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1 Fokker-Planck Equation

The specific form of the Fokker-Planck Equation considered here is
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where P = P(z,t), and v = k2 /2 is a positive constant. The function f(z) =
4z(1 — x?). The numerical approximation of the solution of this advection-
diffusion equation poses special challenges when f(z) is nonlinear. Here we
will describe the numerical technique we adopted. First, we complete the
statement of the problem. We seek solutions to (2) for ¢ > 0 such that
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for all ¢, given P(z,t) = Py(z,0).

The standard numerical approach is composed of two parts: (1) make a
straightforward substitution that recasts (1) as a diffusion equation, which
effectively incorporates upwinding of the advection term; (2) choose a dis-
cretization that preserves certain desired properties, namely conservation of
P with respect to a weight (in our specific problem the weight is 1), and total



non-negativity. One such discretization is due to Larsen et al. citeyearpar-
lars. This technique accomplishes both goals, regardless of whether f(x) is
linear or nonlinear. In addition, this scheme will also effectively control se-
rious under and overflow problems in the computation, which are the result
of the nonlinear nature of f(x) for the problem at hand.

Briefly, (1) is rewritten as

aa—]; = % {Fi[yed’G’P]} , (2)

where it is understood that the derivatives with respect of e¥ are taken
holding ¢ constant. This equation, in turn can be written formally as the
conservation law
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We define P,,(t), where m = 1... M + 1, as the semi-discrete approx-

imation of P(z,t) on a uniform grid in z with spacing Az = 2L/M over

—L <z < L. A second order flux-preserving scheme in space is then used
to discretize the conservation law and the boundary conditions. Let
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denote the semi-discrete approximation of the flux S.

Then, the conservation law for the semi-discretization becomes
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form=2...M. At m =1 and m = M + 1 discretized zero flux boundary
conditions are imposed using the same flux-preserving scheme. The fully
discrete scheme is obtained by a suitable choice of time integrator. A trape-
zoidal scheme in time preserves mass and circumvents the serious stability
constraints imposed on the time step At, should we have chosen an explicit
mass preserving scheme instead. In fact, it is easy to show that the resulting
fully discrete equations conserve mass for any At. The scheme is second-
order accurate in time and space. Both the conservation estimate and the
convergence rate estimates were checked in our computer implementation of
the scheme.



