Autonomous Equations / Stability of Equilibrium Solutions

First order autonomous equations, Equilibrium solutions, Stability, Long-
term behavior of solutions, direction fields, Population dynamics and
logistic equations

Autonomous Equation: A differential equation where the independent

variable does not explicitly appear in its expression. It has the general form
of

V' =f).

Examples: y' = e — y3

y'=y —4y

y'=y"—81 +siny

Every autonomous ODE is a separable equation. Because, assuming that

J») #0,

dy _ Ay Ay g
i e L A bl

Hence, we already know how to solve them. What we are interested now is
to predict the behavior of an autonomous equation’s solutions without
solving it, by using its direction field. But what happens if the assumption
that /() # 0 is false? We shall start by answering this very question.
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Equilibrium solutions

Equilibrium solutions (or critical points) occur whenever y' = f(y) = 0. That
is, they are the roots of f(y). Any root c of () yields a constant solution y =
c. (Exercise: Verify that, if c is a root of (), then y = ¢ 1s a solution of
y'=f(y).) Equilibrium solutions are constant functions that satisfy the
equation, i.e., they are the constant solutions of the differential equation.

Example: Logistic Equation of Population

Both r and K are positive constants. The solution y is the population
size of some ecosystem, 7 is the intrinsic growth rate, and K is the
environmental carrying capacity. The intrinsic growth rate is the
natural rate of growth of the population provided that the availability
of necessary resource (food, water, oxygen, etc) is limitless. The
environmental carrying capacity (or simply, carrying capacity) is the
maximum sustainable population size given the actual availability of
resource.

Without solving this equation, we will examine the behavior of its
solution. Its direction field is shown in the next figure.
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Notice that the long-term behavior of a particular solution is determined
solely from the initial condition y(#) = yy. The behavior can be categorized
by the initial value yy:

If yy <0, then y — —o0 as t— oo,

If yy= 0, then y =0, a constant/equilibrium solution.

If 0<yy,<K,theny— K as t— oo.

If yo =K, then y = K, a constant/equilibrium solution.

If yo> K, theny — K as t— .
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Comment: In a previous section (applications: air-resistance) you learned an
easy way to find the limiting velocity without having to solve the differential
equation. Now we can see that the limiting velocity is just the equilibrium
solution of the motion equation (which is an autonomous equation). Hence
it could be found by setting v' = 0 in the given differential equation and
solve for v.

Stability of an equilibrium solution

The stability of an equilibrium solution is classified according to the
behavior of the integral curves near it — they represent the graphs of
particular solutions satisfying initial conditions whose initial values, y,,
differ only slightly from the equilibrium value.

If the nearby integral curves all converge towards an equilibrium
solution as ¢ increases, then the equilibrium solution is said to be
stable, or asymptotically stable. Such a solution has long-term
behavior that is insensitive to slight (or sometimes large) variations in
its initial condition.

If the nearby integral curves all diverge away from an equilibrium
solution as ¢ increases, then the equilibrium solution is said to be
unstable. Such a solution is extremely sensitive to even the slightest
variations in its initial condition — as we can see in the previous
example that the smallest deviation in initial value results in totally
different behaviors (in both long- and short-terms).

Therefore, in the logistic equation example, the solution y = 0 is an unstable
equilibrium solution, while y = K is an (asymptotically) stable equilibrium
solution.
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An alternative graphical method: Plotting y' = f(y) versus y. Thisis a
graph that is easier to draw, but reveals just as much information as the
direction field. It is rather similar to the First Derivative Test for local
extrema in calculus. On any interval (they are separated by equilibrium
solutions / critical points, which are the horizontal-intercepts of the graph)
where f(v) > 0, y will be increasing and we denote this fact by drawing a
rightward arrow. (Because, y in this plot happens to be the horizontal axis;
and its coordinates increase from left to right, from —oo to .) Similarly, on
any interval where f(y) <0, y is decreasing. We shall denote this fact by
drawing a leftward arrow. To summarize: f(y) > 0, y goes up, therefore,
rightward arrow; f()) <0, y goes down, therefore, leftward arrow. The result
can then be interpreted in the following way: Suppose y = c is an
equilibrium solution (i.e. f(y) = 0), then

(1.) If f(y) <0 on the left of ¢, and f(17) > 0 on the right of
¢, then the equilibrium solution y = ¢ is unstable.
(Visually, the arrows on the two sides are moving away
from c.)

(11.) If f(y) > 0 on the left of ¢, and f(y) < 0 on the right of
¢, then the equilibrium solution y = ¢ is asymptotically
stable. (Visually, the arrows on the two sides are moving
toward c.)

Remember, a leftward arrow means y is decreasing as ¢ increases. It
corresponds to downward-sloping arrows on the direction field. While a
rightward arrow means y is increasing as ¢ increases. It corresponds to
upward-sloping arrows on the direction field.

" All the steps are really the same, only the interpretation of the result differs.

A result that would indicate a local minimum now means that the
equilibrium solution/critical point is unstable; while that of a local maximum
result now means an asymptotically stable equilibrium solution.
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As an example, let us apply this alternate method on the same logistic
equation seen previously: y=ry—@/K)y, r=0.75  K=10.

The y'-versus-y plot is shown below.

-5 5 10k, 15

As can be seen, the equilibrium solutions y = 0 and y = K = 10 are the
two horizontal-intercepts (confusingly, they are the y-intercepts, since
the y-axis is the horizontal axis). The arrows are moving apart from
y=0. It is, therefore, an unstable equilibrium solution. On the other
hand, the arrows from both sides converge toward y = K. Therefore, it
is an (asymptotically) stable equilibrium solution.
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Example: Logistic Equation with (Extinction) Threshold

-

Where r, T, and K are positive constants: 0 <7 <K,
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The values 7 and K still have the same interpretations, 7' is the extinction
threshold level below which the species is endangered and eventually
become extinct. As seen above, the equation has (asymptotically) stable
equilibrium solutions y = 0 and y = K. There is an unstable equilibrium
solution y = T.
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The same result can, of course, be obtained by looking at the y'-versus-y plot
(in this example, 7= 5 and K = 10):

-5 e 5 10%, 15

We see that y = 0 and y = K are (asymptotically) stable, and y = T is unstable.

Once again, the long-term behavior can be determined just by the initial
value y,:

If yo<0,theny — 0 as t— oo.

If yo =0, then y = 0, a constant/equilibrium solution.
If 0<y,<T,theny— 0 ast— oo.

If yo=T, then y = T, a constant/equilibrium solution.
If T<yy<K,theny — K as t— oo.

If yo =K, then y = K, a constant/equilibrium solution.
If yo> K, then y — K as t— oo,

Semistable equilibrium solution

A third type of equilibrium solutions exist. It exhibits a half-and-half
behavior. It is demonstrated in the next example.
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Example: V' =y3 — 2y2

The equilibrium solutions are y = 0 and 2. As can be seen below,
y =2 is an unstable equilibrium solution. The interesting thing here,

however, is the equilibrium solution y = 0 (which corresponding a
double-root of £(y).
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Notice the behavior of the integral curves near the equilibrium solution y = 0.

The integral curves just above it are converging to it, like it is a stable
equilibrium solution, but all the integral curves below it are moving away
and diverging to —oo, a behavior associated with an unstable equilibrium

solution. A behavior such like this defines a semistable equilibrium solution.
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An equilibrium solution is semistable if y’ has the same sign on both
adjacent intervals. (In our analogy with the First Derivative Test, if the
result would indicate that a critical point is neither a local maximum nor a
minimum, then it now means we have a semistable equilibrium solution.

(i11.) If f(y) > 0 on both sides of ¢, or f(3) < 0 on both
sides of ¢, then the equilibrium solution y = ¢ is
semistable. (Visually, the arrows on one side are moving
toward ¢, while on the other side they are moving away
from c.)

Comment: As we can see, it is actually not necessary to graph anything in
order to determine stability. The only thing we need to make the
determination is the sign of y’ on the interval immediately to either side of an
equilibrium solution (a.k.a. critical point), then just apply the above-
mentioned rules. The steps are otherwise identical to the first derivative test:
breaking the number line into intervals using critical points, evaluate )’ at an
arbitrary point within each interval, finally make determination based on the
signs of . This 1s our version of the first derivative test for classifying
stability of equilibrium solutions of an autonomous equation. (The graphing
methods require more work but also will provide more information —
unnecessary for our purpose here — such as the instantaneous rate of change
of a particular solution at any point.)

Computationally, stability classification tells us the sensitivity (or lack
thereof) to slight variations in initial condition of an equilibrium solution.
An unstable equilibrium solution is very sensitive to deviations in the initial
condition. Even the slightest change in the initial value will result in a very
different asymptotical behavior of the particular solution. An asymptotically
stable equilibrium solution, on the other hand, is quite tolerant of small
changes in the initial value — a slight variation of the initial value will still
result in a particular solution with the same kind of long-term behavior. A
semistable equilibrium solution is quite insensitive to slight variation in the
initial value in one direction (toward the converging, or the stable, side).
But it is extremely sensitive to a change of the initial value in the other
direction (toward the diverging, or the unstable, side).
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Exercises A-2.1:

1 — 8 Find and classify all equilibrium solutions of each equation below.
1.  y'=100y— )’

2. y'=y3—4y
3. Y=yo-Dy—-2)r—-3)
4.  y'=siny

5. y'=cos(ny/2)

7. y=0Gy2y—1De?
8.  y=y0-1’G-»r-5

9. For each of problems 1 through 8, determine the value to which y will
approach as ¢ increases if (a) yo=—1, and (b) yo=1.

10. Consider the air-resistance equation from an earlier example,

100v' = 10000 — 4v*. (i) Find and classify its equilibrium solutions. (ii)
Given y(#) = 0, determine the range of y(¢). (iii) Given (8) = —60,
determine the range of (7).

11. Verify the fact that every first order linear ODE with constant
coefficients only is also an autonomous equation (and, therefore, is also a

separable equation).

12. Give an example of an autonomous equation having no (real-valued)
equilibrium solution.

13. Give an example of an autonomous equation having exactly n
equilibrium solutions (n > 1).
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Answers A-2.1:

y =0 (unstable), y = £10 (asymptotically stable)

y =0 (asymptotically stable), y = +2 (unstable)

y=0and y =2 (asymptotically stable), y =1 and y = 3 (unstable)

y=0, 2z, +4x, ... (unstable), y = £z, £3x, £57, ... (asymptotically stable)

y==1, 13,15, ... (all are semistable)

y =0 (asymptotically stable)

y =—1/3 (asymptotically stable), y =1 (unstable)

y =0 (unstable), y=1 and y = 5 (semistable), y = 3 (asymptotically stable)

(1)—10, 10; (2)0,00; (3)0,00; (4)—m, m; (5)—1,5; (6)0,0;

(7) —1/3, o0; (8) —oo, 3.

10. (1) y =—50 (unstable) and y = 50 (asymptotically stable); (i1) (=50, 50);
(iii) (—0,—50)

11. For any constants a and f, y' + ay = f can be rewritten as y' = f — ay,

which i1s autonomous (and separable).

12. One example (there are infinitely many) is ' = e”.

13. One of many examplesis y'= (y—1)(y —2)y—3)...(y — n).

WXL =
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Exact Equations

An exact equation is a first order differential equation that can be written in
the form

M(x,y) + N(x,y)y' =0,

provided that there exists a function y(x,y) such that

0 0
Y oMxy) and L =Nxy).
ox 0y

Note I: Often the equation is written in the alternate form of

M(x,y) dx + N(x,y) dy = 0.

Theorem (Verification of exactness): An equation of the form
M(x,y) + N(x,y)y'=0
is an exact equation if and only 1f

M _av
oy Ox’

Note 2: 1f M(x) is a function of x only, and N(y) is a function of y only, then

trivially gﬂ _o- N

P Therefore, every separable equation,
y X

M(x) + N(y)y' =0,

can always be written, in its standard form, as an exact equation.
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The solution of an exact equation

0
Suppose a function y(x,y) exists such that Y _M(x,y) and

ox
0
% = N(x,y). Let y be an implicit function of x as defined by the
differential equation

M(x,y) + N(x,y)y" = 0. (1)

Then, by the Chain Rule of partial differentiation,

d ow Owd ,
() = L+ A (x,p)+ N(x,p)y"
dx ox Oydx

As a result, equation (1) becomes

% W (x,y(x) =0

Therefore, we could, in theory at least, find the (implicit) general solution by
integrating both sides, with respect to x, to obtain

p(x,y) = C.

Note 3: In practice ¥/(x,y) could only be found after two partial integration
steps: Integrate M (= ) respect to x, which would recover every term of
that contains at least one x; and also integrate N (= y,) with respect to y,
which would recover every term of i that contains at least one y. Together,
we can then recover every non-constant term of .

Note 4: In the context of multi-variable calculus, the solution of an exact
equation gives a certain level curve of the function z = y(x,y).
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Example: Solve the equation
0" =2)+4x’y =0
First identify that M(x,y) = y* — 2, and N(x,y) = 4x)’.

Then make sure that it is indeed an exact equation:

oM ON
il 4 3 ' 4 3
3y Y and Oy Yy

Finally find y(x,y) using partial integrations. First, we integrate M
with respect to x. Then integrate N with respect to y.

y(x.y)= [ M(x.y)dx = (" ~Ddv=2p* =20+ C,(3),

p(x,)= [ N(x,y)dy = [4xy" dy = xp* + C, ().

Combining the result, we see that y(x,y) must have 2 non-constant
terms: x) and —2x. That is, the (implicit) general solution is:

xy4—2x= C.

Now suppose there is the initial condition y(—1)=2. To find the
(implicit) particular solution, all we need to do is to substitute x = —1
and y = 2 into the general solution. We then get C = —14.

Therefore, the particular solution is xy4 —2x=—14.
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Example: Solve the initial value problem

(ycos(xy) +1+2x)dx+ (xcos(xy)+Inx+e’)dy=0 (1) = 0.
X

First, we see that M (x,y) = ycos(xy) + % +2x  and

N(x,y)=xcos(xy)+Inx+e” .

Verifying:

oM . 1 ON : 1
— =—xypsin(xy) +cos(xy) + — =— = —xysin(xy) +cos(xy) +—
oy X 0x X

Integrate to find the general solution:
v(x,y)= J[ycos(xy) +£+ Zdex =sin(xy) + ylnx +x° + Ci(y),

as well,

w(x,y)= I(xcos(xy) +Inx+e’ )dy =sin(xy)+ ylnx+e’ +C,(x).

Hence, sinxy+ylnx+e’+x>=C.

Apply the initial condition: x =1 and y = 0:

C=sin0+0In(1)+e’+1=2

The particular solution is then ~ sinxy +y In x + e’ + x> = 2.
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Example: Write an exact equation that has general solution
3

el +x'y —6y="C.

We are given that the solution of the exact differential equation is
pxy)=xe’ +x'y' —6y=C.

The required equation will be, then, simply

M(x,y) + N(x,y)y' =0,

0 0
such that —al// =M(x,y) and v N(x,y).
X o0y

Since
ov =3x’e” +4x°y" and
o0x ’
a—w:x3ey +4x*y’ -6
oy '

Therefore, the exact equation is:

Bx’e’ +4x’ YY)+ (e’ +4x*y’ —6)y =0.
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Summary: Exact Equations

M(x,y) + N(x,y)y'=0

Where there exists a function y(x,y) such that

3 0
Y M,y and £=N(x,y).

ox

1. Verification of exactness: it is an exact equation if and only if
v _av
oy Ox’

2. The general solution is simply

p(x,y) = C.

Where the function y(x,y) can be found by combining the result of the
two integrals (write down each distinct term only once, even if it
appears in both integrals):

p(x,) = [M(x,y)dx | and

p(x,) = [ N(x,y)dy.
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Exercises A-2.2:
1 —2 Write an exact equation that has the given solution. Then verify that
the equation you have found is exact.

1. It has the general solution ~ x*tany +x° — > — 3x*)* = C.

2. It has a particular solution 2xy —Inxy + 5y =09.

3 — 10 For each equation below, verify its exactness then solve the equation.

3. 2x + 2xcos(x?) + 2y’ =0

2
4. 4x3y4—2—2x+(4x4y3+x—2+5)y'=O
Yy Yy

5. 2x—=2y)+(2y—2x)y'=0, y(10)=-5
6. (BxXy+y +d-ye?)+(x +3n’-xe?))y' =0, ¥(2)=0
7. (-2 +(-5-2ye™)y' =0, (0) =—4

sinx 2x 2cosx  x’

8. (g +—)+( -—=)y'=0, 0)=1
ooy ooy 7o)
2xy 1 2x. ,

9. (x4+1+7)+(arctan(x2)_?)y =0, w(1)=2

10. —sin(x)sin(2y) + ycos(x) + (2cos(x)cos(2y) + sin(x))y' =0, y(n/2) ==

11. Rewrite the equation into an exact equation, verify its exactness, and
then solve the initial value problem.

—e’

V= (1)=0.

 xe’ —sin(y)’

12 — 14 Find the value(s) of 4 such that the equation below is an exact
equation. Then solve the equation.

1 ,
12. QA 3—7)+(3x6y2—/1)y =0
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13.  (Aysec’(2xy) — Axy®) + (2xsec’(2xy) — Ax*y)y' =0

14.  (10y* — 6xy + 6x7sin(x’)) + (40xy° — 3x* + Acos(x’))y' =0

Answers A-2.2:

1. (2xtany + 3x* — 12xy°) + (x’sec’y — 2y — 6x"y) )’ = 0

2 @r-Hr@r-Lt 45y =0
X y

(O8]

X+ )y +sin(x?) =C
2

x*y? Ly +5y=C
y

x*—2xy + )" =225
Xy+xy +dx—e¥=7

Sx—5y—y*e™ =4

N B

—COSX )C2
8. 2 +_:_1
y Y

) x 2rz+1
9. yarctan(x”) +— =
y 4

10. cos(x)sin(2y) + ysin(x) =«

11. The equation is e’ + (xe” —sin y)y' = 0; xe’ +cosy=2
12. 2=3; x5 +x"'-3y=C

13. 2=2; tan2xy)—x"y*'=C

14. 2=0; 10xy* —3x*y — 2cos(x’) = C

© 2008, 2012 Zachary S Tseng A-2-20



