment-closures to preserve an exact H-theorem for the “relative entropy.” The closure and
ensemble methods are compared here for a simple model system with bimodal statistics. The mean-
field variational closure methods give results that are consistently more accurate than those from
ensemble methods. The exact conditional analysis requires a closure of at least second-order, but
the mean-field analysis can employ first-order closures as well as second-order. First-order closures
are found to be nearly as accurate as second-order closures in the simple test problem.

PACS numbers: 92.60.Ry, 92.60.Wc, 93.65.+e, 92.70.-j, 02.50.-r

I. INTRODUCTION

This paper is part two of a series of three papers pre-
senting a new probabilistic approach to data assimila-
tion and inverse modeling for large-scale nonlinear dy-
namical systems, based upon the approximate calcula-
tion of conditional statistics. In Eyink et al. [1], here-
after denoted as I, we discussed the general probabilis-
tic setting of optimal estimation for nonlinear stochas-
tic dynamics. As described there, the exact calculation
of conditional statistics requires the evolution of prob-
ability distributions, by means of the forward-backward
Kolmogorov equations, and the combination or “analy-
sis” of prior distributions with imprecise measurements,
by means of Bayes formula. The main aim of I was to
develop a mean-field approximation to the “analysis” or
conditioning step of the calculation. It was shown by
consideration of a statistical mechanics of time-histories
that a mean-field conditional analysis can be obtained by
the minimization of a nonnegative, convex cost function,
the multi-time relative entropy. The calculation of this
cost function and its gradient requires also the solution
of the forward-backward Kolmogorov equations. It is the
purpose of this paper to consider approximations to the
dynamical evolution given by these equations. Two ap-
proximations especially shall be considered here: Monte
Carlo or empirical ensemble methods—as originally pro-
posed by Leith [2]—and moment-closure methods such
as used in theory of turbulent fluids or kinetic theory of
gases. In the third paper of the series, Eyink et al. [3],
denoted as III, we develop numerical algorithms which
will allow an efficient implementation of our methods to

large-scale systems of real interest in the geosciences.

It is important to emphasize that the Kolmogorov
equations for the probability distributions are themselves
completely impractical to solve for such large-scale sys-
tems. If the model dynamics of the system has D degrees-
of-freedom, then the Kolmogorov equations are partial
differential equations in a hyperspatial domain of dimen-
sion D. For all except the simplest, low-dimensional dy-
namical systems, it is impossible to solve such partial
differential equations. Therefore, methods to calculate
the exact conditional statistics by means of such equa-
tions are out of reach. This was already realized by one
of the pioneers in the field, H. J. Kushner, who solved
the problem of optimal filtering for nonlinear dynam-
ics [see 4, 5]. Nevertheless Kushner realized that the
exact mathematical solution by his (stochastic) partial
differential equations could not be practically applied to
spatially-extended or “distributed” systems of interest in
many applications. Kushner [6] pointed out the anal-
ogy of this problem to the closure problem of turbulence
theory and he developed moment-closure approximations
to his exact equations for optimal filtering. Such ap-
proaches have also been advocated in the meteorological
community to to study predictability of forecasts (see
Ehrendorfer [7] for a review). In the present paper [see
also 8] this closure method is extended to the problem
of optimal smoothing, employing future measurements
as well as past ones. For this purpose, we exploit an
action principle for the forward-backward Kolmogorov
equations, which are the corresponding Euler-Lagrange
equations. Moment-closure methods can then be for-
mulated as a Rayleigh-Ritz approximation, incorporat-



ing guesses of the statistics of the system by means of
precise analytical ansdtze. These methods can be ap-
plied both within the exact conditional analysis and the
mean-field conditional analysis. However, the latter has
the important advantage that for it first-order closures
can be successfully employed, whereas closures using the
exact conditional analysis must be at least second-order.

The concept of relative entropy, which already ap-
peared fundamentally in formulating the mean-field anal-
ysis in I, plays also an essential role in the moment-
closure methods employed here. The important applica-
tion of entropy and dissipation functions to state estima-
tion has been appreciated in statistical physics since the
work of Onsager and Machlup [9], a development of On-
sager’s earlier ground-breaking work on irreversible ther-
modynamics. For the statistical Markov models of great-
est interest in the geosciences, the (single-time) relative
entropy is a Lyapunov function, providing a generalized
second law of thermodynamics. Recently, Kleeman [10]
has emphasized this point for stochastic climate models
and proposed to use relative entropy as a measure of the
potential utility of dynamical predictions. The moment-
closures considered in this work are entropy-based and
ensure the preservation of the exact H-theorem for the
relative entropy [see 11]. Such closure methods are mod-
eled after those successfully employed in kinetic theory
[see 12, 13]. An important bonus of the entropy-based
closure methods is that they provide a closed-form ex-
pression for the approximate cost function or effective
action (see [8] and I). The resulting cost function has
exactly the form of the Onsager-Machlup action in sta-
tistical physics. See section 2.1.2 below. This yields an
intuitive interpretation of the newly-proposed cost func-
tion in terms of the enhanced dissipation and noise pro-
duced by small-scale chaotic or stochastic dynamics.

The other main evolution approximation considered in
this work is the Monte Carlo scheme employing empiri-
cal ensembles of N sample realizations of the stochastic
model systems, as proposed by Leith [2]. In recent years,
such methods for data assimilation and inverse modeling
in geophysical applications have been extensively devel-
oped by G. Evensen and his collaborators [see 14-17].
See Tippett et al. [18] for a review of more recent devel-
opments. We regard such methods as among the most
promising presently being considered and they shall be
used as the primary basis of comparison for the moment-
closure methods advocated in this work. We hope to
convince the reader that the Rayleigh-Ritz or moment-
closure approximations to the evolution are complemen-
tary to the empirical-ensemble methods and competitive,
at least, in accuracy and numerical efficiency.

The detailed contents of this paper are as follows: In
Section 2 we discuss the two main evolution approxi-
mations considered in this work, moment-closure meth-
ods and empirical-ensemble methods. The former are
shown there to correspond to a Rayleigh-Ritz approx-
imation derived from a variational formulation of the
forward-backward Kolmogorov equations. Two alter-

native Rayleigh-Ritz approaches are considered, which
make different trial guesses for the solution of the back-
ward equation, a linear ansatz and an exponential ansatz.
The entropy-based closure scheme for the forward equa-
tion using also an exponential ansatz is briefly described.
In Section 3 we develop concrete moment-closures for a
simple model already considered in I as a test case. Both
first-order and second-order moment closures are consid-
ered. Finally, in Section 4 we give the results of assimi-
lation experiments for the model problem. The approx-
imation methods discussed in this paper, both ensemble
methods and the array of closure methods developed in
the earlier sections, are compared with each other and
also with the methods using the exact dynamical evolu-
tion, discussed in I. Section 5 contains our summary and
final discussion.

II. EVOLUTION APPROXIMATIONS
A. Moment-Closure Methods (Rayleigh-Ritz)

We now introduce approximate methods of solving the
evolution equations by means of moment-closure. The
basis of these approximation schemes is the following
variational principle. If L(¢) is the generator of a Markov
process, define an action functional

T[A, P] := /t 'f dt / dx A(, 1)@ — LE)Px,1) (1)

where A are bounded variables (A € L) and P are
distributions with finite integral (P € L!). Then, the
forward and backward Kolmogorov equations, I(7),(9),
are simultaneously obtained as Euler-Lagrange equations
for stationarity of I'[A, P] when varied over P with ini-
tial condition P(¢;) = Po and A with final condition
A(ty) = 1. See Balian and Vénéroni [19] for the gen-
eral approach. Such a variational formulation invites the
use of Rayleigh-Ritz approximation methods, in which,
rather than varying over all A € L™, P € L', one varies
only over finitely parametrized trial functions. Such
methods turn out to be equivalent to standard moment-
closure approximations. The right trial function P rep-
resents one’s guess of the statistics of the system, while
the left trial function .4 represents one’s guess of the sig-
nificant dynamical variables.

Within this framework there is also a useful variational
characterization of the effective action I x [x] discussed in
I. It is obtained by a constrained variation of the action
I'[A,P]. In fact, the effective action is its stationary point

(st.pt)
[x[x] = st.pt. 4 pT[A, P] (2)

when varied over the same classes as above, but subject
to constraints of fixed overlap

/ dx A(x,)P(x,8) = 1 3)



and fixed expectation

/dx xA(x,t)P(x,t) = x(t) (4)

for all ¢ € [t;,tf]. See Eyink [8]. This theorem may be
made the basis of an algorithm to calculate the effective
action by employing the forward-backward Kolmogorov
equations, similar to that outlined in section 3.1 of I for
calculating Hx (X1, ...,Xnm)-

We now discuss two somewhat different approximation
schemes based upon these results.

1. Left-Linear Ansatz

In this approach, the trial functions A, P employed are
constructed from the usual elements of a moment-closure:
a set of moment functions M;(x,t), i = 1,...,R and a
probability density function or PDF ansatz P(x,t;u),
which is conveniently parametrized by the mean val-
ues which it attributes to the moment-functions, p :=
Jdx P(x,t; u)M(x,t). P(x,t;p) is itself the right trial
function in this approach. The left trial function will be
taken to be a linear combination of the (centered) mo-
ment functions

R
Ax,t;0) =1+ Za,.[M,-(x,t) — u(®)]. (5)

The histories a(t), u(t) are the parameters to be varied
over. Substituting the trial forms, one obtains the re-
duced action

t

Dlayu] = [ dt ™ Olt) - V(u®), 0] (6)

ti

with

Vg, 1) == (M) = (@ + LOMO)py-  (7)

(-)u(¢) denotes average with respect to the PDF ansatz.
The Euler-Lagrange equations are

="V (u,1) (8)

and

o+ (g—X) ! (pn,t)ax = 0. 9)

These are solved subject to initial condition p(t;) = pq
and final condition a(ty) = 0. The forward equation (8)
is just the standard moment-closure equation for the set
of moments M;(x,t), ¢ = 1,..., R and the PDF ansatz
P(x,t; ). The equation (9) is its adjoint. An advantage
of this scheme is that the Euler-Lagrange equations (8),
(9) are partially decoupled: the forward equation does
not depend upon the solution of the backward equation.

Hence, the system may be solved by integrating (8) for-
ward in time and storing its solution wp(t) for use in the
integration of (9) backward in time.

To calculate the thermodynamic functions Fx, Hx of
I we must also formulate the jump conditions 1(24),(28)
within the closure. For a general closure, it is not known
how to do this. A practical way around this difficulty is
to consider the measurements to be continuous in time,
averaged with respect to a test function 6,(t — t,,) lo-
calized within a time range 7 of the measurement time
tm. This is a realistic assumption, where 7 represents
the duration of the measurement. However, it is useful
to develop an approach in which proper jump conditions
can be formulated as 7 — 0. This can be done (i) if the
quantity being measured, here the state x, is included
among the moment variables M;(x,t), i = 1,..., R in the
closure and (ii) if a special form is used for the right trial
function, an exponential ansatz

exp [ATM(X, t)]

P(x,t;A) = N D

P.(x,1), (10)
where P, (x,t) is a suitable reference PDF, and
Nu(\t) = /dx exp [ATM(x,t)] P.(x,1). (11)

The condition (i) is often satisfied, since the most natural
closure equation is the average of I(1) itself. Condition
(i) of an exponential form (10) also does not seriously
limit the formulation of suitable closures. All that is
required is that exponential moments like those in (11) be
calculable for the reference PDF P, (either analytically
or numerically).

We now state the jump conditions that apply when
conditions (1), (%) are satisfied. Since (i) holds, we
might as well calculate the thermodynamic functions
Fpr(A1, -y Anr), Hy(my, ..., mys) appropriate to all of
the closure variables M;(x,t), ¢ = 1,..., R not just the
state variables x;, ¢ = 1,...,d. Considering 1(24), it is
clear that suitable jump conditions for the forward equa-
tion (8) are

At tm) = Ao tm) + Am, m=1,.. M (12)

Here, A(p,t) is the inverse of the moment function

u(A 1) = / dx M(x, 1P (x, 1 \).

In fact, A(p,t) may be found from the Legendre trans-
formation for the (single-time) relative entropy

Hy(p,t) = me{uTA — Fy (A1)} (13)

where Fur(At) = logNpy(At). That is, A(u,t)
is the value of A for which the maximum in (13)
is achieved. The differences (AF),(A1,-; Am) =
FuA(th tm)stm) — Fur(A (K tm), t) summed over



m = 1,..., M give the function Fp;(Ay,...,A\pr). To ob-
tain its Legendre transform Hps(myj,...,mps) one must
also have the derivatives m,, = 0Fy/0Ap,. Asin, these
are obtained from a suitable adjoint algorithm. The ex-
pectation

m(t) = / dx M(x, ) A(x, ) P(x, ),

analogous to 1(29), becomes within the linear ansatz (5)
m(t) = p(t) + Cu(p, t)e(t) (14)

where now C (4, £) = (IM(8)—(®)] M)~ (0] ) paco) 1
is the single-time covariance of M(¢) within the PDF
ansatz (10). The variable a(t) satisfies the backward
equation (9) between measurements. Requiring that the
smoother m(t) be continuous at the measurement times
yields the jump conditions:

ph + Cu(ph tm)ah = po + Cor(ps, tm) oy, (15)

m = 1,..., M. Given the value o}, = a(t,+) from the
backward integration, this linear equation can be solved
for a;,. The latter then becomes the final condition
a(ty,—) for integration backward to the next measure-
ment time. Finally, m,, = m(t,,) for all m = 1,..., M.
See Eyink [8].

In addition to the convenient jump conditions,
(12),(15), such exponential-PDF closures have other
good properties. Closures of this type were first in-
troduced in Levermore [12, 13] and successfully used
in kinetic theory, where they are shown to preserve
an H-theorem. Likewise, if the reference PDF P, (x,t)
is an exact solution of the forward Kolmogorov equa-
tion, then there is an H-theorem for the closure dynam-
ics (8) with the relative entropy (13) as the Lyapunov
function [see 11]. Indeed, the rate of entropy change,
m(p,t) = AT (w, )V (p,t) + GE(,t), is nonpositive
for all p and zero only for p = p,(t) which minimizes
H,(p,t). This is a consequence of the stability of the
Fokker-Planck equation, which implies a relaxation in
time of the distribution P(z,t) for any initial data to a
unique stationary PDF Py (x). For the closure equations
(8) from the exponential-PDF ansatz, p, (co) is then the
unique, global fixed point solution.

We have now formulated a complete set of
prescriptions for calculating Fj(Ag,...,Ay) and
Hjps(my, ...,mys) with the right exponential ansatz (10)
and the left linear ansatz (5). Although no closed-form
expression is available for either of these functions, we
can employ the above algorithms to calculate them
numerically to any desired accuracy. This suffices in
order to carry out the necessary optimizations to obtain
the smoother estimate.

The same circle of ideas may be applied to construct-
ing closures of the KSP equations. In fact, assume that
the closure variables M consist of the state variables x
and their tensor products xx', M := (x,xx'), with

mean values given by p = (£, E) for an exponential PDF
ansatz. Let the linear coefficients in the left trial state be
denoted as @ = (a, A) and the exponential parameters
in the right trial state be A = (£, A). Because the states
evolve by the forward and backward Kolmogorov equa-
tions between measurements, the closure KSP equations
are of the same form as those in (8),(9). Simple jump con-
ditions for the thermodynamic field variables A = (£, A)
in the forward equation may be read off directly from
I(8):

e =6, + R, ym, (16)
+ S
A=A, — iRm , (17
for m = 1,...,M. The jump conditions for the vari-

abless @ = (a,A) in the backward equation fol-
low from the requirement of continuity of m(t) =
[ dxM(x,t)A(x,t)P(x,t) and are precisely the same as
(15) above. In this approach, the evolution between mea-
surements is approximated by closure, but the analysis at
measurement times is performed exactly in the forward
equation. The analysis in the backward equation is still
only approximate, because the linear ansatz for the left
trial state does not allow an exact implementation of the
jump conditions 1(10). We emphasize that an approxi-
mation of the KSP equations could be formulated in this
manner only if a second-order closure is employed, which
includes among the closure variables the squares of the
state variables in addition to those variables themselves.
The linear ansatz (5) is a source of worry in both of
the approaches outlined in this section, i.e. closure of
the KSP equations directly or closure of the variational
equations. If the magnitudes of the linear coefficients
|a;(t)], i = 1,..., R grow large enough, then it is possi-
ble that the left trial function A(x,t) < 0 for some x,¢.
However, it is clear from the statistical interpretation of
A in sections 2.2 and 3.1 of I, that .A(x,t) > 0 must hold
for all x,t. Therefore, we may expect to encounter diffi-
culties with this approach when measured values are far
from the unconditioned ensemble average m(t), obtained
by solving the closure equation (8) with the initial da-
tum my = [ dx M(x)Py(x). In fact, we shall see in later
sections that such difficulties do indeed materialize.

2. Double-Ezponential Ansatz

Within the context of exponential PDF closures a par-
ticularly symmetric and attractive choice is to make the
double-exponential ansatz:

P(x,t) = exp [8TM(x,t) = F(8,1)| Pulx,t)  (18)

for the right trial state and

A(x,t) = exp [a"M(x,t) — (AaF)(8,1)] (19)



for the left trial state. Here (AqF)(B,t) := F(a +
B,t) — F(B,t) so that the normalization constraint
[ dx A(x,t)P(x,t) = 1 is automatically satisfied. For
small e, (19) coincides with the linear ansatz (5). How-
ever, this new ansatz for the left trial function is globally
nonnegative and symmetric in form to the exponential
for the right trial state. An even more attractive feature

1 [t
FM[m] = Z ;

+ Hpy(m(t;),t;)

of this double exponential ansatz is that, within it, the
Rayleigh-Ritz effective action of the closure variables M
themselves may be calculated analytically in closed form.
The Rayleigh-Ritz approximation to the effective action
is determined from the double exponential ansatz accord-
ing to the theorem stated at the beginning of section 2.1.
The result is:

dt [ra(t) — V(m, )] TQ (m, t)[xa(t) — V(m, 1)

where V(m, t) is the same as in the previous subsection and

Qij(m, 1) :== <(VXMi)TD(VxMj)))\(m,t)'

See Eyink [8] for some details of the derivation.

The effective action (20) has the same form as the
Onsager-Machlup action in statistical mechanics (see On-
sager and Machlup [9], also Eyink [20]). This form is
familiar to meteorologists, since it it is similar to the
cost function already used in the standard least-squares
estimation or “weak constraint” approach to data assim-
ilation [see 21]:

I[x] = 1 !

1), dt [x(t) — £(x, )] "D (x, )[x(t) - £(x, )]

+ g I(t) — xa] "G5 () o). (22)
This is the same action functional which appears in equa-
tion I(16) for the PDF on histories. Therefore, minimiz-
ing the cost function I[x] gives a maximum-likelihood
estimate. However, despite their superficial resemblance,
the cost functions (20) and (22) have quite different prop-
erties and interpretations. Foremost, the cost function
I[x] takes as the unbiased estimate the solution of the
deterministic dynamical equation

x(t) = f(x,t), x(t;) =% (23)
with no model error. On the other hand, our cost func-
tion I'jps[m] takes as unbiased estimate an approxima-
tion of the ensemble average m(t), obtained by solv-
ing the closure equation (8) with the initial datum mg.

Whereas the deterministic dynamics (23) is likely to have
multiple attractors—fixed points, limit cycles, or chaotic
attractors—the closure dynamics (8) should have a sin-
gle global stable fixed point m,, which corresponds to the
average [ dx M(x)P;(x) in the unique invariant measure
Ps for the process. The latter is the “climate state” of the
model. Thus, in the absence of any observations, our cost
function correctly produces as its estimate the climate-
average state. We may note also that the matrix Q(m, t)
in our cost function is a chaos-generated noise covariance,
like that calculated by Miller et al., section 4.d(2) in a
Monte Carlo experiment for the Lorenz model. However,
in our approach, the chaos-generated noise is calculated
analytically within the closure via the formula (21). This
noise may be much larger than the microscopic noise co-
variance D(x, t) appearing in the stochastic equation I(1)
and the bare action (22).

Despite the differences from the standard least-squares
cost function, the similarity in form of our closure cost
function (20) allows many of the standard methods for
(22) to be carried over. For example, the inverse matrix
Q! may be eliminated by introducing a maximization
over an auxillary variable c. In fact, the latter just cor-
respond to the parameters in the left trial state (19). In-
cluding the cost function for the observations, the total
action to be extremized may then be written as

ty

t;

1 M
+§ Z [m(tm
m=1

) - ym]TR7_nl [m(tm) - ym]-



The Euler-Lagrange equations for this functional are

m = V(m,t) +2Q(m,t)a, (25)
and
A AN o , ¢
o+ (a—m> a+a—m(a Qa) =
M
Z Rr_nl [m(tm) - ym](s(t - tm)- (26)

Solving these equations with boundary values a(t;) =
A(m(t;),t;) and a(ty) = 0 can give directly the optimal
history, without the need of applying any explicit min-
imization algorithm. In contrast to the equations (8),
(9) which arise from the left-linear ansatz, the equations
(25), (25) above are fully coupled and must be solved as
a two-time boundary-value problem. Furthermore, there
are only jumps at measurements in the solution of the
backward equation and none in solving the forward equa-
tion, which provides directly the smoother estimate m(t).

As in the previous subsection on the left-linear ansatz,
we may also use the double-exponential ansatz to con-
struct closures of the KSP equations directly. As be-
fore, we must assume that the closure variables M consist
of the state variables x and their tensor products xx ',
M := (x,xx'), with mean values given by m = (x, X)
for a double exponential ansatz. Let the exponential pa-
rameters in the left trial state be denoted as a = (a, A)
and those in the right trial state as 8 = (b, B). The clo-
sure KSP equations are now of the same form as those
in (25),(26). As in (25),(26), there are no jumps at mea-
surement times in the equations for m = (x,X). On the
other hand, there are simple jump conditions for the ad-
joint variables & = (a, A), which may be read off directly
from I(10):

a, = a;,"1 + R,_nlym, (27)
_ IR
A=A — 5Rm , (28)

for m =1, ..., M. In this approach, the evolution between
measurements is approximated by closure, but the analy-
sis at measurement times is performed exactly. As before,
the price paid for this is that a second-order closure must
be employed.

B. Empirical Ensemble Methods

An alternative method of approximating the dynami-
cal evolution is by the use of empirical ensembles of so-
lution histories, {x(™(t) : t € [t;,t;]}] for n = 1,..., N,
generated in the manner discussed at the beginning of
section 3.1 of I. In particular, such empirical ensemble

or Monte Carlo methods have been advocated and devel-
oped by Evensen. In the case of zero model error, when
D = 0, the forward Kolmogorov or Liouville equation

8P (x,t) = — Vi [f(x,8)P(x,1)] (29)

is hyperbolic and the ensemble methods correspond to
solution by the method of characteristics. In fact, the
solution trajectories S'xg of I(1) are just the character-
istics of (29) and

0(S~tx)

P, 1) = Po(S™'%) | =5

(30)

is the solution of (29) written in terms of the initial dis-
tribution and backward characteristics. For averages of
moment functions M(x,t¢) with respect to P(x,t) this
yields the formula

(M(x, 8)); = / dxo Po(xo)M(S'x0, ). (31)

The latter average over initial data may be approximated
by an N-sample empirical ensemble average

N
MG}~ S M@0, 0. (32)

where x(™ (t) = Stx(()n) and x((]"), n = 1,...,N are in-
dependently sampled from the distribution Py. For
low-order moment functions M(x,t) one may expect to
achieve convergence of (32) for sample sizes N of reason-
able magnitude. In the case where D # 0 and the for-
ward Kolmogorov equation is parabolic, then one must
include in (31) also an average over realizations of the
random noise. This is the analogue of the method of
characteristics for the parabolic Fokker-Planck equation.
In this case the N sample histories in (32) must also
be constructed with temporal sequences of model er-
rors drawn independently from the white-noise distribu-
tion. Such methods may be combined with approximate
analysis methods—notably the linear analysis—to gener-
ate approximations to IN-sample ensembles conditioned
upon measurements. See Evensen [14], van Leeuwen
and Evensen [15], Burgers et al. [16], Evensen and van
Leeuwen [17] and references in [18]. Such approxima-
tions shall be the primary object of comparison for the
moment-closure closure schemes advocated in this work.

III. CLOSURES FOR THE MODEL PROBLEM

As in I, we consider as our sample problem the follow-
ing stochastically forced double-well system

&(t) = f(z(t)) + kn(t) (33)
where

f(2) = 42(1 - 2?), (34)



n(t) is white-noise with zero mean and covariance
@)y = 6(t —¢'), and kK = 0.5. As for any non-
linear dynamical system, the statistical moments u, =
(™), n = 1,2,3,... do not satisfy closed equations at
any finite order. Instead, there is an infinite hierarchy of
moment equations. For our simple model, the equations
of the hierarchy are

f = 4pa — 4ps, (35)

fio = 8y — 8ug + K2, ... (36)

and so forth for higher-order moments. Each equation
for a moment of a given order involves moments of higher
order. Moment-closure methods attempt to solve the hi-
erarchy truncated at a given order by making a model or
closure of the unknown higher-order moments in terms
of the retained lower-order ones. Most commonly, a first-
order closure is made, in which only the average of the
dynamical equation is closed. This corresponds to keep-
ing only (35) in our hierarchy. Occasionally, one considers
second-order closures in which an equation also for 2nd-
order moments of the state variables are considered, like
our (36). For spatially-extended systems with many de-
grees of freedom, such second-order closures are already
at the limit of practicality, because the number of vari-
ables to be integrated is the square of that for a first-order
closure. Closures of third and higher order are therefore
rarely considered.

We shall apply such closure methods to the double-
well model with either M(z) = (z) (first-order closure)
or M(z) = (x,22) (second-order closure). We discuss
each of these in turn.

A. First-Order Closure

In the first-order closure, we choose our reference PDF
P.(x), approximating Ps(z), as the distribution of a
surrogate variable X, constructed in the following way.
First, let X+ be normal random variables centered at £1

with the PDF’s
1 (zF1)2
G B

where 0? = £2/16. Because U"(£1) = 8, these random
variables are good surrogates for the fluctuations of the

Pi(z) =

solution z(t) of (33) within the wells at z = +1. We
finally define X, to be the random variable which takes
the same value as X with probability % and the same
value as X_ also with probability % Essentially, we toss
a fair coin in order to determine in which well of the
potential U the surrogate X, lies. This method allows
us to construct a highly non-Gaussian, bimodal reference
PDF P,.(z) by randomly selecting from normal random
variables, themselves having Gaussian distributions. The
same method should be readily applicable to more real-
istic, spatially extended systems.

In the present simple example, using this choice of Py,
it is straightforward to calculate the cumulant-generating
function or “free-energy” Fy (A1) = log ([ dz eM*P,(z))
in closed form:

1 ,..
Fy(\) = 502)\% + logcosh(Ay). (38)

A closed form expression for F)s is not required for our
method to be applicable: it is also possible to use a
numerical approximation of the normalization integral
Nar()1) in order to determine Fys(\;). However, it is
convenient here to use the analytical expression (38). All
of the moments pu,, required may be obtained by expan-
sion into cumulants C,,, and the latter are obtained in
turn as n-fold derivatives of Fjs(A1). For details, see
ITI, Appendix A2. Thus, pu; = Cy,u2 = Cy + C? and
pus = Cs3 +3C1Cs + 013 with

Cy = FJIM(/\1) = 02/\1 + tanh A\

Cy, = Fjy(m) =0% + sech?)\;
Cs = FYI(A\) = —2sech?); tanh \;. (39)

In particular, the moments p1,us appearing in Vi3 =
441 —4ps in (35) are both obtained in terms of Ay, yield-
ing a closure of that equation. Integrating the resulting
closure dynamics yields results that are virtually indis-
tinguishable from those using the first-order closure dis-
cussed in Eyink and Restrepo [22], which was constructed
with a somewhat different PDF ansatz.

For our simple model, the closure equation in terms of
the thermodynamic field A\; may be written out explicitly.
It is

(0? + sech2)\1)ﬂ = —40%(24 30%)A\; — 40923 —120%(1 + 02)2) tanh )\, (40)

The relative entropy likewise can be given as

1
Hy (M) = 502)\1 + Aptanh A; —logcosh A1, (41)

In the present case one can verify that nas (A1) < 0 for all



A1 and = 0 only for Ay = 0, so that Hy, is a Lyapunov
function. In Eyink and Levermore [11] it is shown that
this is true in general for exponential PDF closures, not
only when the reference PDF P,(z) is taken to be the
exact stationary PDF P, (), but also if it is a sufficiently
good approximation. Because of this H-theorem for the
dynamics (40), the origin 0, which is an unstable fixed
point for the deterministic dynamics £ = f(z), is the
global stable fixed point of the closure dynamics.

For the Rayleigh-Ritz calculation of effective actions,
we need also one other closure quantity, the “effective
noise covariance” Q. According to the general formula
(21), in our model Q(p) = 82(M'(z)M'(z) )y with
M/(z) = dM(z)/dx. Thus, for the first-order closure,

Note that @) is the same as the bare diffusion constant
k2 /2. This will be true for the first-order closure of any
stochastic dynamical system with purely additive noise.

B. Second-Order Closure

We take here the same reference PDF P,(z) as for
the first-order closure. We must then find Fis (A, A2) =

log (f dz e)‘w“‘”Z’P*(x)). Because the reference PDF
is a linear combination of Gaussians, it is easy to calculate

Q(u1) = 80°. (42)  this also in closed form:
|
Frr(X A)—M—llo (1 — 2X502) + log cosh | — 22— (43)
MWL A2) = 590 902y 2 8 29 & 1 - 2)0°

Note that Fy is only finite when A» < ziz. This con-
straint is obviously necessary because the tails of the
reference PDF for |z| > 1 have the asymptotic form
e~ /20" Thus, the normalization integral will only be
finite if the inequality is satisfied.

As before, we obtain all of the moments in the closure

vector

_ dpy — 4ps
Viw) = 82 — 8pua + K2 (44)
in terms of Ay, A2 (and thence p1, p2) by expanding them
in terms of cumulants C,, = 0"F/OA}. See III, Ap-
pendix A2. This algorithm generates the values of the
components V1, V» easily for numerical computation, but
analytical expressions are a little complicated to write
out in general and will not be given here. However, for
A1 = 0 it is easy to show that V; = 0 for all Ay and

Vo = 1602 + 802¢ — (240 — 8)€2 — 4802€3 — 8¢ (45)

with € = 1/(1 — 2X20?). The equation V2 = 0 has pre-
cisely one positive root £°. For k = 0.5, it is £° =~ 0.978,
which corresponds to A§ =~ —0.724. Thus, the closure
dynamics has a fixed point at (A§, A§) ~ (0, —0.724) and
numerical investigation shows that it is unique and sta-
ble. The reference PDF for our closure should, in fact,
really be taken to be Py(z) = e’\STM(m)’P*(a:)/N()\S).
The latter is the best approximation to the stationary
PDF P,(z) within our two-parameter ansatz because it
satisfies the stationarity condition

/ do Mi(z) IP.(z) =0, i=1,2  (46)

Here L = _6% (f(z)") ';—288—:2 is the Fokker-Planck op-
erator for the stochastic equation (33). However, taking
P.(z) as the reference PDF amounts just to making some
trivial shifts in variables, e.g. Fpr(A) = Fpr(A + A%) —
Fpr(A®). The only essential point is that it is the corre-
sponding entropy Ha(p) = Har (1) — Har (%) = A" (n—
p®) with p® = (0,0.972) which is the Lyapunov function
for the closure dynamics, and not Hpr().

Finally, we need to give the effective noise covariance
in the second-order closure:

Q(u1, p2) = 80? [ ! 2M1] (47)

2/.1/1 4/J/2

This is easily verified from the formula in the previous
subsection.

IV. RESULTS FOR THE MODEL PROBLEM

We shall now consider results of data assimilation ex-
periments for the model (33). We use the same sample
history that appeared in Figure 1 of Miller et al. 1994
and in Figure 1 of I. For ease of comparison, the five sets
of “measurements” we consider shall also be the same as
in I, and designated in the same way, as datasets A-E.
We defer details of the numerical implementation of all
the estimation methods to III.

A. Comparison of Filtering Schemes

To begin, we compare three filtering schemes. The
main new method we consider is a second-order closure of
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FIG. 1: Dataset A (20 % rms error) represented by filled
circles. Solid line: mean, dashed line: mean + standard devi-
ation. Clockwise, (a) KS filter, (b) KS-2E closure, (c) EnKF.

the Kushner-Stratonovich (KS) filter equations (KS-2E),
using the exponential PDF ansatz of section 3.2. This
is discussed at length in III, section 3.1.1. For compar-
ison, we consider the Ensemble Kalman Filter (EnKF)
of Evensen [14], Burgers et al. [16] and Houtekamer and
Mitchell [24] discussed in III, section 3.4.1, and finally the
exact KS filter, discussed in I. Since filters are subopti-
mal estimators and not the main subject of this paper,
we shall compare the above three methods for the single
dataset A.

In Figure 1 we plot the mean history and also the
mean history plus or minus the standard deviation for
each of the three filtering methods.  In Figure 1(a)
are plotted the exact conditional statistics from the KS
filter. In Figure 1(b) we plot the results of KS-2E clo-
sure, and in Figure 1(c) the results for EnKF. Obviously,
KS and KS-2E agree quite well, except that the vari-
ance predicted by the closure approximation tends to
be somewhat larger than the true conditional variance

from KS. Apart from this minor discrepancy, the second-
order exponential PDF closure of the KS filter seems to
be remarkably good. The EnKF method, however, has
a serious discrepancy when compared with the previous
two methods. Whereas the transition in the optimal KS
filter—and also KS-2E—begins at time ¢t = 3 and is com-
pleted at time ¢t = 5, for EnKF there is a lag in the tran-
sition. For EnKF the transition is just barely indicated
at time t = 4, really begins at ¢ = 5 and is only com-
pleted at time ¢ = 6. This defect of EnKF has already
been observed in Miller et al. [25]. The reason for this
failure to track the transition properly is the linear anal-
ysis employed in EnKF. For a discussion of that, see I,
section 3.2, and Evensen [14], Burgers et al. [16]. There-
fore, more recent ensemble Kalman filtering schemes [18]
employing the same linear analysis are likely to show the
same deficiency. We expect that an ensemble method em-
ploying a conditional analysis along the lines suggested
in I, section 5, would perform much better in this regard.

B. Comparison of Smoothing Schemes

Now we shall compare six smoothing algorithms, which
we denote by acronyms KSP, MFV, MFV-1LL, MFV-
1DE, MFV-2DE, and EnKS.

The first is the KSP algorithm discussed at length in 1.
It implements the exact analysis and the exact dynamics
(except for negligible discretization errors in solving the
PDE’s). Hence, this algorithm gives the primary results
for comparison with all the suboptimal estimators.

We also consider the new estimators that employ the
mean-field variational analysis. When implemented with
the exact dynamics via the Kolmogorov equations as dis-
cussed in I, we denote the algorithm just as MFV. We dis-
cuss also several closure approximations: MFV-1LL, us-
ing the first-order closure of section 3.1 and the left-linear
ansatz of section 2.1.1 (see III,Section 3.2.1); MFV-1DE,
using the first-order closure and the double-exponential
ansatz (ITIT,Section 3.2.2); and, finally, MFV-2DE, using
the second-order closure and double-exponential ansatz
(ITL,Section 3.3.2)). These represent a series of approx-
imations of increasing sophistication and, hopefully, ac-
curacy. We do not present any results for a closure of the
MFV equations using the second-order closure and left-
linear ansatz, because, as explained in ITI,Section 3.3.1,
such an approximation fails to give usable results.

Finally, we consider a suboptimal estimator using the
linear analysis discussed in I, section 3.2, along with
an ensemble approximation to the dynamical evolution
as discussed in section 2.2 of this paper. The method
we employ is the Ensemble Kalman Smoother (EnKS)
of Evensen and van Leeuwen [17], discussed also in
III,Section 3.4.2.
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FIG. 2: Dataset A (20 % rms error) represented by filled
circles. Solid line: mean, dashed line: mean + standard devi-
ation. (a) KSP, (b) MFV, (c) MFV-1LL, (d) MFV-1DE, (e)
MFV-2DE, (f) EnKS.

1. Dataset A

We first compare the methods for the dataset A, with
results shown in Figure 2. We recall from I that this
is a case with measurement error variance 0.04 or 20%
rms error and that the MFV and exact KSP values of
the conditional mean and variance are here very close.
The most important fact learned from Figure 2 is that
all of the approximate MFV methods are successful in
tracking the transition in dataset A occuring at times
t = 3 — 5 but that the EnKS method lags by one mea-
surement in making the transition. This is the same fail-
ure that was observed in the EnKF method in Section
4.1 above and it is not cured by the backward-in-time
adjustments made in EnKS. This is again a failure of the
linear analysis performed in EnKF and EnKS, and it is
cured by the mean-field conditional analysis made in the
MFYV methods. While all of the MFV methods are suc-
cessful at the most basic level of tracking the transition,
we see a quantitative improvement, as expected, in going
from MFV-1LL, to MFV-1DE, to MFV-2DE. The worst
of these approximations, MFV-1LL, greatly overpredicts
the conditional variance o2(t). Thus, it would lead to
a lower confidence in the conditional mean z.(t) as an
accurate estimate than, in fact, is warranted. The MFV-
1DE method, although based upon the same first-order
closure as MFV-1LL, nevertheless gives a much more ac-
curate value of the variance. The mean histories in the
two methods MFV-1LL and MFV-1DE are quite simi-
lar, and are good approximations to the exact z.(t) ex-

10

© ®)

FIG. 3: Dataset B (40 % rms error) represented by filled
circles. Solid line: mean, dashed line: mean + standard devi-
ation. (a) KSP, (b) MFV, (c) MFV-1LL, (d) MFV-1DE, (e)
MFV-2DE, (f) EnKS.

cept before the first measurement and after the last one,
where they relax toward zero a little too quickly. This is
a deficiency of the first-order closure in the double-well
problem, that it overpredicts the relaxation back to equi-
librium (i.e. to the climate state). This also accounts
for the somewhat too large variances in the MFV-1DE
method, before the first measurement and after the last
one. Indeed, in equilibrium with equal weights of the
peaks in the PDF at the two values x = £1, the variance
is O(1). The MFV-2DE method cures this deficiency,
because the second-order closure relaxes to equilibrium
at a slower rate, in better agreement with the exact sta-
tistical evolution by the forward-backward Kolmogorov
equations. In fact, the MFV-2DE closure leads to re-
sults for dataset A almost indistinguishable from those
of the full MFV method, which solves the Kolmogorov
equations.

2. Dataset B

In Figure 3 we compare the six methods for the dataset
B. This dataset has the same measured values as dataset
A, but now it is assumed that the observation error vari-
ance was 0.16 or 40% rms error. Recall from I that the
MFV method gives now a less accurate approximation
to the optimal KSP results (for reasons discussed there).
The general trends for the other approximations are sim-
ilar to those for dataset A in several respects. Again,
all of the approximate MFV methods continue to track
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FIG. 4: Dataset C (20 % rms error) represented by filled
circles. Solid line: mean, dashed line: mean + standard devi-
ation. (a) KSP, (b) MFV, (c) MFV-1LL, (d) MFV-1DE, (e)
MFV-2DE, (f) EnKS.

the transition, even with the larger assumed observation
error. However, the EnKS method gives an estimated
history which lags even worse than for dataset A, the
transition now being completed only at ¢ = 7. The vari-
ance 02(t) calculated from MFV-1LL is again too large,
but those for MFV-1DE and MFV-2DE closure are about
the same as for MFV itself. The results for MFV-1DE are
now much closer to those for MFV-2DE than to MFV-
1LL, except that before the first measurement and after
the last one the MFV-1DE history relaxes a little fast
and the variance grows a little too fast. These problems
are corrected by the MFV-2DE closure, which gives re-
sults very similar to MF'V. All of the MFV methods show
the important feature of statistical stability: the results
for dataset B are quite similar to those for dataset A, ex-
cept, of course, the calculated variances are larger. The
EnKS method is considerably less stable.

8. Dataset C

Figure 4 shows the results of the six methods for the
dataset C. This is another case with measurement error
variance 0.04 or 20%, but with a different set of “mea-
sured” values which happen to have smaller magnitudes
than for dataset A. As discussed in I, the suboptimal
MFYV method now gives a slightly less accurate approx-
imation to KSP, but still quite good. All of the MFV
closure methods also track the transition well. In this
case, EnKS tracks the transition better than in any of the
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FIG. 5: Dataset D (30 % rms error) represented by filled
circles. Solid line: mean, dashed line: mean + standard devi-
ation. (a) KSP, (b) MFV, (c) MFV-1LL, (d) MFV-1DE, (e)
MFV-2DE, (f) EnKS.

previous cases, but it still lags a bit behind the measure-
ments. As before, MFV-1LL gives variances too large.
In this case, MFV-1DE and MFV-2DE give quite simi-
lar results, although the MFV-2DE closure is little closer
to MFV. We see that all of the MFV methods possess
statistical stability also in the sense that with the same
history but different “measured” values (i.e. a different
realization of measurement errors) the calculated mean
history and variance do not change greatly. The EnKS
method is less stable.

4. Dataset D

The case of dataset D presented in Figure 5 is interest-
ing because here the optimal estimate for the “measured”
data, with error variance 0.09 or 30% rms error, does not
exactly track the transition in the “actual” time-history.
This means that with such poor measurements, a good
approximation should also not track the transition. In-
stead, a correct method should show a quick crossover at
time ¢ = 5, but should then reverse back to the other well
and give thereafter large variances, indicating an inabil-
ity to predict with accuracy the state of the system. As
discussed in I, the MFV method catches the crossover at
time ¢ = 5 but gives afterward variances which are too
small, projecting too much confidence in the estimate
at those times. All of the MFV closure methods also
show the crossover at time ¢ = 5, but the EnKS method
misses it entirely. In fact, the EnKS method gives es-
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FIG. 6: Dataset E (60 % rms error) represented by filled
circles. Solid line: mean, dashed line: mean + standard devi-
ation. (a) KSP, (b) MFV, (c) MFV-1LL, (d) MFV-1DE, (e)
MFV-2DE, (f) EnKS.

sentially no hint at all of the transition which “actually”
occurred. The MFV closure methods all show larger vari-
ances than MFV, especially MFV-1LL. The MFV-1DE
and MFV-2DE are quite similar to each other and, by
happenstance, give somewhat better agreement with the
exact KSP results than does MVF itself. This is a result
of “cancellation of errors” between the approximate anal-
ysis and the approximate evolution in those methods.

5. Dataset E

The final case is dataset E, the results for which are
compared in Figure 6. This case combines features of
datasets C and D: the magnitudes of “measured” values
are small and the measurement error variance is large,
now 0.36, or 60% rms error. In this case the exact condi-
tional statistics given by KSP show almost no evidence of
the transition in the “actual” history except for a slight
bend downward in z.(¢) at time ¢ = 4, but the variance
o2(t) thereafter becomes large, indicating great uncer-
tainty in the actual state of the system. With these poor
measurements, there is an intrinsic loss of predictability.
As discussed in I, MFV performs the worst for this case.
Its estimated history x.(¢) is too small in magnitude, al-
though it shows the slight bend at time ¢ = 4. The vari-
ance o2 (t) given by MFV is too large before the bend and
too small afterward. The MFV closure methods and the
EnKS method give quite similar results for this case. The
estimated history x,(t) for all these methods is too small
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in magnitude and, while it shows the bend at time ¢ = 4,
this is actually too pronounced, especially for MFV-1LL.
All of the approximation methods tend to overpredict the
variance before the bend and underpredict it afterward.
Hence, none of the approximations is particularly suc-
cessful for this case of highly inaccurate measurements.
On the other hand, none of them is unacceptably bad
either.

6. General Conclusions

We may draw some general conclusions based upon
the above comparisons. We see that of all the approxi-
mation methods, EnKS gives the poorest results for the
conditional history and variance. The MFV-1LL method,
while it gives good results for the history, tends to greatly
overestimate the variance. The best methods are con-
sistently MFV-1DE and MFV-2DE. Reassuringly, MFV-
2DE is always closer to MVF, so that adding more mo-
ments to the closure produces a better result, as one
would hope. However, the MFV-1DE method tends to
give nearly as good results as MFV-2DE. Therefore, there
may be a true advantage in using the mean-field varia-
tional methods, since they allow the use of first-order
closure methods with, possibly, little sacrifice in the ac-
curacy of the results.

V. DISCUSSION AND SUMMARY

In this work we have considered two methods of ap-
proximating the evolution of probability distributions,
for the purpose of calculating conditional statistics:
moment-closure methods and empirical-ensemble meth-
ods. Several versions of the former were considered. It
was found to be particularly advantageous to construct
the moment-closure to preserve an exact H-theorem for
the Markov evolution, in terms of the relative entropy.
We have compared these methods for a simple model sys-
tem with a non-Gaussian, bimodal steady-state distribu-
tion. Applied within the mean-field variational method
discussed in I, first-order closures were nearly as accurate
as second-order. Approximation of the KSP equations for
the exact conditional statistics instead requires a closure
of at least second-order. In the simple test problem, the
mean-field variational closure methods consistently out-
performed the empirical-ensemble or Monte Carlo meth-
ods. Approximate results for both the conditional mean
and variance were consistently more accurate for the clo-
sure methods. As discussed in I, this is more likely due
to the over-simplified linear analysis employed in current
ensemble estimation schemes, rather than to an intrinsic
deficiency in approximating the dynamical evolution of
system statistics by N-sample ensembles.

Let us make a few final remarks comparing moment-
closure and empirical-ensemble methods in general.



For ease of application, ensemble methods are rather
superior to closure methods. They are, in fact, cookbook
methods that can be applied in a rote fashion. Closure
methods, however, require both insight into the statis-
tics and dynamics of the system and also some skill in
constructing closures that are simultaneously physically
accurate and computationally tractable. On the other
hand, this apparent disadvantage may in fact be an ad-
vantage in disguise. Since successful closures provide
theoretical understanding, they may assist in describ-
ing other distinct but related problems. The ensemble
method, in contrast, must be repeated de novo for each
application. On the other hand, careful study of the re-
sults of an ensemble calculation may suggest theoretical
ideas useful in constructing accurate closure approxima-
tions.

Closure methods probably have the potential to
achieve the greatest computational economy in calcu-
lating conditional statistics. This is especially true for
the large-scale, spatially-extended systems that appear
in geophysical applications. In Alexander et al. [26] the
methods presented in this paper are applied to a stochas-
tic advection-diffusion equation, for the problem of track-
ing the past history of a passive scalar contaminant in a
random flow. While a standard first-order closure yields
there forward-backward evolution equations which are
PDE’s (advection of the scalar by the mean-flow field plus
eddy-diffusion), more ingenious closures can be devised
which build in more information about the realizations
of the problem. In that case, the estimation problem
can be reduced to solving ODE’s in just a few number
of variables. The Rayleigh-Ritz method is generally one
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which rewards physical understanding of the problem to
be solved. If one can make a good, insightful guess of
the solution, then very significant savings in computing
effort may be obtained.

We view the different methods of approximating the
evolution —moment-closure and empirical ensembles —
not as competitive but instead as cooperative. Neither
method is exact. Furthermore, methods to calculate the
exact conditional statistics are generally intractable to
apply to the spatially-extended, strongly nonlinear sys-
tems of real interest. Therefore, the only way to as-
sess the accuracy of approximation schemes is by inter-
comparison. Because moment closure and empirical en-
semble methods make rather distinct and complementary
approximations, the agreement of their results would lend
considerable credibility to both.
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