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What is a differential equation? 
 
 
A differential equation is any equation containing one or more derivatives. 
 
The simplest differential equation, therefore, is just a usual integration 
problem 
     y′ = f (t). 
 
 
 
 
 
Comment:  The solution of the above is, of course, the indefinite integral of  
f (t), y = F(t) + C, where F(t) is any antiderivative of f (t) and C is an 
arbitrary constant.  Such a solution is called a general solution of the 
differential equation.  It is a general form of a set of infinitely many 
functions, each differs from others by one (or more) constant term and/or 
constant coefficients, which all satisfy the differential equation in question.  
Every differential equation, if it does have a solution, always has infinitely 
many functions satisfying it.  All of these solutions, differing from one 
another by one, or more, arbitrary constant / coefficient(s), are given by the 
formula of the general solution.  Additional auxiliary condition(s), which 
might appear as a problem demands, will be required to narrow down the 
solution set to one or a few specific functions from the formula of the 
general solution.  
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Classification of Differential Equations 
 
 
Ordinary vs. partial differential equations 
 

An ordinary differential equation (ODE) is a differential equation 
with a single independent variable, so the derivative(s) it contains are 
all ordinary derivatives. 

 
A partial differential equation (PDE) is a differential equation with 
two or more independent variables, so the derivative(s) it contains are 
partial derivatives. 

 
 
Order of a differential equation   
 

The order of a differential equation is equal to the order of the highest 
derivative it contains. 

 
 
Examples: 
 
 (1)   y′ + y5 = t2

e
−t        (first order ODE) 

 
 (2)  cos(t) y′ − sin(t) y = 3t cos(t)   (first order ODE) 
 
 (3)  y″ − 3y′ + 2y = e2t

 cos(5t)       (second order ODE) 
 
 (4)   y

(4) + (y′ )30 = 0       (fourth order ODE) 
 
 (5)   uxx = 4utt + ut      (second order PDE) 
 
 (6)  y

(5) − (y″ y′)  + 2y = 4e
7t        (fifth order ODE) 
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Linear vs. nonlinear differential equations:   
 

An n-th order ordinary differential equation is called linear if it can be 
written in the form: 

 

y
(n) = an−1(t) y

(n−1) + an−2(t) y
(n−2) + … + a1(t) y′ + a0(t) y + g(t). 

 
 

Where the functions a’s and g are any functions of the independent 
variable, t in this instance.  Note that the independent variable could 
appear in any shape or form in the equation, but the dependent 
variable, y, and its derivatives can only appear alone, in the first 
power, not in a denominator or inside another (transcendental) 
function.  In other words, the right-hand side of the equation above 
must be a linear function of the dependent variable y and its 
derivatives.  Otherwise, the equation said to be nonlinear. 

 
 
In the examples above, (2) and (3) are linear equations, while (1), (4) and (6) 
are nonlinear.  (5) is a linear partial differential equation, as each of the 
partial derivatives appears alone in the first power.  The next example looks 
similar to (3), but it is a (second order) nonlinear equation, instead.  Why? 
 
 (7)  y″ − 3y′ + 2y = e2t

 cos(5y)  
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Exercises A-1.1: 
 
1 – 10  Determine the order of each equation below.  Also determine 
whether each is a linear or nonlinear equation. 
1.   y′ + t3

 y = cos( t
2) 

 
2.   y″′ + 11y″ − y′ +  e−6t 

y  = 2y ln t    
 
3.  y″ = ty5 
 
4.  5y′ = t5

y     
 
5.   y

3 + sec(t) = y(6) y′ 
 
6.   y″ + 5y′ + 4y = − e

4t 
y    

 
7.   (y′ )8 − y = 1      
 
8.   y″ cos(y) = t3sin(t) y(5)    
 
9.   e

t 
y

(4) + 3y″ − cot(et) y = 2t
6 + y′  

 

10.    ( )
t

ye
yt

dt

d t8
2

4

4

=′  

 
11.   For what value(s) of n will the following equation be linear? 
    y′ − 9y 

n = t2n sin(3nt)   
 
 
 
 
 
 
Answers A-1.1:  
1.  1st order, linear;  2.  3rd order, linear;   3.  2nd order, nonlinear; 
4.  1st order, linear;  5.  6th order, nonlinear;  6.  2nd order, linear;  
7.  1st order, nonlinear;  8.  5th order, nonlinear;   9.  4th order, linear; 
10. 5th order, linear;  11.  When n = 0 or 1, the equation is linear. 
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Direction Field (a.k.a. Slope Field) 
 
 
Direction field is a simple visualization tool that could be used to study the 
approximated behavior of the solutions of a first order differential equation  
 

y′ = f (t, y), 
 
without having to solve it first. 
 
 
What is it?  First draw a grid on the ty-plane.  Then for each point (t0, y0) on 
the grid compute the value f (t0, y0).  Note that f (t0, y0) = y′ is actually the 
instantaneous rate of change of a solution, y = φ(t), of the given equation at 
the point (t0, y0).  It, therefore, represents the slope of the line tangent to the 
solution whose curve passes through (t0, y0), at the exact point.  Draw a short 
arrow at each such point (t0, y0) that is pointing in the direction given by the 
slope of the tangent line.  After an arrow is drawn for every point of the grid, 
we can do “connecting-the-dots” and trace curves by connecting one arrow 
to the next arrow in the grid where the first is pointing at.  Those curves 
traced this way are called integral curves (so called because, in effect, they 
each approximates an antiderivative of the function f (t, y)).  Each integral 
curve approximates the behavior of a particular function that satisfies the 
given differential equation.  The collection of all integral curves 
approximates the behaviors of the general solution of the equation.   
 
Example:      y′ = 2t   
 
 
What we are doing is constructing the graphs of some functions that satisfy 
the given differential equation by first approximating each solution 
function’s local behavior at a point (t0, y0) using its linearization (i.e. the 
tangent line approximation).  Then we obtain the longer-term behavior by 
connecting those local approximations, point-by-point moving among the 
grid, into curves that are fairly accurately resemble the actual graphs of those 
functions.  We will look at this tool in more details in a later section, when 
we study Autonomous Equations. 
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Figure 1.  The direction field of  y′ = 2t 
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Figure 2.  The direction field of  y′ = 2t  (with a few integral curves 
traced – approximating curves of the form y = t2 + C). 
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Comment:  Each integral curve, representing a specific function that satisfies 
the given differential equation – colloquially, such function is called a 
particular solution of the equation – is analogously a certain antiderivative.   
(In this present example, it is actually an antiderivative, that of f (t, y) = 2t.)  
The entire direction field shows the different behaviors of a collection of 
those particular solutions.  In other words, it gives us a rough idea about the 
general solution of the differential equation.  The direction field, in its 
entirety, is thus analogous to the indefinite integral of f (t, y).  
 
 
Next, let us examine a slightly more interesting direction field of another 
simple first order differential equation, y′ = t − y.  Even without knowing 
what its general solution is (yet), we can nevertheless readily deduce from its 
direction field the long-term behavior of its solutions, which all seem to 
behave like the line y = t – 1. 
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Figure 3.  Another example: the direction field of  y′ = t − y   
 

 
 
Comment:  We will learn shortly how to solve this equation.  The exact 
solutions are functions of the form y = t – 1 + Ce

−t.  When C = 0, the 
solution is just the line y = t – 1, which appears as the slant asymptote of all 
other solutions in the above graph. 
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First Order Linear Differential Equations 
 
 
A first order ordinary differential equation is linear if it can be written in the 
form 
 

y′ + p(t) y = g(t) 

 
where p and g are arbitrary functions of t. 
 
This is called the standard form or canonical form of the first order linear 
equation. 
 
 
We’ll start by attempting to solve a couple of very simple equations of such 
type. 
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Example:  Find the general solution of the equation  
 

y′ − 2 y = 0. 
 

First let’s rewrite the equation as  y
dt

dy
2= . 

 
 Then, assuming y ≠ 0, divide both sides by y: 

     2
1

=
dt

dy

y
 

  
 Multiply both sides by dt:  

     dt
y

dy
2=  

 
Now what we have here are two derivatives which are equal.  It 
implies (as a consequence of the Mean Value Theorem) that the anti-
derivatives of the two sides must differ only by a constant of 
integration.  Integrate both sides: 
 

     ln | y| = 2t + C    
  

or,    | y| = e (2t + C ) = e C e 2t  = C1 e
 2t  

 
 Where C1 = e 

C  is an arbitrary, but always positive constant. 
 

To simplify one step farther, we can drop the absolute value sign and 
relax the restriction on C1.  C1 can now be any positive or negative 
(but not zero) constant.  Hence  

 
    y(t) = C1 e 

2t,    C1 ≠ 0.   (1) 
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Lastly, what happens if our eariler assumption that y ≠ 0 is false?  
Well, if y = 0 (that is, when y is the constant function zero), then y′ = 0 
and the equation is reduced to 
 

     0 − 0 = 0 
 

which is an expression that is always true.  Therefore, the constant 
zero function is also a solution of the given equation.  Not exactly by 
a coincident, it corresponds to the missing case of C1 = 0 in (1). 

 
 As a result, the general solution is in the form 
 
    y(t) = C e 

2t,   for any constant C. 
 
 
 

That is, any function of this form, regardless of the value of C, will 
satisfy the equation y′ − 2 y = 0.  While there are infinitely many such 
functions, no other type of functions could satisfy the equation. 

 
 
 
The similar technique could also be used to solve this next example. 
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Example:  For arbitrary constants r and k, r ≠ 0, solve the equation  
 

y′ − r y = k. 
 

We will proceed as before to rewrite the equation into equality of two 
derivatives.  Then integrate both sides.   

 

     kry
dt

dy
+=  

 Assuming r y + k ≠ 0: 
      

   dt
kry

dy
=

+   →  ∫∫ =
+

dt
kry

dy
 

 

 Therefore,  Ctkry
r

+=+ln
1

 

 

 Simplifying:  ln | ry + k | = rt + C1    →   
1Ctr

ekry
+=+  

 

 →  1Ctr eekry =+ ,  where 1Ce is an arbitrary positive constant. 
  

Dropping the absolute value sign: 

 
treCkry 2=+ ,  1

2
C

eC ±=  is any nonzero constant. 
 

 That is, ( )
r

k
e

r

C
keC

r
y trrt −=−= 2

2

1
. 
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Lastly, it can be easily checked that if r y + k = 0, implying that y is 

the constant function 
r

k−
, the given differential equation is again 

satisfied.  This constant solution corresponds to the above general 
solution for the case C2 = 0.   Hence, the general solution now 
includes all possible values of the unknown arbitrary constant: 
 
 

  
r

k
e

r

C
y tr −= ,    C is any constant. 
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The Integrating Factor Method 
 
 
In the previous examples of simple first order ODEs, we found the solutions 
by algebraically separate the dependent variable- and the independent 
variable- terms, and write the two sides of a given equation as derivatives, 
each with respect to one of the two variables.  Then just integrate both sides 
and simplify to find the solution y.  However, this process was feasible only 
because the equations in question were a special type, namely that they were 
both separable, in addition to being first order linear equations.  They do, 
however, illustrated the main goal of solving a first order ODE, namely to 
use integration to removed the y′-term.   
 
Most first order linear ordinary differential equations are, however, not 
separable.  So the previous method will not work because we will be unable 
to rewrite the equation to equate two derivatives.  In such instances, a more 
elaborate technique must be applied.  How do we, then, integrate both sides? 
 
Let’s look again at the first order linear differential equation we are 
attempting to solve, in its standard form: 

 
y′ + p(t) y = g(t). 

 
What we will do is to multiply the equation through by a suitably chosen 
function µ(t), such that the resulting equation 
 
   µ(t) y′ + µ(t)p(t) y = µ(t)g(t)    (*) 
 
would have integrate-able expressions on both sides.  Such a function µ(t) is 
called an integrating factor.  
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Comment:  The idea of integrating factor is not really new.  Recall how you 
have integrated sec(x) in Math 141.  The integral as given could not be 
integrated.  However, after the integrand has been multiplied by a suitable 
from of 1, in this case (tan(x) + sec(x))/ (tan(x) + sec(x)), the integration 
could then proceed quite easily. 
 

∫∫ ∫ ∫ =
+
+

=
+
+

=
u

du
dx

xx

xxx
dx

xx

xx
xdxx

tansec

sectansec

sectan

sectan
secsec

2

 

 
 

CxxCu ++=+= tanseclnln  
 
 
 
 
Now back to the equation 
 
   µ(t) y′ + µ(t)p(t) y = µ(t)g(t)    (*) 
 
On the right side there is explicitly a function of t.  So it could always, in 
theory at least, be integrated with respect to t.  The left hand side is the more 
interesting part.  Take another look of the left side of (*) and compare it with 
this following expression listed side-by-side: 
 
  µ(t) y′ + µ(t)p(t) y    ↔   µ(t) y′ + µ′(t) y 
 
The second expression is, by the product rule of differentiation, nothing 
more than (µ(t) y)′.  Notice the similarity between the two expressions.  
Suppose the simple differential equation µ(t)p(t) = µ′(t) could be satisfied, 
we would then have 
 
  µ(t) y′ + µ(t)p(t) y =  µ(t) y′ + µ′(t) y = (µ(t) y)′   
 
 
Trivially, then, the left side of (*) could be integrated with respect to t. 
 
  ∫ (µ(t) y′ + µ(t)p(t) y) dt =  ∫ (µ(t) y)′ dt = µ(t) y 
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Hence, to solve (*) we integrate both sides: 
 
  ∫ (µ(t) y′ + µ(t)p(t) y) dt =  ∫ µ(t)g(t) dt 
 
  →  µ(t) y =  ∫ µ(t)g(t) dt      (**) 
  
 
Therefore, the general solution is found after we divide the last equation 
through by the integrating factor µ(t). 
 
 
 
But before we can solve for the general solution, we must take a step back 
and find this (almost magical!) integrating factor µ(t).  We have seen on the 
last page that it must satisfies the equation µ(t)p(t) = µ′(t).  This is a 
simpler equation that can be solved by our first method of separate the 
variables then integrate: 
 

    )(

)(
)(

t

t
tp

µ
µ ′

=   

 
  →  ∫ p(t) dt = ln | µ(t) | + C 
 

  →   
Ctdttp

eee
)(ln)( µ=∫

 
 

  →   )(1

)(
tCe

dttp

µ=∫
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This is the general solution, of course.  We just need one instance of it.  
Since any nonzero function of the above form can be used as the integrating 
factor, we will just choose the simplest one, that of C1 = 1.  As a result 
 
 

∫=
dttp

et
)(

)(µ . 

 
 
Once it is found, we can immediately divide both sides of the equation (**) 
by µ(t) to find y(t), using the formula 
 
 

( )
)(

)()(
)(

t

Cdttgt
ty

µ

µ∫ +
=  

 
 
 
 
Note:  In order to use this integrating factor method, the equation must be 
put into the standard form first (i.e. y′-term must have coefficient 1).  Else 
our formulas won’t work. 
 
Comment:  As it turns out, what we have just discovered is a very powerful 
tool.  As long as we are able to integrate the two required integrals, this 
integrating factor method can be used to solve any first order linear ordinary 
differential equation. 
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Example:   We will use our new found general purpose method to again 
solve the equation   
    y′ − r y = k,   r ≠ 0. 
 
 
 The equation is already in its standard form, with p(t) = − r and  
 g(t) = k. 
 
  

 The integrating factor is  
trdtr

eet −−
=∫=)(µ . 

 
 The general solution is  
 

 ( ) trtrtrtr

tr
Ce

r

k
Ce

r

k
edtke

e
y +

−
=







 +
−

== −−
− ∫
1

 

 
 That is it! 
 

(It looks slightly different, but this is indeed the same solution we 
found a little earlier using a different method.) 
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Example:   We have previously seen the direction field showing the 
approximated graph of the solutions of  
 

y′ = t − y.  
 
Now let us apply the integrating factor method to solve it.  
 
 

The equation has as its standard form,  
 

y′ + y = t.  
 
Where p(t) = 1 and g(t) = t. 

 
 

 The integrating factor is  
tdt

eet =∫=)(µ . 
 
 
 The general solution is, therefore,  
 

 ( ) ( ) ( )Ceteedteteedtte
e

y ttttttt

t
+−=−== −− ∫∫

1
 

  

 
tCet −+−= 1 . 
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Summary:  Solving a first order linear differential equation 
 
 

y′ + p(t) y = g(t) 
 
0.  Make sure the equation is in the standard form above.  If the leading 
coefficient is not 1, divide the equation through by the coefficient of y′-term 
first.  (Remember to divide the right-hand side as well!) 
 
1.  Find the integrating factor:  
 

    
∫=

dttp

et
)(

)(µ  
 
2.  Find the solution: 
 

   
( )

)(

)()(
)(

t

Cdttgt
ty

µ

µ∫ +
=  

 
 
This is the general solution of the given equation.  Always remember to 
include the constant of integration, which is included in the formula above as 
“(+ C)” at the end.  Like an indefinite integral (which gives us the solution in 
the first place), the general solution of a differential equation is a set of 
infinitely many functions containing one or more arbitrary constant(s). 
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Initial Value Problems (I.V.P.) 
 
 
Every time we solve a differential equation, we get a general solution that is 
really a set of infinitely many functions that are all solutions of the given 
equation.  In practice, however, we are usually more interested in finding 
some specific function that satisfies a given equation and also satisfies some 
additional behavioral requirement(s), rather than just finding an arbitrary 
function that is a solution.  The behavioral requirements are usually given in 
the form of initial conditions that say the specific solution (and its 
derivatives) must take on certain given values (the initial values) at some 
prescribed initial time t0.  For a first order equation, the initial condition 
comes simply as an additional statement in the form y(t0) = y0.  That is to say, 
once we have found the general solution, we will then proceed to substitute  
t = t0 into y(t) and find the constant C in the general solution such that y(t0) = 
y0.  The result, if it could be found, is a specific function (or functions) that 
satisfies both the given differential equation, and the condition that the point 
(t0, y0) is contained on its graph.  Such a problem where both an equation 
and one or more initial values are given is called an initial value problem 
(abbreviated as I.V.P. in the textbook).  The specific solution thusly found is 
often called a particular solution of the differential equation.   
 
Graphically, the general solution of a first order ordinary differential 
equation is represented by the collection of all integral curves in a direction 
field, while each particular solution is represented individually by one of the 
integral curves. 
 
 
 
To summarize, an initial value problem consists of two parts: 
  1.  A differential equation, and 
  2.  A set of initial condition(s). 
 
We first solve the equation to find the general solution (which contains one 
or more arbitrary constants or coefficients).  Then we use the initial 
condition(s) to determine the exact value(s) of those constant(s).  The result 
is a particular solution of the equation. 
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Example:  Solve the initial value problem 
  t y′ − 2y = t3

e
 t − 4,    y(1) = 2. 

 
 
 First divide both sides by t. 
 

    
t

ety
t

y t 42 2 −=−′     

 

→  
t

tp
2

)( −= ,  and   
t

ettg t 4
)( 2 −= . 

 
 The integrating factor is 

  
22lnln2

2
2

)( −−−
−

====∫=
−

tteeet
tt

dt
tµ .  

 
 
 The general solution is 

 ( ) ( )Ctetdttetdt
t

ett
t

y ttt ++=−=






 −= −−−
− ∫∫ 223222

2
24

41
 

 
22 2 Ctet t ++=  

  
  

Apply the initial condition 
 

  y(1) = 2 = 12 
e

1 + 2 + C 12 = e + 2 + C 
 
  0 = e + C    →   C = −e 
 
 Therefore, 

   
22 2 etety t −+= . 
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Example:  Solve the initial value problem   
cos(t) y′ − sin(t) y = 3t cos(t),   y(2π) = 0. 

 
 
 Divide through by cos(t):   y′ − tan(t) y = 3t   
 
  p(t) = − tan(t)  and  g(t) = 3t    
 

 The integrating factor is  
∫=
− dtt

et
)tan(

)(µ .   (What is this function?) 
 
  Use the u-substitution, let u = cos(t) then du = −sin(t)dt: 
 

 CtCu
u

du

t

dtt
dtt +=+==

−
=−∫ ∫ ∫ )cos(lnln

)cos(

)sin(
)tan(  

 
Near t0 = 2π, cos(t) is positive, so we could drop the absolute value. 

 
 

 Hence, )cos()( ))ln(cos()tan(
teet tdtt

==∫=
−

µ . 
  
 

 ( )∫ ∫−== dtttt
t

dttt
t

ty )sin()sin(
)cos(

3
)cos(3

)cos(

1
)(  

 

 ( ) )sec(3)tan(3)cos()sin(
)cos(

3
tCttCttt

t
++=++=  

 
 
 y(2π) = 0 = 6π tan(2π) + 3 + C sec(2π) = 0 + 3 + C = 3 + C 
 
     C = −3  
 
 Therefore,  

y(t) = 3t tan(t) + 3 − 3sec(t). 
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The Existence and Uniqueness Theorem (of the solution a first 

order linear equation initial value problem) 
 
 
Does an initial value problem always a solution?  How many solutions are 
there?  The following theorem states a precise condition under which exactly 
one solution would always exist for a given initial value problem. 
 
 

Theorem:  If the functions p and g are continuous on the interval I: α < t < β 
containing the point t = t0, then there exists a unique function y = φ(t) that 
satisfies the differential equation  
 
    y′ + p(t) y = g(t) 
 
for each t in I, and that also satisfies the initial condition 
 
       y(t0) = y0, 
 
where y0 is an arbitrary prescribed initial value. 
 
 
 
 
That is, the theorem guarantees that the given initial value problem will 
always have (existence of) exactly one (uniqueness) solution, on any interval 
containing t0 as long as both p(t) and g(t) are continuous on the same interval.  
The largest of such intervals is called the interval of validity of the given 
initial value problem.  In other words, the interval of validity is the largest 
interval such that (1) it contains t0, and (2) it does not contain any 
discontinuity of p(t) nor g(t).  Conversely, neither existence nor uniqueness 
of a solution is guaranteed at a discontinuity of either p(t) or g(t).  
 
Note that, unless t0 is actually a discontinuity of either p(t) or g(t), there 
always exists a non-empty interval of validity.  If, however, t0 is indeed a 
discontinuity of either p(t) or g(t), then the interval of validity will be empty.  
Clearly, in such a case the conditions that the interval must contain t0 and 
that it must not contain a discontinuity of p(t) or g(t) will be contradicting.  
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If so, such an initial value problem is not guaranteed to have a unique 
solution at all.   
 
 
 
 
Example:  Consider the initial value problem solved earlier  
  cos(t) y′ − sin(t) y = 3t cos(t),   y(2π) = 0. 
 
 

The standard form of the equation is  
 

y′ − tan(t) y = 3t   
 
with p(t) = − tan(t) and g(t) = 3t.  While g(t) is always continuous, p(t) 
has discontinuities at t = ±π/2, ±3π/2, ±5π/2, ±7π/2, …  According to 
the Existence and Uniqueness Theorem, therefore, a continuous and 
differentiable solution of this initial value problem is guaranteed to 
exist uniquely on any interval containing t0 = 2π but not containing 
any of the discontinuities.  The largest such intervals is (3π/2, 5π/2).  
It is the interval of validity of this problem.  Indeed, the actual 
solution y(t) = 3t tan(t) + 3 − 3sec(t) is defined everywhere within 
this interval, but not at either of its endpoints.  
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How to find the interval of validity 
 
For an initial value problem of a first order linear equation, the interval of 
validity, if exists, can be found using this following simple procedure. 
 
 
Given:   y′ + p(t) y = g(t),  y(t0) = y0. 
 
1.  Draw the number line (which is the t-axis). 
 
2.  Find all the discontinuities of p(t), and the discontinuities of g(t).  Mark 
them off on the number line. 
 
3.  Locate on the number line the initial time t0.  Look for the longest 
interval that contains t0, but contains no discontinuities.  
 
 
 
 
 

Step 1:  Draw the t-axis. 

 
 
 

Step 2:  Mark off the discontinuities. 

 
 

Step 3:  Locate t0 and determine the interval of validity. 
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Example:  Consider the initial value problems 
 (a)   (t2 − 81) y′ + 5e

3t
 y = sin(t),   y(1) = 10π  

 (b)  (t2 − 81) y′ + 5e
3t

 y = sin(t),   y(10π) = 1  
 
 
The equation is first order linear, so the theorem applies.  The standard form 
of the equation is 

   81

)sin(

81

5
22

3

−
=

−
+′

t

t
y

t

e
y

t

 

 

with 
81

5
)(

2

3

−
=

t

e
tp

t

 and 
81

)sin(
)(

2 −
=

t

t
tg .  Both have discontinuities at t = ± 9.  

Hence, any interval such that a solution is guaranteed to exist uniquely must 
contain the initial time t0 but not contain either of the points 9 and −9.   
 

In (a), t0 = 1, so the interval contains 1 but not ± 9.  The largest such 
interval is (−9, 9). 

 
In (b), t0 = 10π, so the interval contains 10π but neither of ± 9.  The 
largest such interval is (9, ∞). 

 
Remember that the value of y0 does not matter at all, t0 alone determines the 
interval. 
 
Suppose the initial condition is y(−100) = 5 instead.  Then the largest 
interval on which the initial value problem’s solution is guaranteed to exist 
uniquely will be (−∞, −9). 
 
Lastly, suppose the initial condition is y(−9) = 88.  Then we would not be 
assured of a unique solution at all.  Since t = −9 is both t0 and a discontinuity 
of p(t) and g(t).  The interval of validity would be, therefore, empty.  
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Depending on the problem, the interval of validity, if exists, could be as 
large as the entire real line, or arbitrarily small in length.  The following 
example is an initial value problem that has a very short interval of validity 
for its unique solution. 
 
 
Example:   Consider the initial value problems 

  (t2 − 10−2000000) y′ + t y = 0,   y(0) = α.  
 
With the standard form 

   0
10

' 20000002 =
−

− − y
t

t
y , 

 
the discontinuities (of p(t)) are t = ±10−1000000. The initial time is t0 = 0.  
Therefore, the interval of validity for its solution is the interval (−10−1000000, 
10−1000000), an interval of length 2×10−1000000 units!   
 
However, the important thing is that somewhere on the t-axis a unique 
solution to this initial value problem exists.  Different initial value α will 
give different particular solution.  But the solution will each uniquely exist, 
at a minimum, on the interval (−10−1000000, 10−1000000). 
 
Again, according to the theorem, the only time that a unique solution is not 
guaranteed to exist anywhere is whenever the initial time t0 just happens to 
be a discontinuity of either p(t) or g(t).  
 
Now suppose the initial condition is y(0) = 0.  It should be fairly easy to see 
that the constant zero function y(t) = 0 is a solution of the initial value 
problem.  It is of course the unique solution of this initial value problem.  
Notice that this solution exists for all values of t, not just inside the interval 
(−10−1000000, 10−1000000).  It exists even at discontinuities of p(t).  This 
illustrates that, while outside of the interval of validity there is no guarantee 
that a solution would exist or be unique, the theorem nevertheless does not 
prevent a solution to exist, even uniquely, where the condition required by 
the theorem is not met. 
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Nonlinear Equations: Existence and Uniqueness of Solutions 
 
 
A theorem analogous to the previous exists for general first order ODEs.  
 

Theorem:  Let the function f  and yf ∂∂  be continuous in some rectangle α < 
t < β, γ < y < δ, containing the point (t0, y0).  Then, in some interval t0 − h < t 
< t0 + h contained in α < t < β, there is a unique solution y = φ(t) of the initial 
value problem 
   y′ = f (t,y),    y(t0) = y0. 
 
 
 
This is a more general theorem than the previous that applies to all first 
order ODEs.  It is also less precise.  It does not specify a precise region that 
a given initial value problem would have a solution or that a solution, when 
it exists, is unique.  Rather, it states a region that somewhere within there has 
to be part of it in which a unique solution of the initial value problem will 
exist.  (It does not preclude that a second solution exists outside of it.) 
 
The bottom line is that a nonlinear equation might have multiple solutions 
corresponding to the same initial condition.  On the other hand it is also 
possible that it might not have a solution defined on parts of the region 
where f  and yf ∂∂  are both continuous. 
 
 
 
Example:  Consider the (nonlinear) initial value problem  

 y′ = t2
 y

 1/2,    y(0) = 0. 
 

When t = 0, yf ∂∂  is not continuous.  Therefore, it would not necessarily 

have a unique solution.  Indeed, both
36

6t
y =  and y = 0 are functions that 

satisfy the problem.  (Verify this fact!)  
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Exercises A-1.2: 
 
1 – 4  Find the general solution of each equation below. 
1.  y′ − t2

 y = 4t
2   

 
2.   y′ + 10 y = t2 

3.   0'
1 3

2 =− yey
t

t
 

4.  y′ − y = 2e 
t     

 
5 – 16  Solve each initial value problem.  What is the largest interval in 
which a unique solution is guaranteed to exist? 
5.   y′ + 2y = t e

−t,       y(0) = 2 
 
6.   y′ − 11y = 4e 

6t,        y(0) = 9 
 
7.   t y′ − y = t2 + t,       y(1) = 5 
 
8.   (t2 + 1) y′ − 2t y = t3 + t,      y(0) = −4 
 
9.   y′ + (2t – 6t

2)  y = 0,      y(0) = −8 
 

10.   
t

tyyt
2

42 =+′ ,      y(−2) = 0 

 
11.   (t2 − 49) y′ + 4t y = 4t,      y(0) = 1 / 7 
 
12.  y′ − y = t2 + t,       y(0) = 3 
 
13.  y′ + y = e 

t,         y(0) = 1    
 
14.  t y′ + 4y = 4,       y(−2) = 6 
 
15.   tan(t) y′ − sec(t) tan2(t) y = 0,     y(0) = π 
 
16.   (t2 + 1) y′ + 2t y = 0,      y(3) = −1
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17 – 20 Without solving the initial value problem, what is the largest interval 
in which a unique solution is guaranteed to exist for each initial condition? 

(a)  y(π) = 7,  (b)  y(1) = −9,   (c)  y(−4) = e.  
 

17.  (t + 5) y′ + 
3

)1)(8(

−
−−

t

tt
y = 

)1)(6( +− tt

t      

18.  t
2

 y′ + 
3

2

+
−

t

t
y = sec(t / 3)   

 
19.  (t2 + 4t − 5) y′ + tan(2t) y = t2 − 16     
 
20.   (4 − t2) y′ + ln(6 − t) 

y = e−t      
 
21.  Find the general solution of  t2

 y′ + 2t y = 2.  Then show that both the 
initial conditions y(1) = 1 and y(−1) = −3 result in an identical particular 
solution.  Does this fact violate the Existence and Uniqueness Theorem? 
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Answers A-1.2: 
 

1. 3/3

4 tCey +−=     

2. 
tCe

tt
y 10

2

500

1

5010
−++−=  

3. 






=
3

3

1
exp teCy  

4.  y = 2t e 
t + Ce 

t        
5.  y = t e

−t − e−t + 3 e
−2t,   (−∞, ∞)   

6. 
tt eey 611

5

4

5

49
−= ,  (−∞, ∞) 

7.  y = t2 + t ln t + 4t,  (0, ∞) 

8. )4)1)(ln(1( 22 −++= tty ,  (−∞, ∞) 
9.  y = −8 exp(2t

3 – t2),   (−∞, ∞) 

10. 42

41

tt
y −= ,  (−∞, 0) 

11. 22

24

)49(

34398

−
+−

=
t

tt
y ,  (−7, 7) 

12.  y = 6e 
t − t2 – 3t – 3,  (−∞, ∞)   

13. )cosh(
2

1

2

1
teey tt =+= −

, (−∞, ∞)   

14.  y = 1 + 80t 
−4,   (−∞, 0). 

15. 
1)sec()sec( −== tt ee

e
y π

π
,  (−π/2, π/2) 

16. 
1

10
2 +
−

=
t

y ,  (−∞, ∞) 

17.  (a) (3, 6);  (b) (−1, 3);  (c) (−5, −1). 
18.  (a) (0, 3π/2);  (b) (0, 3π/2);  (c) (−3π/2, −3). 
19.  (a) (3π/4, 5π/4);  (b) no such interval exists;  (c) (−5, −5π/4). 
20.  (a) (2, 6);  (b) (−2, 2);  (c) (−∞, −2). 

21. 2

2

t

Ct
y

+
= ; they both have 2

12

t

t
y

−
= as the solution; no, different initial 

conditions could nevertheless give the same unique solution. 
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Separable Differential Equations 
 
 
A first order differential equation is separable if it can be written in the form  
 

M(x) + N(y) y′ = 0, 

 
 
where M(x) is a function of the independent variable x only, and N(y) is a 
function of the dependent variable y only.  It is called separable because the 
independent and dependent variables could be moved to separate sides of the 
equation: 

    )()( xM
dx

dy
yN −= . 

 
Multiplying through by dx,   
 
    .)()( dxxMdyyN −=  
 
A general solution of the equation can then be found by simply integrating 
both sides with respect to each respective variable: 
 

CdxxMdyyN +−=∫ ∫ )()( . 

 
 
This is the implicit general solution of the equation, where y is defined 
implicitly as a function of x by the above equation relating the 
antiderivatives, with respect to their individual variables, of M(x) and N(y). 
 
An explicit general solution, in the form of y = f (x), where y is explicitly 
defined by a function f (x) which itself satisfies the original differential 
equation, could be found (in theory, although not always in practice) by 
simplifying the implicit solution and solve for y. 
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 Example:  Solve   03 =−− xx
dx

dy
e y

 

 
First, separate the x- and y-terms. 

   xx
dx

dy
e y += 3

 

 
 Then multiply both sides by dx and integrate 
 

   ( )∫ ∫ += dxxxdye y 3
 

  

  C
xx

e y ++=
24

24

     (implicit solution) 

or, 

  







++= C

xx
y

24
ln

24

    (explicit solution) 

 
 
Suppose there is, in addition, an initial condition of y(1) = 2.  We can solve 
for the constant C by applying this initial condition: 
 

  Ce ++=
2

1
4

1 24
2

  →   4

32 −=eC  

 
 
 Finally, 

  4
3

24
2

24

−++= e
xx

e y

    (implicit solution) 

 or, 

  







−++=

4
3

24
ln 2

24

e
xx

y    (explicit solution) 
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Example:  Solve the initial value problem 
 

  )cos(1' 2 tyy −= ,    y(0) = 0. 
 
 
 Separate the variables and integrate, we have 
 

   dtt
y

dy
)cos(

1 2
=

−
 

    

   ∫∫ =
−

dtt
y

dy
)cos(

1 2  

 
   arcsin(y) = sin(t) + C. 
 

Apply the initial condition to solve for C, the (implicit) particular 
solution is 
 
  arcsin(0) = sin(0) + C 
 
  0 = 0 + C   →   C = 0  
   
  arcsin(y) = sin(t). 
 
 
The explicit particular solution can be found easily: 
 
   y = sin(sin(t)). 
 

 
 
 
 
 
Question:  How would the solution differ if the initial condition is y(0) = 1? 
(What happens when y0 = 1?) 
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Example:  Solve the initial value problem 
 

  102

543 2

−
−+

=′
y

tt
y ,    y(1) = −2. 

 
 
   (2y − 10) y′ = 3t

2 + 4t − 5    
 

(2y − 10) dy = (3t
2 + 4t − 5) dt  

 
   ∫ (2y − 10) dy = ∫ (3t

2 + 4t − 5) dt  
 
 
 (Implicit) general solution is y

2 − 10y = t3 + 2t
2 − 5t + C.   

 
The initial condition says that when t = 1, y = −2, so substitute those 
two values into the general solution: 

 
   (−2)2 −10(−2) = 13 + 2(1)2 − 5 + C 
 
   24 = −2 + C   →   C = 26 
 
 The (implicit) particular solution is  y

2 − 10y = t3 + 2t
2 − 5t + 26. 

 
 

What is the explicit solution?  We will solve explicitly for y by first 
using completing-the-square to simplify the left side: 
 

y
2 − 10y + 25 = t3 + 2t

2 − 5t + 26 + 25 
 

(y − 5)2 = t3 + 2t
2 − 5t + 51 

 

   y − 5 = ± 5152 23 +−+ ttt  
 

   y(t)  = 5 ± 5152 23 +−+ ttt     (Which one?) 
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It is necessary to determine which one of the two expressions above is 
the actual solution of this problem.  Both expressions are derived from 
the same implicit solution of the given equation.  Therefore, they 
would both satisfy the equation.  However, there is a unique solution 
to this initial value problem, as we know.  We do have a clue 
regarding the true identity of the solution.  The clue is in the form of 
the initial condition, y(1) = −2.  Let us check.  Apply the initial 
condition to both expressions: 

 

  −2 = y(1) = 5 ± 515)1(21 23 +−+  = 5 ± 49 . 
 
 

Since  −2 = 5 − 49 , the correct explicit solution must be the 
expression with the minus sign. 
 

 

   y(t)  = 5 − 5152 23 +−+ ttt . 
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Summary:  Solving a separable differential equation 
 
 

M(x) + N(y) y′ = 0 
 
 
1.  Rearrange the equation into the form below, separating it into a 
dependent variable part and an independent variable part: 
 

N(y) y′ = − M(x). 
 
Then convert both sides into derivatives by multiplying through with dx. 
 

N(y) dy = − M(x) dx. 
 
 
2.  Integrating both sides to find the implicit general solution: 
 

CdxxMdyyN +−=∫ ∫ )()(  

 
The constants of integration should be combined and put into only one side 
(by convention, the independent variable side) of the equation. 
 
 
3.  If necessary / feasible, an explicit general solution, y = f (x) can be found 
by simplifying the implicit solution and solve for y. 
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Exercises A-1.3: 
 
1 – 6  Find the general solution of each system below. 

1.   y′ = t2 
y

 1/2      2.    y′ =
t

y
  

3.  y′ =
y

t

cos
sin

       4.  y′ =
4

sec
2 +x

y
 

 
5.  y′ = y3 + 4y       6.  y′ = cot y   
 
7 – 17  Solve the following initial value problem. 

7.  y′ = )cos(1 2 ty− ,    y(0) = 1 

8.   y′ =
12 −x

y
,    y(2) = 1 

9.  y′ = 2

1

xy
,    y(1) = 3 

 
10.  y′ − t2

 y = 4t
2,     y(1) = 2 

 
11.  y′ = 6t

2
 y – 2ty,    y(0) = −8 

 
12.  y′ − y2 = 4,      y(0) = −2 
 
13.  y′ = (1 + y2) sec2 x,    y(0) = −1 
 
14.  y′ = e2y 

t sin(4t),    y(π) = −1 
 

15.   y′ =
2

142 3

+
+−

y

xx
,   (a)  y(0) = 1,  (b)  y(1) = −4.  

 
16.  y y′ = 2t (y2 + 5),    (a)  y(0) = 2,  (b)  y(−1) = −4. 
 

17.   y′ =
)ln(y

xy
,    (a)  y(4) = 1,  (b)  y(−2) = e.  

 
18.  y′ − y = y2,      (a)  y(0) = −2,  (b)  y(−2) = 0. 
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Answers A-1.3: 
 
2.  y = C t 
3.  y = sin 

−1(−cos t + C) 

4. 







+






= −− C
x

y
2

tan
2

1
sin 11

 

5.  Ct
y

y
+=









+ 4
ln

8
1

2

2

  (in implicit form), and y = 0.  

6.  y = cos –1(e– t + C )  

7.  y = 1      8. 
1
1

3
+
−

=
x

x
y    

9. 3 27ln3 += xy      10. 46 3/3/1 3

−= − teey  

11.  y = −8 exp(2t
3 – t2) 

12.  y = 2 tan(2x − π/4) 
13.  y = tan(tan(x) − π/4) 

14. 






 −+−
−

=
2

)4sin(
8

1
)4cos(

2

1
ln

2

1 2 π
ettty  

15.  (a) 9242 24 ++−+−= xxxy ,  (b) 5242 24 ++−−−= xxxy  

16.  (a) 5)2exp(9 2 −= ty ,   (b) 5)22exp(21 2 −−−= ty  

17.  (a) 8
2

)(ln
2

2 −=
x

y ,   (b) 1
2

)(ln
2

2 −=
x

y    (in implicit form). 

18.  (a) )2ln(
1

ln +=
+

t
y

y
  (in implicit form),  (b)  y = 0 
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Applications of First Order Equations 
 
 
I.  Mixing solution 
 
A mixing tank initially contains Q 0 amount salt (solute) dissolved in S 0 
amount of water (solvent).  Additional salt water (solution) of concentration 
ci flows into the tank at a rate ri.  Assume the content of the mixing tank is 
stirred very rapidly such that the solution within is always of uniform 
concentration.  The mixed content is then pumped out of the tank for use 
elsewhere at a rate ro.  Find the amount (mass) or concentration 
(mass/volume) of salt contained in the tank at any time t > 0. 
 
 
Denote:  Q(t) = amount of solute in tank at time t  
  S(t) = volume of solution in tank at time t  
 
An expression for S(t) is simple to derive:  Since there are initially S0 amount 
in the tank; and during each unit of time ri amount flows into and ro amount 
flows out of the tank, for a net change of (ri − ro) per unit time.  Therefore, 
  

S(t) = S 0 + (ri − ro) t 

 
 
Next, we want to come up with an equation that governs Q.  The general 
form of the differential equation that governs the amount of solute in the 
mixing tank, Q(t), at any time t > 0 is: 
 

Q ′ = (rate of solute flowing in) − (rate of solute flowing out) 
 
 
The rate of solute in/out is equal to  
 

(rate of solution in/out) × (concentration of solution in/out) 
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Therefore, the necessary initial value problem is 
 

Q ′ = ri ci − ro )(tS

Q
,   Q(0) = Q 0 

 
     
 
The equation is a first order linear equation with the standard form 

    Q ′ + )(
0

tS

r
Q = ri ci.. 

 
Consequently, it can always be solved using the integrating factor method 
we have already seen. 
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The constant-volume mixing problem  (w/ constant rates, ri = ro = r) 
 
 
In this case, S(t) = S 0.  The mixing problem becomes   

   Q ′ + 
0S

r
Q = r ci. , Q(0) = Q 0 

  

 First identify p(t) = 
oS

r
, and  g(t) = r ci.   

 

The integrating factor is 

t
S

r
dt

S

r

eet 00)( =
∫

=µ  
 

t
S

r

i

t
S

r

i
t

S

r
t

S

r

iStr
CeScCe

r

Scr
edtecr

e
tQ 0000

0
0

01
)(

−−

+=













+=














= ∫  

 

 Q(0) = Q 0 CScCeSc ii +=+= 0
0

0   →  C = Q 0 − ci S0  
 
 Therefore, 

t
S

r

ii eScQSctQ 0)()( 000

−

−+= . 
 
 
 The concentration as a function of time is Q(t) / S(t) = Q(t) / S 0. 
 

The limiting concentration is i
i

t
c

S

Sc

tS

tQ
==

∞→
0

0

)(

)(
lim .  That is, after a 

very long time, the concentration of the content of the tank will 
approach the concentration of the new inflow.  (Since eventually 
every last drop of the original content will be flushed out of the tank 
and be replaced by the inflow solution.) 
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Example:  A swimming pool initially contains 1000 m3 of stale, un-
chlorinated water.  Water containing 2 grams per m3 of chlorine flows into 
the pool at a rate of 4 m3 per minute.  The well-mixed content of the pool is 
drained at the same rate.  Find the time when the chlorine concentration in 
the pool reaches 1 gram per m3.      
 
 

In this problem, ri = ro = 4.  Therefore, it is a constant volume 
problem, and the initial volume S 0 = 1000 = S(t).  There is initially no 
solute (chlorine, in this case) in the pool, hence Q(0) = 0.  The inflow 
concentration ci = 2.   We can then set up the following initial value 
problem 

 Q ′ = (4)(2) −
1000

4
Q  = 8  − 

250
1

Q , Q(0) = 0. 

 
 

In standard form:   Q
 ′ + 

250
1

Q = 8 , Q(0) = 0. 

 

Where p(t) = 
250
1

, and g(t) = 8. 

 

The integrating factor is 
tdt

eet 250

1

250

1

)( =∫=µ . 
 
 
 The general solution is, then, 
  

 
250250250250

250/
200020008

1 tttt

t
CeCeedte

e
Q

−−

+=









+== ∫  . 

 
 
Applying the initial condition Q(0) = 0, 

 
 Q(0) = 0 = 2000 + C   →   C = −2000. 
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 Consequently, the particular solution for this problem is 
 

   25020002000)(
t

etQ

−

−= . 
 
 
 
 The concentration of chlorine in the pool is given by the expression 
 

   
250

250

22
1000

20002000

)(

)( t
t

e
e

tS

tQ
−

−

−=
−

= . 

 
 

Set the expression to equal 1, and solve for t.  The time (in minute) it 
takes for the chlorine concentration in the pool to reach 1 gram per m3 
is:     

 

  
25022

)(
)(

1
t

e
tS

tQ
−

−==   →   25021
t

e

−

−=−    

 

→  
250

2
1 t

e

−

=     →   2502
1

ln
t−

=







 

 

 →  t−=







2

1
ln250   →   t = 250 ln(2). 
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Non-constant-volume mixing problem  (w/ constant rates, but ri ≠ ro) 
 
 
Example (Exam 1, summer 2002):  A 400-liter tank is initially filled with 
100 liters of dye solution with a dye concentration of 5 grams/liter.  Pure 
water flows into the tank at a rate of 3 liters per minute. The well-stirred 
solution is drained at a rate of 2 liters per minute. Find the concentration of 
dye in the tank at the time that the tank is completely filled. 
 
 

In this problem, ri = 3, ro = 2, and the initial volume is S 0 = 100.  So 
the solution’s volume is S(t) = S 0 + (ri − ro) t = 100 + t.  The initial 
concentration of the solute is 5 grams per liter.  Multiplying it by the 
initial volume gives us the initial condition of Q(0) = 500 (grams of 
dye).  No number is given for the inflow concentration ci, but it can be 
seen that ci = 0 (why?).  At the start, the 400-liter tank still has 300 
liters of spare capacity left.  At the rate of 1 liter net gain of content 
per minute, it can last 300 minutes until it is fully filled, so  
toverflow = 300.  Therefore, we can set up the initial value problem, for 
t ≤ 300 (beyond that time, the mixing process will be of a different 
nature!):  

   Q
 ′ + 

t+100
2

Q = 0 , Q(0) = 500. 

 

Where p(t) = 
t+100

2
, and  g(t) = 0. 

 
The integrating factor is 

 
2)100ln(100ln2100

2

)100()(
2

teeet tt
dt

t +===∫= +++µ . 
 
 
 The general solution is 

   22 )100(
0

)100(
1

t

C
dt

t
Q

+
=

+
= ∫  . 
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Applying the initial condition Q(0) = 500, 
 

 10000)0100(
500)0( 2

CC
Q =

+
==  →  C = 5000000. 

 
 

 Hence, the particular solution is  2)100(
5000000

)(
t

tQ
+

= . 

 
The problem asks for the concentration of dye at toverflow = 300 
minutes.  Write down the formula for the solute’s concentration and 
then set t = 300 to obtain 

 

 
64

5

64000000

5000000

400

5000000

)300100(

)300100/(5000000

)300(

)300(
3

2

===
+

+
=

S

Q
 

 
= 0.078125. 
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Exercises A-1.4:   
 
1.  A tank is initially filled with 600 liters of a solution containing 100 grams 
of sugar.  Solution containing a concentration of 2 g/liter sugar enters the 
tank at the rate 4 liters/minute and the well-stirred mixture leaves the tank at 
the same rate. Find the amount of sugar in the tank at time t, and find the 
limiting amount of sugar in the tank as t → ∞. 
 
2.  A swimming pool holds 100 m3 of pure water.  Solution containing 2 
kg/m3 of chlorine enters the pool at a rate of 3 m3/min.   A drain is opened at 
the bottom of the pool so that the volume of solution in the pool remains 
constant.  Find : (i) the amount of chlorine in the pool at time t, (ii) the 
amount of chlorine in the pool after one hour, and (iii) find the maximum 
amount of chlorine in the pool if the process is to continue indefinitely. 
 
3.  A 200-liter tank is filled to capacity with brine containing 1 g/liter of salt.  
Additional brine containing 5 g/liter of salt enters the tank at the rate 2 
liters/min and the well-stirred mixture leaves the tank at the rate of 4 
liters/min. Find the amount of salt in the tank at any time t, until the tank is 
completely drained (0 < t < 100).   What is the maximum amount of salt 
present in the tank during this period? 
 
4.  A 150-liter mixing vat is initially filled with 60 liters of water containing 
2 g/liter of dissolved potassium chloride.  Starting at t = 0, 5 g/liter solution 
of potassium chloride flows into the vat at a rate of 6 liters/minute.  The 
well-mixed solution leaves the vat at a rate of 3 liters/minute.  (i) Set up an 
initial value problem describing the amount of potassium chloride in the vat 
at any time t prior to overflow,  0 < t < 30.  (ii) Solve this problem.  (iii)  
Find the amount and concentration of potassium chloride in the vat at the 
time of overflow.  (iv) Suppose the intake pipe continues to supply 6 
liters/minute of solution past the time of overflow, and the excessive 
solution spills over the open top of the vat.  Therefore, the well-mixed 
solution would leave at a rate of 6 liters/minute by means of both the output 
pipe and spill-over.  Set up an initial value problem describing the amount of 
potassium chloride in the vat at any time t from the time of overflow onward, 
t > 30.  (v) Solve this second initial value problem.  (vi) Find the limiting 
concentration of potassium chloride in the vat as t → ∞. 
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5.  A retention pond initially contains 2000 m3 of water having a pollutants 
concentration of 0.5 kg/ m3.  Each hour, 10 m3 of water containing pollutants 
of variable concentration 2 + sin(t) kg/ m3 flows into the pond.  Thoroughly 
mixed water flows out of the pond at the same rate.  (i) Set up an initial 
value problem modeling this process.  (ii) Solve this problem. 
 
 
 
 
 
 
 
 
Answers A-1.4:   
 
1.  Q(t) = 1200 − 1100e

−t / 150,  1200 grams 
2.  (i) Q(t) = 200 − 200e

−3t / 100,  (ii) Q(60) = 200 − 200e
−9 / 5 ≈ 166.94 kg, 

     (iii) Qmax approaches 200 kg, occurs as t → ∞.    
3.  Q(t) = −0.08t

2 + 6t + 200,  Qmax = 312.5 grams (at t = 37.5) 

4.  (i) Q ′ +
t+20

1
Q = 30,  Q(0) = 120 

     (ii) 
t

tt
tQ

+
++

=
20

240060015
)(

2

 

     (iii)  Amount of KCl = 678 grams,  concentration = 4.52 g/liter 

     (iv) Q ′ +
25
1

Q = 30,  t > 30, Q(30) = 678  

     (v)  Q(t) = 750 − 72e
(30 − t) / 25       

     (vi)  5 g/liter 

5.  (i) Q ′ +
200
1

Q = 20 + 10sin(t) , Q(0) = 1000 

     (ii) 200

40001

119963000
)cos()sin(

200

1

40001

40000
4000)(

t

etttQ

−

−






 −+=  
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II.  Air-resistance / Motion of an object in a resistive fluid medium 
 
 
Freefall and Air-resistance 

 
An object of mass m is freefalling near sea level (therefore, assume constant 
gravity).  Unlike in the calculus class earlier, we will include the effect of 
air-resistance in our consideration.  For the time being, we shall assume that 
the resistive force (drag force) is proportional to the instantaneous speed

* of 
the object in motion (e.g., when the resistance is due to friction only).  Find 
the velocity of the freefalling object as a function of time. 
 
 

 
 
Note:  The textbook’s convention is that the downwards direction is positive. 
 
 
Forces acting on the object undergoing freefall: 
 
 Gravitational force  w = mg   (always downwards) 
 Resistive force (drag)  |Fr | = k | v|   (against the direction of v) 
 
The gravity/weight is always downward, so w is always positive.  The drag 
force always opposes the direction of the motion (given by the sign of 
velocity function v(t)).  Therefore, Fr = − k v, which is always opposite of v 
but whose magnitude equals k | v|.  The proportionality constant k is the drag 

coefficient. 
 
                                                 
* Speed = the magnitude of velocity = | v | 
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By Newton’s second law of motion 
 

ma = ∑  forces 
 
That is   ma = mv′ = mg + (− kv). 
 
 
Hence the required equation of motion governs the velocity of the object is 
 

mv′ = mg − kv. 

 
It is a simple first order linear equation, with constant coefficients.  Its 
solution is  

t
m

k

Ce
k

mg
tv

−

+=)( . 

 
The position function of the motion can be found, as usual, by integration: 
 
     x(t) = ∫ v(t) dt. 
 
 
 
 
Limiting velocity: 
 

vL = )(lim tv
t ∞→

 

 
The limiting velocity is the maximum velocity achievable by the object, in 
this model, given infinite amount of time to accelerate.  Take the limit of the 
solution found above, we obtain vL = mg / k.  
 
More easily, it could also be found, without having to find v(t) first, by 
setting v′ = 0 in the original motion equation and solve for v.  (Since vL is the 
maximum velocity, it occurs at a critical point of v(t)!  Hence, v′ = 0.  
Physically, this happens when the gravitational force and drag cancel each 
other, leaving zero net force in the motion equation.)   
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That is 
 
     0 = mg − k vL   
 
     mg = k vL     
 

Therefore,    vL = 
k

mg
tv

t
=

∞→
)(lim . 

 
 
Note that vL is independent of any initial condition. 
 
What happens if the initial velocity, for whatever reason, is larger than vL?  
In that case the right hand side of the motion equation, mg – kv, is negative.  
The process modelled becomes a gradually decelerating motion whose 
velocity would eventually slow down to vL, which would be the minimum 
achievable velocity. 
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Another (more realistic) air-resistance model 
 
 
According to fluid dynamics, the drag force exerted on an object moving, 
sub-sonically, in a fluid (liquid or gas) medium is actually proportional to 
the square of its speed.  Therefore, a more realistic equation that models the 
sub-sonic motion of an object in a resistive fluid medium is 
 

mv′ = [propulsive force] − kv
2,   v ≥ 0 

   
 
This equation is a nonlinear first order differential equation.  Fortunately, it 
is a separable equation.  Therefore it is well within our capability to solve it. 
 

Let p > 0 denotes the propulsive force (gravity, or the thrust of an 

engine, for examples) and kpv /±≠ : 
 

  mv′ = p − kv
2   →   1

2
=′

−
v

kvp

m
  

  
Integrate both sides (the left can be integrated by partial fractions) to 
obtain the implicit solution: 

 

    ∫ +=
−

Ctdv
kvp

m
2  

 
 
Even without an explicit function, the limiting velocity can nevertheless be 
found easily by setting v′ = 0 in the motion equation. 
 

    
k

p
vL =  
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Example:  A 100 kg Unmanned Aerial Vehicle (UAV) possesses propulsive 
force of 10000 N and has drag coefficient k = 4.  Find the velocity function 
of its flight. 
 
 m = 100, k = 4, and take v(0) = 0 as the initial condition: 
 
  100v′ = 10000 − 4v

2,   v(0) = 0 
 
 Simplify the equation, separate the variables, and integrate both sides. 

(But first noting that v = ± 50 are both also solutions of this equation.) 

  v′ = 100 − 0.04v
2,    dt

v

dv
=

− 204.0100
 

 

    ∫∫ =
−

dt
v

dv
204.0100 . 

 
 The left-hand side could be simplified by partial fractions into: 
 

   
vvv 2.010

20/1
2.010

20/1

04.0100

1
2 −

+
+

=
−

. 

 Hence, 

   Ctdv
vv

+=





−

+
+∫ 2.010

1

2.010

1

20

1
 

 

   Ct
v

dv

v

dv
+=





−

−
−

+∫ 2.010
2.0

2.010
2.0

5
20
1

 

 

   [ ] Ctvv +=−−+ 2.010ln2.010ln
4

1
. 

 Now use the initial value v(0) = 0 to find c = 0.  Therefore, 
 

[ ]
v

v
vvt

2.010
2.010

ln
4
1

2.010ln2.010ln
4
1

−
+

=−−+= . 

 
The limiting velocity (forward) is vL = 50 m/sec, which is found by setting  
v′ = 0 in the original equation and solve for v. 
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With some algebra (and a little patient) we can also find the explicit solution 
for this problem without much difficulty. 
 
For reasons we shall see very shortly (in the section on autonomous 

equations), and given the condition that v ≥ 0, there are 3 families of 
solutions, depending on the initial v-value.  Since v0 = 0 in this example, we 
will only find the relevant solution, which exists on the interval 50 > v ≥ 0.    
 
From the implicit solution 

v

v
t

2.010
2.010

ln
4
1

−
+

= ,  50 > v ≥ 0. 

 

v

v
t

2.010
2.010

ln4
−
+

=  

 

v

v
e t

2.010
2.0104

−
+

=  

 
Since 50 > v ≥ 0, we can drop the absolute value: 
 

vev t 2.010)2.010( 4 +=−  
 

vvee tt 2.02.01010 44 +=−  
 

vee tt )1(2.0)1(10 44 +=−  
 

vee tt )1()1(50 44 +=−  
 

1
)1(50

4

4

+
−

=
t

t

e

e
v  

 
 

Verify that v(0) = 0 and 50)(lim =
∞→

tv
t

= vL.  The constant function v = 50, by 

the way, is also a solution to the equation (verify this).  It does not come 
from the implicit general solution found earlier, but rather comes about by 
merely setting v′ = 0 and solve for v. 
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III.  Continuous compound interest with additional transactions 
 
 
From calculus:  Starting with a fixed principal amount A0, the balance of an 
account garnering a fixed interest rate r (per year, usually) compounding at a 
frequency of m (per year) is given by the formula 
 

    
mt

m

r
AtA 







 += 1)( 0 . 

If the interest is compounded continuously, i.e. as the frequency m → ∞,  
then 

   
rt

mt

m
eA

m

r
AtA 00 1lim)( =







 +=
∞→

. 

 
Indeed, A0 e

rt is the actual solution of the differential equation A ′ = rA, 
subject to the initial condition A(0) = A0.   (Exercise: verify this claim.) 
 
 
Note:  The simple equation above, A ′ = rA, means simply that the rate of 
change of the account balance is (continuously) proportional to its present 
size.  The same equation (where the rate of change of some quantity is 
directly proportional to the current size of the said quantity) also governs 
exponential growth and radio-active decay (when r is negative) behaviors. 
 
 
 
Now, instead just let the principal sit untouched and allowed to grow 
exponentially during the lifetime of the deposit (as in a bank CD), we will 
consider the effect of further deposit/withdraw transactions after the initial 
deposit.  One caveat: since we do not have the necessary tool (the Laplace 
Transform, chapter 6) to deal with discrete (one-time) events, we have to 
assume that the transactions occur continuously, or at least occur regularly 
and frequently enough that they can be thought of as to be occurring 
continuously.  While such an assumption does not model well the account 
balance of a typical checking account, it does give a good approximation of 
accounts with fixed installment payments such as annuities, mortgage or 
student loan repayment, etc.    
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Hence, assume an account starts with a principal of A0, that gains interest at 
a rate of r per unit time compounded continuously.  In addition, transactions 
occurring continuously and netting k amount per unit time (k > 0 means a net 
deposit into the account; k < 0 means a net withdraw from it) are applied to 
the account.  Then, the account balance is described by the following initial 
value problem:   
 
   y′ = r y + k,   y(0) = A0. 
 
 

Comment:  The above equation says that at any moment in time the 
account balance y is increased by an amount proportional to its current 
size times the interest rate, and the rate of change is further modified 
(up or down, depending on the sign of k) by the net transactional 
amount. 

 
 
We have solved this equation earlier in the semester.  The general solution is 

    
r

k
e

r

C
y tr −= . 

 
Apply the initial condition we get: 

  
r

kC

r

k
e

r

C
Ay

−
=−== 0

0)0(  

 

  kCrA −=0   →  C = rA0 + k 
 
Therefore, 

  ( )100 −+=−






 += trtrtr e
r

k
eA

r

k
e

r

k
Ay . 
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Example (final exam, fall 2007):  A college student borrows $5000 to buy a 
car. The lender charges interest at an annual rate of 10%. Assume the 
interest is compounded continuously and that the student makes payments 
continuously at a constant annual rate k.  Determine the payment rate k that 
is required to pay off the loan in 5 years. 
 

In this problem, the yearly interest rate r = 10% = 0.1, the principal 
balance is A0 = 5000, the yearly payment (think it as a withdrawal, 
since we are paying down the balance) k is the unknown.  The loan 
term is 5 years, i.e. it needs to be paid off completely in 5 years.  That 
means besides the initial condition, y(0) = 5000, we also have a 
second (terminal?) condition of y(5) = 0.  We set up the required 
initial value problem (note that k has a minus sign in front, denoting 
repayment): 

 
  y′ = r y − k = 0.1y − k  y(0) = 5000. 
 
 It is a first order linear equation (it is also a separable equation), 
 
    y′ − 0.1y = − k,  
  

where p(t) = − 0.1, and g(t) = − k. 

 The integrating factor is, therefore, 
10/10

1

)( t
dt

eet −
−

=∫=µ . 
 
 The general solution is 
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Apply the initial condition to find C = 5000 – 10k.  The particular 
solution is 

    y(t) = (5000 − 10k) e t
 
/10 + 10k. 

 
 Lastly, apply the pay-off condition y(5) = 0, we find that 

   
1

500
500

1
500

2/12/1

2/1

−
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−
=

ee

e
k . 

 



© 2008, 2012  Zachary S Tseng  A-1 - 60 

Example:  The present value of a lottery jackpot − A lucky college student 
has won the lottery’s ten million dollars jackpot.  The winning is paid out 
equally over 20 years.  Assume the payout is made continuously and the 
annual interest rate is constant 8% over the 20-year period.  How much is the 
jackpot worth in today’s dollar? 
 
 

The problem is to find the present value (or discounted value) of this 
jackpot, which is not paid out all at once, but over a period of 20 years.  
That is, if the winning was, instead, made in a lump sum and was 
immediately deposited in a bank to garner interest for 20 years, how 
big a sum it must be to equal in value, at the end, to the 20-year of 
steady cash stream?  In accounting-speak, we are trying to discount 
the future cash flow in order to find its present value, or how much 
this future stream of cash payments is worth now.  
 
There are 2 ways to tackle this problem.  The more obvious (to us 
non-accounts) is the indirect approach.  First we compute the worth of 
this jackpot at the end of 20 years by solving the compound interest 
equation with the yearly interest rate r = 8%, the yearly payment k is 
$10,000,000 / 20 = $500,000, and (the initial condition) the principal 
balance A0 = 0.  Set t = 20 in the result to obtain the terminal value 
after 20 years.  Then we solve a second problem of continuous 
compound interest with an unknown initial principal balance A1, no 
additional transactions, and a terminal condition y(20) equal to the 
amount we have found previously.  Solve this second problem to find 
A1, which is how much the jackpot would be worth presently. 

 
There is another, more direct, way to find the present value.  It is how 
accountants will approach this problem − from the point-of-view of 
the lottery administrator.  For the administrator, the problem is to set 
aside enough money to be deposited in a bank account such that a 
yearly payout/withdraw of k = − $500,000 can be made for 20 years 
(and the account balance becomes exactly zero at the end of the 20-th 
year).  In this approach, we will use r = 8%, the yearly withdraw  
k = − $500,000, the initial condition being the unknown principal 
balance A0, plus the terminal condition y(20) = 0. 
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Hence, we will solve the initial value problem: 
 
  y′ = r y + k = 0.08 y − 500000, y(0) = A0,  
 
and such that  y(20) = 0. 
 
 In its standard form, 
 
    y′ − 0.08y = − 500000,      

 
with p(t) = − 0.08, and g(t) = − 500000. 

 

 The integrating factor is, therefore, 
tdt

eet 08.008.0
)( −−

=∫=µ . 
 
 The general solution is 
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Apply the initial condition to find C = A0 − 6250000.  The 
particular solution is, consequently, 
 

    y(t) = 6250000 + (A0 − 6250000) e 0.08 t
 . 

 
Lastly, apply the terminal condition y(20) = 0, we find that the present 
value of this nominally ten million dollars jackpot is actually less than 
half of its stated amount: 

   . 

 A0 − 6250000 = − 6250000 / e
 1.6    →  A0 = $4,988,147 

 
 
This example explains why that, when a lottery winner chooses (as most of 
them do, given the option) to take the winning in a single lump sum, rather 
than in periodic payments over many years, the payout amount becomes 
much smaller than the quoted jackpot, even before taxes are deducted… 
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Exercises A-1.5:   
 
1.  A home-buyer is applying for a 30-year mortgage at a fixed rate of 6% 
per year.  Suppose the home-buyer can afford to repay no more than $1000 
per month.  What is the maximum amount of mortgage that the home-buyer 
can borrow? 
 
2.  A mortgage of $250000 has a fixed interest rate of 6% per year 
compounded continuously.  (i) How much would the monthly payment be if 
the mortgage is to be paid off in 15 years?  How much interest would have 
been paid?  (ii) How much would the monthly payment be if the mortgage is 
to be paid off in 30 years?  How much interest would have been paid? 
 
3.  A reservoir initially contains 15000 fish.  The fish population grows 
continuously at a rate of 10% per year.  Suppose each year local anglers 
harvest a fixed quota of 1000 fish from the reservoir.  (i) Write an initial 
value problem that models the reservoir’s fish population.  (ii) Solve the 
initial value problem.  (iii) How many fish will there be after 10 years?  
 
4.  The process of radioactive decay is described by the equation  y ′ = – r y, 
where r is a positive constant, called the decay constant of the radioactive 
material.  (i) Find an explicit formula for the material’s half-life in term of r 
by first solving the equation together with the conditions y(0) = β and y(thalf) 
= β /2.  (ii) Given that the decay constant of uranium-235 is r = 9.84×10–10 
per year, find its half-life. 
 
 
 
Answers A-1.5:   
 
1.  $166940.22   
2.  (i) Repayment = $2106.4 per month ($25276.77 per year), total interest 
paid is $129151.5.  (ii) Repayment = $1497.54 per month ($17970.50 per 
year), total interest paid is $289115.13.  
3.  (i) P′ − 0.1P = −1000,  P(0) = 15000 
     (ii) P(t) = 5000e 

t
 
/ 10 + 10000   

     (iii) P(10) = 5000e + 10000 ≈ 23591  

4.  (i) 
r

thalf

2ln
= ,   (ii) thalf = 7.04×108 years. 


