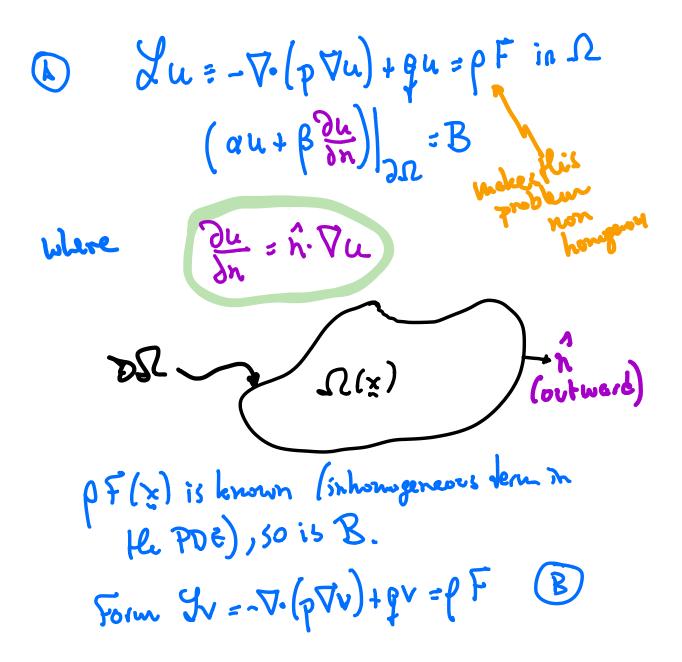
GREEN'S FUNCTIONS, APPLIED TO NON HOMOCENEOUS ELLIPTIC PROBLEMS



Hulfiphy (by v and B by u subtract 8 integrate: (vyu.ulv)dx $= -\int \nabla \cdot \left(pv \nabla u - pu \nabla v \right) dx = 0$ le RNS of (1) 8 B cre Hosere, so Zen Use Divergence Mearen, i.e. $\oint \nabla Q \, dx = \int Q \cdot \hat{n} \, dS$ here Q=pvVu-puVv ςs

$$= -\int \nabla \cdot (pv \nabla u - pu \nabla v) dx$$

$$= -\int p(v \nabla u - u \nabla v) \cdot n dS$$

$$= -\int p(v \nabla u - u \nabla v) \cdot n dS$$

$$= \int p(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n}) dS$$

$$= \int p(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n}) dS$$

$$= have date for $u, \frac{\partial u}{\partial n}, v, \frac{\partial v}{\partial n} at$

$$= \int f(v \frac{\partial u}{\partial u} - u \frac{\partial v}{\partial v}) dx = \int p(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n}) ds$$

$$= \int P(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n}) dx = \int p(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n}) ds$$

$$= \int P(v \frac{\partial u}{\partial n} - u \frac{\partial v}{\partial n}) dx = \int p(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n}) ds$$

$$= \int P(v \frac{\partial u}{\partial n} - u \frac{\partial v}{\partial n}) dx = \int p(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n}) ds$$

$$= \int P(v \frac{\partial u}{\partial n} - u \frac{\partial v}{\partial n}) dx = \int p(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n}) ds$$$$

Now, suppose v is the solution to (D) $\forall v = \delta(x, \overline{s})$ S(x-3) 1 le Dirac Delta function, centered at 3 inside S2. Recall that $\int S(x-3) dx = 1$ $\int S(x-3) dx = h(3)$ $\int h(x) S(x-3) dx = h(3)$ $\int sifting property''$ Use the sifting property:

 $\int v \rho F dx - u(\overline{3}) = \left(P \left(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right) dS.$ Solving for u(3), 3ES, $u(3) = \int v \rho F dx - \int P \left(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right) dS.$ x 2x (A) here vis the solution to Jv = S(x-3) so, in principle we know it. We will call v the Green's Function. We know that Iv = S(x. 3) But we need B.C.:

$$-\int P\left(u\frac{\partial v}{\partial n}-v\frac{\partial u}{\partial n}\right)dS$$

$$=\int -P\frac{1}{\partial \left[u\frac{\partial v}{\partial n}-u\frac{\partial u}{\partial n}\right]dS$$

factor Won

$$= -\int_{P} \frac{1}{d} \frac{\partial V}{\partial n} \left(\alpha u + \beta \frac{\partial u}{\partial n} \right) dS$$

$$= -\int_{P} \frac{1}{d} \frac{\partial V}{\partial n} dS = \int_{P} \frac{1}{\beta} \frac{B v dS}{\delta n}$$
In Summary, using (AR):

$$u(3) = \int_{P} V \rho F dx + \int_{P} \frac{1}{\beta} B v dS$$

$$= \int_{P} \frac{1}{\beta} \frac{B v dS}{\delta n} = \int_{P} \frac{1}{\beta} \frac{B v dS}{\delta n}$$

So $V = G(x, \overline{s})$ is the Green's Function it satisfies $ZG = S(x-\overline{s})$ $(2G + B \overline{G}) = 0$

it solves the problem

$$\begin{cases}
Ju = pF \quad m = SZ \\
(2u + pdu) \\
Ju = B
\end{cases}$$

Appliection: in the solution of
the forced Helmholtz Eq.

$$(\nabla^2 + \lambda_c^2)u = pF$$

with B.C. as above.
In that case (A) is known of the
Helmholtz Integral solution
This is a very popular formulation in time
harmonic problems in accustics, electronogratics, etc.

So let's summerize: GENERIC RECIPE FOR NON-HOMOGENEOUS LINEAR ODES: $(Lu(x) = f(x) \quad x \in \Omega : (a,b) \subseteq \mathbb{R}$ B BLUG) = her xedr: [9,5] k= 1,2,...,n-1 Lisabrear nu order differential operctor. (B) are the n-1 required boundary conditions muching lineor combinations of 4 and its derivatives, up to order n-1, evaluated on the boundary. We form:

(G,Lu) =
$$\int_{a}^{b} G(x,y) Lu(y) dy$$

Integrate by perts;
(A) (G,Lu) = (L*G,u) + integration boundaryterns
L* is the adjoint to L
Ruch: if L = L* then we say that
Lis self-adjoint.
If L*G(x,y) = S(x-y)
+ terns involving b.c.
then (A) yields
U = - (integration bens) + $\int_{a}^{b} G(x,y) f(y) dy$

GENERAL RECIPE FOR NONHOHONEOUS LINEOR FDE $PDE Lu(P) = f(P) PE \Omega = \mathbb{R}^n$ B.C. $Bu_k(p) = h(p)$ pear here P= (x, x2...,xn) ESS SIR" and p is a point on the boundary 2-S let Q = (X1, X2..., Xn) another pointin S. Le have (G,Lu) = (G(P,Q)Lu(P)dPwe capite S (6, Lu) = (L*G, u) + integrated terms, by integrating by parts. Then, solve

{ L*G(P,Q) = S(P,Q), He dirae delta
{ with the homogeneous B.C.
} u(Q) = - integrated terms + [G(F,Q)f(P)dP SD JOINT OPERATORS Tley come up in Diffective Equations, i.e. $ih (v, Lu) = (L^*v, u)$ + boundary terms. bottler aver up in a voriety of other contexts. ex) Find Lx, if L= d and borredy anditrus 67- OSXSI V(0)-2V(1)=0. Integrate by perts...

$$(u, Lv) = \int u \frac{\partial v}{\partial x} dx$$

$$= [uv] \Big|_{0}^{1} - \int v \frac{\partial u}{\partial x} dx$$

$$= u(n)v(n) - u(n)v(n) - \int v \frac{\partial u}{\partial x} dx$$

$$Apply V(n) = Zv(n):$$

$$= u(n) v(n) - u(n) Zv(n) - \int v \frac{\partial u}{\partial x} dx$$

$$= v(n) [u(n) - Zu(n)] - \int v \frac{\partial u}{\partial x} dx$$

$$= (L^{4}u, v)$$

$$\therefore L^{4}u = -\frac{d}{dx} \quad wilk \quad u(n) = Zu(n)$$
for boundary and thus.

Ruch:
$$L^* \neq L$$
, i.e. Lishot self adjoint.
 $L = e^x \frac{d^z}{dx^2} + e^x \frac{d}{dx}$ $0 \le x \le 1$
 $L = e^x \frac{d^z}{dx^2} + e^x \frac{d}{dx}$ $0 \le x \le 1$
 $Cuch boundary conditions $U'(0) = 0$ and $U(1) = 0$,
 $(V_1 L_1) = \int_{v}^{v} \left[e^x \frac{d^z}{dx^2} + e^x \frac{d}{dx} \right] u dx$
 $Tutegrate by Parts: to do the propedently
we remain the
 $(V_1 L_1) = \int_{v}^{v} (e^x u')' dx$
 $= \left[ve^x u \Big|_{0}^{1} - \left[v'e^x u \Big]_{0}^{1} - \int_{u}^{1} (e^x v')' dx$
 $= u'(1)v(1)e^1 + v'(0)u(0) - \int_{u}^{1} \left[e^x v'' + e^x v' \right] dx$$$

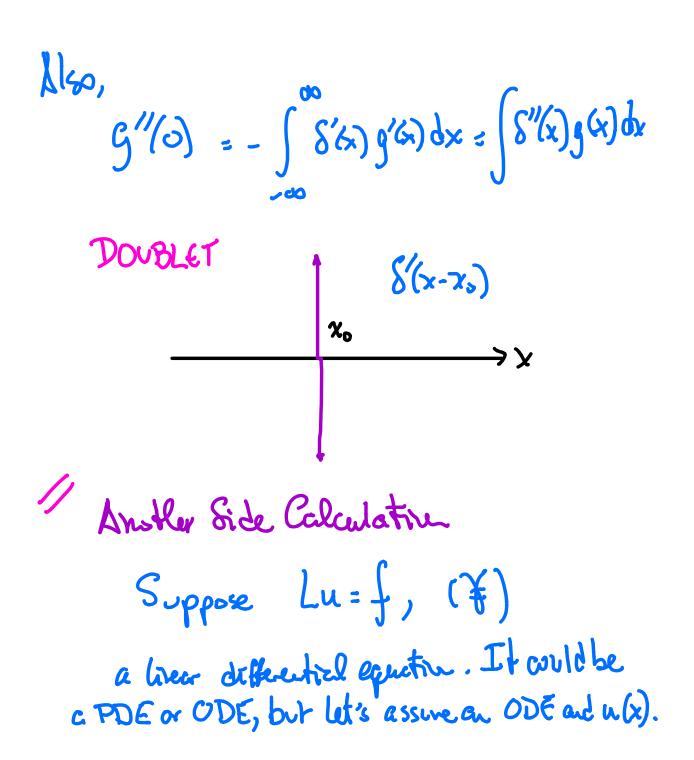
=
$$(L^* V, u)$$

with $L^* = L$ (solf edgent)
and $V'(0) = 0, V(1) = 0$
let's now examine in more detail
the following ODE problem:
Solve
 $(\bigstar) \quad \frac{d^2 K}{dx^2} = S(x-5)$
we require 2 boundary and itims, more beter on
this:
Introduce the Heaviside Function;
 $M(x-x_0) = 1$
 χ_0

 $|\mathcal{A}(x, \chi_0) = \begin{cases} 0 & \text{for } x < \chi_0 \\ 1 & \text{for } x > \chi_0 \end{cases}$ The H'(x) = S(x)Interrate (¥) $dK(x,\overline{3}) = H(x-\overline{3}) + d(\overline{3})$ dx arbitrany Integrate again $K(x_{3}) = \int H(x_{3}) dx + x d(3) + \beta(3)$ arbitrary

(+) K(x, z) = (x-z) H(x-z) + x a(z) + p(z)

Kis a colomous, differentiable function.
Let's solve Poisson's Equation in 1D:
(¥)
$$\int \frac{d^2u}{dx^2} = f(x)$$
 OEXSI
(u(0): a u(1) = b
We will use (‡). We need 2
boundary anditions to find α, β.
A side Calculation:
Use sifting property of Dirac Delta:
G'(0) = $\int \frac{g'(x)}{g'(x)} S(x) dx = -\int \frac{g(x)}{g(x)} S(x) dx$
by integrating by gate.



Formelly, define L¹, is an operator, s.t.
L¹ L = I, the identity. Hence
L¹ Lu = U(x).
Using (#):

$$U \leq y \leq (1 + 1)^{2}$$

and, from previous discussion
L¹ U(x) = $\int K(x,3) U(3) d3$
...
 $U \leq x = L \int [c(x,3) U(3) d3$
Since Loperator x, we will put it in the integral:
 $U(x) = \int LK(x,3) U(3) d3$
write lesses
 $LK(x,5) \equiv g(x,3)$

Hun

$$u(x) = \int g(x,s) u(3) ds$$
.
If free for all $u(x)$ entireous, then
 $g(x,s) = 0$ when $x \neq s$ and
when $x = 5$ $\int g(x,s) u(s) ds = u(x)$
Back to $\int u''(x) = f(x)$ or $x < 1$
 $u(0) = a$ $u(1) = b$
Formally, write (see previous calculation (\neq))
 $Ku = -f(x) + b S'(x-1) - a S'(x)$ (\neq)
i.e. $K = -\frac{d^2}{dx^2}$ s.t.
 $Kg = -S(x-5)$
it was found that:

$$(f) K(x, \overline{s}) = (x-\overline{s}) H(x-\overline{s}) + x d(\overline{s}) + p(\overline{s}),$$

Propose a solution to (f) of the form
 $u(x) = u, (x) + u_{k}(x).$
Focus on u_{1} : compose (fs) and (f) to suggest
 $(et g(x, \overline{s}) \equiv (x-\overline{s}) H(x-\overline{s}) - v(1-\overline{s})$ (ff)
For $0 < x, \overline{s} < 1$,
where α is to be determined.
Hultiply (f) by $f(\overline{s})$ and integrate
 $u_{1}(x) = \int f(\overline{s}) g(x, \overline{s}) d\overline{s}$
 $(x-t) - f(t) dt - xef(1-t) f(t) dt.$
We can confirm that u_{1} obeys $Ku_{1} = -f$:

-

Hulkiphy u, by K: Ku, = K
$$\int f(t) f(t) - k(x) \int f(t) f(t) f(t) f(t) = \int f(t) S(x,t) dt$$

:. $k_{u_1} = K \int f(t) g(x,t) dt = -\int f(t) S(x,t) dt$
= $\int f(t) K g(x,t) dt = -\int f(t) S(x,t) dt$
 $= -\int f(t) //$
To complete the solution: we regime
 $u_x = 5t$.
 $K_{u_x} = b S'(x-1) - a S'(a)$
The idea is to write the s'above in terms of
K: We know that $-S(x-t) = Kg$
and that

(3)
$$g(x_{t}) = (x_{t}) H(x_{t}) - x(1-t)$$

Take
 $\frac{d}{dt}(A) : S'(x_{t}-t) = K \frac{dg}{dt}$
Where $\frac{dg}{dt} = -H(x_{t}-t) + x$,
 $\frac{dt}{dt}(B)$.
We can thus infer that
 $u_{x} = -b \frac{dg}{dt}\Big|_{t=1} - a \frac{dg}{dt}\Big|_{t=0}$
where $Ku_{x} = b S'(x_{t}) - a S'(x_{t})$.
Since $\frac{dg}{dt}\Big|_{t=1} = -H(x_{t}) + x = x \forall x \in [0, 1]$

$$\frac{d_{1}}{dt}\Big|_{t=0} = -\frac{h(x)}{x} = x - 1 \quad \forall x \in [0_{1}] \\ \frac{1}{r} \quad for \quad 0 < x \le 1 \\ \therefore \quad U_{2}(x) = bx - a(x - 1).$$
Finally $u = u_{1} + u_{2}$

$$= \int_{0}^{\chi} (x - t) \quad f(t) \quad dt - x \int_{0}^{1} (1 - t) \quad f(t) \quad dt \\ \quad + bx - a(x - 1)$$
Rule: How did we know to can struct a solution es a linear superposition of two subproblems? experience ... it's a trick, but in linear problems you should alwags assume you can write

le solution as a lirea superposition of subproblems.