One-Way Wave Equation
(see Logen's Book)
This is a first-order (in space and time)
PDE. We bous a its solution.
Let c constant
(
$$TOE$$
 $U_{ij}+C(x_it_ju)$ $U_X = 0$ $t > 0$
 $x \in I^2$ (possibly IK')
T.c. $U(x_i, 0) = f(x)$, $x \in I^2$
The simplest version:
Creider $x \in IR^1$ and c, a given constant.
We can conform that
 $u(x_i,t) = f(x-ct)$
is a solution to (CP), since
 $U_k = -c f'(x-ct)$
 $U_X = f'(x-ct)$

$$\frac{du(x_0,t)}{dt} = \frac{\partial u}{\partial x} (x(t),t) \frac{dx}{dt} + \frac{\partial u}{\partial t}$$

$$b_{V} PDE: c = \frac{dx}{dt}$$

$$\frac{du}{dt} = \frac{u_{X}c}{u_{X}c} + \frac{u_{L}}{u_{L}} = 0$$

$$b_{V} PDE.$$
Consider
$$(P \left\{ \begin{array}{l} u_{L} + c(x,t) u_{X} = 0 & x \in \mathbb{R}^{2} \\ u(x,0) = \varphi(x) \end{array} \right.$$

$$\frac{du}{dt} = \frac{u_{X}c}{u_{X}c} + \frac{u_{L}}{u_{L}} = 0$$

(which generates a characteristic curve

$$C (n space-line). Along C:$$

$$(\underbrace{*}) \qquad \underbrace{du}_{dt} = u_{x} \underbrace{dx}_{t} + u_{t} = u_{x}c(x,t) + u_{t} = 0$$

$$Ex) \qquad u_{t} + 2t u_{x} = 0 \qquad x \in \mathbb{R}^{3}, t > 0$$

$$CP \qquad u_{t}(x,0) = e^{-x^{2}} \qquad x \in \mathbb{R}^{1}$$

$$Hore \qquad C(x,t) = 2t$$

$$U Siny(\underbrace{*}) \qquad \underbrace{du}_{dt} = 2t \qquad t \ge 0$$

$$(\underbrace{*}) \qquad \underbrace{dx}_{dt} = 2t \qquad t \ge 0$$

$$(\underbrace{*}) \qquad \underbrace{dx}_{dt} = 2t \qquad t \ge 0$$

$$(\underbrace{*}) \qquad \underbrace{dx}_{t} = 2t \qquad t \ge 0$$

$$(\underbrace{*}) \qquad \underbrace{dx}_{t} = 2t \qquad t \ge 0$$

$$(\underbrace{*}) \qquad \underbrace{dx}_{t} = 2t \qquad t \ge 0$$

$$(\underbrace{*}) \qquad \underbrace{dx}_{t} = 2t \qquad t \ge 0$$

$$(\underbrace{*}) \qquad \underbrace{dx}_{t} = 2t \qquad t \ge 0$$

$$(\underbrace{*}) \qquad \underbrace{dx}_{t} = 2t \qquad t \ge 0$$

$$(\underbrace{*}) \qquad \underbrace{dx}_{t} = 2t \qquad t \ge 0$$

 $e^{(x_1t)}$ $e^{green by} x = t^2 i 3$ x(3. Since us is instant day C come the $u(x,t) = exp(-5^{2}) = exp(-(x-t)^{2})$ for t=0 and xETR' Wave speeds up, at rate 2t, but relass its shape. Nonlinear Waves $\begin{aligned} & (u_t + C(u, x, t)) U_x = 0 & x \in \mathbb{R}' t > 0 \\ & (u(x, 0) = \phi(x) & x \in \mathbb{R}' \end{aligned}$ CP Here c depends on reiteelf . . unheren This what follows, assume that c(4,x,t)>0

$$\begin{cases} \frac{du}{dt} = 0 \quad \text{again, but} \\ \frac{dx}{dt} = c(u, x, t) \quad (4S) \quad \text{for } C \\ i.e. \quad \frac{du}{dt} = \frac{3u}{3x} c(u(x, t), x, t) + \frac{3u}{dt} = 0 \\ u \text{ is chart elong elonechertshics ad} \\ these are, since \quad \frac{dx}{dt} = c, \text{ interthat} \\ \frac{dz_x}{dt^2} = \frac{d}{dt} \left(\frac{dx}{dt}\right) = \frac{d}{dt} c(u(x, t), x, t) = \frac{3c}{du} \frac{du}{dt} = 0 \\ \text{So along characteristics the eccelerationate depends on the gratient of the speed c \\ wrt u itself. \\ To find C through (x, t) we have that \\ \frac{dx}{dt} = c(u(x, 0), x, t) \end{cases}$$

we can solve
$$k' = \frac{x-2t}{1-t}$$

.: $u(x,t) = \phi(s)$ yields
 $u(x_1t) = \frac{2-x}{1-t}$ $2t < x < t+1$ $t < 1$
So the general solution to CP:
 $\int u(x_1t) < 2$, for $x < 2t$
 $u(x_1t) = 1$, for $x > t+1$
 $u(x_1t) = \frac{2-x}{1-t}$ $2t < x < t+1$ $t < 1$
Hans do we find the shock time 7
For the case with $C'(u) > D$
 $\int U_{t+} C(u)U_{t+} = O$ $t > D$
 $\int U_{t+} c(u)U_{t+} = O$ $t > D$
 $\int u(t, 0) = \phi(x)$ $x \in \mathbb{R}^{1}$
The shoch (or blow up) time to is
found es follows:

if c'(u)>0 with \$\phi(x)>0\$\$ \$\phi(\alpha)\$\$ \$<0\$\$ for sufficiently long time t, the solution becares multivalued, i.e. Ux is inbounded. To find ux differentiate $x = c(\phi(s)) t + s$ wit x: $| = c'(\phi(s))\phi(s)t + 3_{x}$ Solving for $5_{x} = -1$ 1+ ('(4) 4'(3) t then for u= \$(3) $u_{x} = \phi'(\overline{s})$ 1+c'(\$) \$\$ So when the denominator -> O we get

As before $(A) \quad \frac{dx}{dt} = a(x,t,u)$ $\frac{du}{dt} = a ux + u_{z} = f(x, t, u)$ 3 Rule: before, f=0. Set X=3 at t=0 ... 4(3,0) • 9(3). A and B is a system of differential equations with a solution that depends on 2 arbitrary constants. Along characteristics $\chi = F(t,c_1,c_2)$ $u = G(t, c, c_z)$ and the anstant's can be evaluated

$$\begin{pmatrix} \mathcal{U}_{t} + \mathcal{U}\mathcal{U}_{x} + \mathcal{U} = 0 & x \in \mathbb{R}^{t} t = 0 \\ \mathcal{U}(x, 0) = -\frac{\chi}{2} & x \in \mathbb{R}^{t} \\ \text{Mory } \mathcal{C}: \\ (\mathcal{F}) \quad \frac{dx}{dt} = \mathcal{U} \\ (\mathcal{F}) \quad \frac{du}{dt} = -\mathcal{U} & \text{or } \frac{du}{u} = -\frac{dt}{u} \\ (\mathcal{F}) \quad \frac{du}{dt} = -\mathcal{U} & \text{or } \frac{du}{u} = -\frac{dt}{u} \\ \end{cases}$$

Solving (1):

$$u : c_1e^{-t}$$
. Since $u(x,o) = -\frac{x}{2}$
 $u(x,o):=c_1 \text{ and } u(\overline{3}, \overline{0}) = -\frac{3}{2}$. So, at $t:=0$
 $u(\overline{3}, \overline{0}):=c_1 = -\frac{3}{2}$.
Solving (2): $x : +c_1e^{-t}+c_2 = -\frac{3}{2}e^{-t}+c_2$
Now, we find c_2 :
 $\chi(\overline{0}):=\overline{3}$, $-\frac{3}{2}+c_2=\overline{3} \Rightarrow c_2=\frac{33}{2}$

$$x = -\frac{3}{2}e^{-\frac{1}{2}} + \frac{33}{2} = \frac{3}{2}(3 - e^{-\frac{1}{2}})$$
Next, solve for $3 = 3(5x)$:

$$3 = \frac{2x}{(3 - e^{-\frac{1}{2}})} \cdot \text{Since } u = -\frac{3}{2}e^{-\frac{1}{2}}$$

$$\therefore u(x,t) = \frac{xe^{-\frac{1}{2}}}{3 - e^{-\frac{1}{2}}} = \frac{x}{3e^{t} - 1} \cdot \text{Blow up to}$$
occurs when $3e^{\frac{1}{2}} - 1 = 0$ or $t_0 = \log(\frac{1}{3})$
exercise: try the above method to solve
$$2xuux + 2tuu_t = u^2 - x^2 t^2$$

$$u(x,0) \cdot g(x)$$