Second Order Linear Differential Equations

Second order linear equations with constant coefficients, Fundamental
solutions; Wronskian, Existence and Uniqueness of solutions, the
characteristic equation; solutions of homogeneous linear equations;
reduction of order,; Euler equations

In this chapter we will study ordinary differential equations of the standard
form below, known as the second order linear equations:

Y+ p@)y' +q(0)y = g(@).

Homogeneous Equations: If g(¢) = 0, then the equation above becomes

y'+p@)y' +q()y=0.

It is called a homogeneous equation. Otherwise, the equation is
nonhomogeneous (or inhomogeneous).

Trivial Solution: For the homogeneous equation above, note that the
function y(¢) = 0 always satisfies the given equation, regardless what p(¢) and
q(¢) are. This constant zero solution is called the trivial solution of such an
equation.
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Second Order Linear Homogeneous Differential Equations
with Constant Coefficients

For the most part, we will only learn how to solve second order linear

equation with constant coefficients (that is, when p(¢) and ¢(¢) are constants).

Since a homogeneous equation is easier to solve compares to its
nonhomogeneous counterpart, we start with second order linear
homogeneous equations that contain constant coefficients only:

ay"+by' +cy=0.

Where a, b, and ¢ are constants, a # 0.

A very simple instance of such type of equations is

y'—y=0.

The equation’s solution is any function satisfying the equality

y" =y. Obviously y; = e'is a solution, and so is any constant multiple
of it, C;e’. Not as obvious, but still easy to see, is that y, = e ' is
another solution (and so is any function of the form C,e ™).

It can be easily verified that any function of the form

¢

y=Cie'+Cye”

will satisfy the equation. In fact, this is the general solution of the
above differential equation.

Comment: Unlike first order equations we have seen previously, the general
solution of a second order equation has two arbitrary coefficients.
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Principle of Superposition: 1f y, and y, are any two solutions of the
homogeneous equation

y'+p@)y' +q@)y=0.

Then any function of the form y = C; y; + C, y, is also a solution of the
equation, for any pair of constants C; and C,.

That is, for a homogeneous linear equation, any multiple of a solution is
again a solution; any sum/difference of two solutions is again a solution; and
the sum/ difference of the multiples of any two solutions is again a solution.
(This principle holds true for a homogeneous linear equation of any order; it
is not a property limited only to a second order equation. It, however, does
not hold, in general, for solutions of a nonhomogeneous linear equation.)

Note: However, while the general solution of y" + p(¢)y" + q(¢) y = 0 will
always be in the form of C, y, + C, y,, where y; and y, are some solutions of
the equation, the converse is not always true. Not every pair of solutions y,
and y, could be used to give a general solution in the form y = C; y; + C; »;.
We shall see shortly the exact condition that y; and y, must satisfy that
would give us a general solution of this form.

Fact: The general solution of a second order equation contains two arbitrary
constants / coefficients. To find a particular solution, therefore, requires two
initial values. The initial conditions for a second order equation will appear

in the form: W(ty) =0, and  Y'(¢9) = '.

Question: Just by inspection, can you think of two (or more) functions that
satisfy the equation " +4y =0? (Hint: A solution of this equation is a
function ¢ such that p"=—4¢.)
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Example:  Find the general solution of

y'—=5y"=0.

There is no need to “guess” an answer here. We actually know a way
to solve the equation already. Observe that if we let # = !, then

u'=p". Substitute them into the equation and we get a new equation:

u'—5u=0.

This is a first order linear equation with p(f) = =5 and g(¢) = 0. (!)

The integrating factoris y=e .

u(t) = %q u(t)g(t) dt ): e (j 0 dt): e’ (C)=Ce”

The actual solution y is given by the relation u =), and can be found
by integration:

(0 = [u(t) dt = [ Ce* dt = %esf +C,=C e +C,

The method used in the above example can be used to solve any second
order linear equation of the form y" + p(¥) y' = g(¢), regardless whether its
coefficients are constant or nonconstant, or it is a homogeneous equation or
nonhomogeneous.
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Equations of nonconstant coefficients with missing y-term

If the y-term (that is, the dependent variable term) is missing in a second
order linear equation, then the equation can be readily converted into a first
order linear equation and solved using the integrating factor method.

Example: ty"+4y = r

" 4 14
The standard form is y + 7)’ =1,
! 4 _ t
Substitute: ”+7”—f — ()—_hgﬂ—t

Integrating factor is n=

u(t)— t dt ( j——t +Ct™

Finally,

1 C 1
D= |u@®dt=—t——=t>+C,=—*+C,t7 +C
y(0) = fuyde =0 == =g+ G 2

Comment: Notice the above solution is not in the form of y=C; y, + G, y;.
There is nothing wrong with this, because this equation is not homogeneous.
The general solution of a nonhomogeneous linear equation has a slightly
different form. We will learn about the solutions of nonhomogeneous linear
equations a bit later.
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In general, given a second order linear equation with the y-term missing

y'+p)y' =g,

we can solve it by the substitutions # = )" and ©' = y" to change the
equation to a first order linear equation. Use the integrating factor method to

solve for u#, and then integrate u to find y. That is:

1. Substitute : u' +p(u=g()

. (t)d
2. Integrating factor: u(t) = eI pod

[ug@ar (+C)
u(t)

3. Solve for u: u(t) =

4. Integrate: w(£) = Ju(?) dt

This method works regardless whether the coefficients are constant or
nonconstant, or if the equation is nonhomogeneous.
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The Characteristic Polynomial

Back to the subject of the second order linear homogeneous equations with
constant coefficients (note that it is not in the standard form below):

ay"+by +cy=0, a+0. (*)

We have seen a few examples of such an equation. In all cases the solutions
consist of exponential functions, or terms that could be rewritten into
exponential functions’. With this fact in mind, let us derive a (very simple,
as it turns out) method to solve equations of this type. We will start with the
assumption that there are indeed some exponential functions of unknown
exponents that would satisfy any equation of the above form. We will then
devise a way to find the specific exponents that would give us the solution.

Let y = e” be a solution of (*), for some as-yet-unknown constant 7.

Substitute y, y' = re”’, and y" = *e” into (*), we get

2 t t t
are"+bre" +ce" =0, or

e"(ar* +br+c¢)=0.

Since e’ is never zero, the above equation is satisfied (and therefore p=e”
is a solution of (*)) ifand only if 7> * b7+ ¢ =0. Notice that the
expression ar* + br + ¢ is a quadratic polynomial with 7 as the unknown. It
is always solvable, with roots given by the quadratic formula. Hence, we
can always solve a second order linear homogeneous equation with constant
coefficients (*).

" Sine and cosine are related to exponential functions by the identities
i0 4 i0 14
: e’ —e e’ +e
sinf =——— and cosd=——
2i 2
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This polynomial, a7 + br + ¢, is called the characteristic polynomial of the
differential equation (*). The equation

arr +br+c=0

is called the characteristic equation of (*). Each and every root, sometimes
called a characteristic root, r, of the characteristic polynomial gives rise to a

solution y = e " of (*).

We will take a more detailed look of the 3 possible cases of the solutions
thusly found:

1. (When b*> — 4ac > 0) There are two distinct real roots 7y, 5.

2. (When b*> — 4ac < 0) There are two complex conjugate roots
r=A%ui.

3. (When b° — 4ac = 0) There is one repeated real root r.

Note: There is no need to put the equation in its standard form when solving
it using the characteristic equation method. The roots of the characteristic
equation remain the same regardless whether the leading coefficient is 1 or
not.
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Case 1 Two distinct real roots

When b* — 4 ac > 0, the characteristic polynomial have two distinct real
roots ry, r,. They give two distinct* solutions Y= e and

Y, = e” Therefore, a general solution of (*) is

y=Cy+GCy, = Clerlt +Czer2t.

It is that easy.

Example: y'+5y'+4y=0

The characteristic equation is 7> + 5+ 4 = (r + 1)(r + 4) = 0, the roots
of the polynomial are » =—1 and —4. The general solution is then

y=Cie '+ Cye ™.

Suppose there are initial conditions y(0) =1, y'(0) = —7. A unique particular
solution can be found by solving for C, and C, using the initial conditions.

First we need to calculate y' = —Ce " — 4C,e ¥, then apply the initial values:

1=y(0)=Cie’+ Ce’=C, + C,

~7=y'(0)=—Ce’ —4Cye’ =—C, — 4C,

The solution is C; =—1, and C, =2 — y=-—e T10e ¥

* We shall see the precise meaning of distinctness in the next section. For
now just think that the two solutions are not constant multiples of each other.
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Question: Suppose the initial conditions are instead y(10000) = 1,
¥'(10000) = —7. How would the new #, change the particular solution?

Apply the initial conditions as before, and we see there is a little
complication. Namely, the simultaneous system of 2 equations that we have
to solve 1n order to find C; and C, now comes with rather inconvenient
irrational coefficients:

1 :y(IOOOO) — Cle—IOOOO + Cze_40000
—7=y'(10000) = —Cye """ — 4Cye ™

With some good bookkeeping, systems like this can be solved the usual way.
However, there is an easier method to simplify the inconvenient coefficients.
The idea is translation (or time-shift). What we will do is to first construct a
new coordinate axis, say 7-axis. The two coordinate-axes are related by the
equation T=t—1t. (Therefore, when ¢ = £, 7= 0; that is, the initial z-value
to becomes the new origin.) In other words, we translate (or time-shift) -
axis by #, units to make it 7-axis. In this example, we will accordingly set T
=¢t—10000. The immediate effect is that it makes the initial conditions to
be back at 0: y(0) = 1, y'(0) = —7, with respect to the new T-coordinate. We
then solve the translated system of 2 equations to find C; and C,. What we
get is the (simpler) system

1=y(0)=Cie’+ Ce’=C, + C,
~7=y'(0)=—-Cye’ —4C,e’=-C, - 4C,

As we have seen on the previous page, the solution is C; = —1, and Cz = 2
Hence, the solution, in the new 7-coordinate system, is y(7)=—e "+ 2e

Lastly, since this solution is in terms of 7', but the original problem was in
terms of ¢, we should convert it back to the original context. This conversion
is easily achieved using the translation formula used earlier, T=¢—t,=¢—
10000. By replacing every occurrence of 7 by ¢ — 1000 in the solution, we
obtain the solution, in its proper independent variable .

W(H) =— ~10000) | 5 , ~4(:= 10000)
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Example: Consider the solution y(¢) of the initial value problem

y'=2y"—8y=0, y0)=a, '(0)=2nx.

Depending on the value of a, as ¢t — oo, there are 3 possible behaviors of y(¢).
Explicitly determine the possible behaviors and the respective initial value o
associated with each behavior.

The characteristic equation is #* — 27— 8 = (r + 2)(r — 4) = 0. Its roots
are r = —2 and 4. The general solution is then

y=Cre '+ Cre™
Notice that the long-term behavior of the solution is dependent on the
coefficient C; only, since the C| e term tends to 0 as ¢ — oo,

regardless of the value of C;.

Solving for C; in terms of a, we get

¥0) =a = C+ G
V'(0)=2r = -2C,+4C,

20+ 2r=6C, — C,

Now, if C; > 0 then y tends to o as t — co. This would happen when
a>—m. If C;=0 then y tends to 0 as t — o. This would happen
when a = — z. Lastly, if C; <0 then y tends to —oo as t — o. This
would happen when o < — 7. In summary:

When a > — 7, C,>0, tlijgy(t)mo.
When o = — 7, C,=0, tli_{gy(f)=0.
When a < —, C, <0, lim y(t) = —

t—>o
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The Existence and Uniqueness (of the solution of a second
order linear equation initial value problem)

A sibling theorem of the first order linear equation Existence and
Uniqueness Theorem...

Theorem: Consider the initial value problem

V' +p@) y' +q(0)y =g, W) = o, ¥'(t0) =Y.

If the functions p, g, and g are continuous on the interval I: o <¢ <f

containing the point ¢ = #,. Then there exists a unique solution y = ¢(t) of the

problem, and that this solution exists throughout the interval 1.

That is, the theorem guarantees that the given initial value problem will
always have (existence of) exactly one (uniqueness) twice-differentiable
solution, on any interval containing ¢, as long as all three functions p(?), g(¢),
and g(¢) are continuous on the same interval. Conversely, neither existence
nor uniqueness of a solution is guaranteed at a discontinuity of p(¢), ¢(), or

g(?).

Examples: For each IVP below, find the largest interval on which a unique

solution is guaranteed to exist.

@) (t+2)y"+1y +cot()y=£+1, yQ2)=11, y'(2)=-2.

t cos( 1) 1P+

. n+ + -
The standard formis V t+2y (t+2)sin(t)y TR

to = 2. The discontinuities of p, ¢, and g are t =2, 0, £z, 27, £37...
The largest interval that contains ¢, = 2 but none of the discontinuities

is, therefore, (0, 7).
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(b) \16 —¢? y'+In(t+1)y"+cos(t)y=0, y(0)=2, »'(0)=0.

The standard form i y”+ln(t+1)y’+ cos(?) y=0_ p(¢) is onl
¢ Stanqgaar orm 1S = ) t) 1S On
16—1¢° \16 —¢2 p Y

defined (and is continuous) on the interval (—1, 4), and similarly g(¢) is
only continuously defined on the interval (—4, 4); g(¢) is continuous
everywhere. Combining them we see that p, ¢, and g have
discontinuities at any ¢ such that  <—1 or > 4. That is, they are all
continuous only on the interval (—1, 4). Since that interval contains

to = 0, it must be the largest interval on which the solution is
guaranteed to exist uniquely. Therefore, the answer is (—1, 4)

Similar to the previous instance (first order linear equation version) of the
Existence and Uniqueness Theorem, the only time that a unique solution is
not guaranteed to exist anywhere is whenever the initial time #, occurs at a
discontinuity of either p(¢), ¢(¢), or g(¢).

Initial Value Problem vs. Boundary Value Problem

It might seem that there are more than one ways to present the initial
conditions of a second order equation. Instead of locating both initial
conditions y(¢y) = yo and y'(#y) = y'y at the same point #,, couldn’t we take
them at different points, for examples y(#) = yo and y(¢,) = yy; or y'(t)) ="
and y'(t;) =y"1? The answer is NO. All the initial conditions in an initial
value problem must be taken at the same point #,. The sets of conditions
above where the values are taken at different points are known as boundary
conditions. A boundary value problem where a differential equation is
bundled with (two or more) boundary conditions does not have the existence
and uniqueness guarantee.

Example: Every function of the form y = Csin(¢), where C is a real number
satisfies the boundary value problem y” +y =0, (0) =0 and y(7) = 0.
Therefore, the problem has infinitely many solutions, even though p(¢) = 0,
q(t) =1, and g(¢) = 0 are all continuous everywhere.
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Exercises B.1-1:

1 —4 Find the general solution of each equation.
1. y"+10y'=t2

2. y'=9y=0
3. y'+4)y'=5y=0
4. 6 +y'—y=0

5—9 Solve each initial value problem. For each problem, state the largest
interval in which the solution is guaranteed to uniquely exist.

5. Y4y =3e"? y(0)=4, y'(0)=3
6. y'+2y=te ", y(0)=6, y'(0)=-1
7. ty"—y’=t2+t, =1, y(1)=5
8.  Y'—)y —-2y=0, »0)=2, »y(0)=7

9. (A+9)y"+2'=0, y3)=27, y(3)=2/3

10 — 15 Solve each initial value problem.

10. y"+y'—12y=0, y(0)=-2, »'(0)=-20
1. y'"+y' —12y=0, y(r)y=-2, y'(m)=-20
12. y"+2y'=3y=0, y0)=1, »'(0)=13
13. y"+2y'—3y=0, yvQ2mr) =1, y'Q2r)=13
14. y"+2y'—4y=0, y(0)=6, y'(0)=-6
15. y"+2y'—4y=0, y(18)=6, y'(18)=-6
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16. Without solving the given initial value problem, what is the largest

interval in which a unique solution is guaranteed to exist?
(t+10)y"—(5—10))y +1In|t|y=e*cos t,

(@) (hH=-1,  »(1)=0

(b) y(=9)=3, y(=9)=-2

(c) y(—12.5)=1, y'(-12.5)=4

17. Prove the Principle of Superposition: If y; and y, are any two solutions
of the homogeneous equation

y'+p@)y'+q@®y=0.
Then any function of the form y = C; y; + C, y, is also a solution of the
equation, for any pair of constants C, and C.
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Answers B-1.1:

2

1 —i—t—+L+Ce‘1°’+C
7730 100 500 :
2. y=Cie’' + Cre™
3. y=Clet+Cze_5t
4. y=Cre'*+ Cre™”
5.y=—e'+1+4e"? (o, o)
6. y=—te '+6, (—0, o)
£ It P 13
7. y=—+—+—Int—— (0, )

3 4 2 12°
-t

8. y=3e"—¢e, (—o0, )
9. y= 4tan_1(§)+7z ,  (—oo, o0)

10. y=—4e* +2e ™"

11 y=—4e>"" + 277

12. y=4e'—3e™

13. y=4¢' 2" =307

14, y= 36(—1+ﬁ)z +3e(—1—£)z

15. y= 36(—1+\/§)(t718) +3e(717x/§)(t718)

16. (a) (0, ), (b) (—10,0), (c) (o, —10)
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Fundamental Solutions

We have seen that the general solution of a second order homogeneous
linear equation is in the form of y = C, y; + C, y, S where vy and y, are two
“distinct” functions both satistfying the given equation (as a result, y; and y,
are themselves particular solutions of the equation). Now we will examine
the circumstance under which two arbitrary solutions y; and y, could give us
a general solution.

Suppose y, and y, are two solutions of some second order homogeneous
linear equation such that their linear combinations y = C, y; + C, y, give a
general solution of the equation. Then, according to the Existence and
Uniqueness Theorem, for any pair of initial conditions y(#)) = y, and y'(¢y) =
'y there must exist uniquely a corresponding pair of coefficients C; and C,
that satisfies the system of (algebraic) equations

Yo =C iy (t) +C, p,(2))
y(’) =C, y{(f0)+C2 y;(to)

From linear algebra, we know that for the above system to always have a
unique solution (C}, ;) for any initial values y, and y'y, the coefficient
matrix of the system must be invertible, or, equivalently, the determinant of
the coefficient matrix must be nonzero” . That is

det(yl () ¥, ()

' ' :yl(to)J/;(to)_)ﬁ,(to)yz(to)¢0

) »; (to)j

This determinant above is called the Wronskian or the Wronskian
determinant. 1t is a function of ¢ as well, denoted W(yy, »,)(¢), and is given
by the expression

Wy, y)@O)=y1Y2 =Yy

Y The expression y = C, y; + C, y, is called a linear combination of the
functions y; and y;.

sk

By nonzero it means that the Wronskian is not the constant zero function.
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On the other hand, at each point ¢, where W(y1, ,)(%) = 0, a unique pair of
coefficients C; and C, that satisfies the previous system of equations cannot
always be found (see any linear algebra textbook for a proof of this). This
could be due to one of two reasons. The first reason is that y = C; y; + C; »,
is really not a general solution of our equation. Or, the second possibility is
that 7, is a discontinuity of either p(¢), g(¢), or g(¢). This second reason is, of
course, a consequence of the Existence and Uniqueness theorem.

Assuming that not every point is a discontinuity of either p(7), g(¢), or g(),
then the fact that W(y,, y,)(¢) 1s constant zero implies that y = C; y; + C; y, 1s
not a general solution of the given equation. Otherwise, if W(y, y,)(?) is
nonzero at some points #, on the real line, then y = C; y; + C, y, will,
together with different combinations of initial condition () = y, and y'(¢)) =
", give uniquely all the possible particular solutions, on some open
intervals containing #,. Thatis, y = C, y; + C, y, is a general solution of the
given equation. Hence, our interest in knowing whether or not W(yy, 1,)(¢) is
the constant zero function.

Formally, if W(y,, y,)(¢) # 0, then the functions y, y, are said to be linearly
independent. Else they are called linearly dependent if W(y,, y,)(£) = 0.1

Note: In the simple instance of two functions, as is the case presently, their
linear independence could equivalently be determined by the fact that two
functions are linearly independent if and only if they are not constant
multiples of each other.

F

Therefore, a pair of such linearly independent
solutions y; and y, is called a set of fundamental solutions, because they are

T Since W(y1, y2)(£) = —W(y2, y1)(2), they are either both zero or both nonzero. Therefore, the order of the 2
functions y,and y, does not matter in the Wronskian calculation.
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essentially the basic building blocks of all particular solutions of the
equation.

To summarize, suppose y; and y, are two solutions of a second order
homogeneous linear equation, then:

W(y1, y2)(¢) 1s not the constant zero function

!

¥1, ¥ are linearly independent

!

¥1, » are fundamental solutions

!

y=C, y + C, », 1s a general solution of the equation

7t rot
Example: Let ), =€ “and ), =€ ’ , I'1 # 2, be any two different

exponential function. Then

rt ryt
e rt ryt rt ryt
W(y,y,) =detf | i |The e’ —ne'e
re rye
rit roat
=(rp,—n)e'e” #0, for all ¢.

Therefore, any two different exponential-function solutions of a second
order homogeneous linear equation (as those found using its characteristic
equation) are always linearly independent, thus they will always give a
general solution. Better yet, in this case since the Wronskian is never zero
for all real numbers, a unique solution can always be found.
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Lastly, here is an interesting (and, as we shall see shortly, useful)
relationship between the Wronskian of any two solutions of a second order
linear equation with its coefficient function p(z).

Abel’s Theorem: If y, and y, are any two solutions of the equation

y'+p@)y' +q@)y=0,

where p and ¢ are continuous on an open interval I. Then the Wronskian
W(y1, y2)(2) is given by

—[ p(tyar
W (3, ,)(0) =C e 7
where C is a constant that depends on y, and y,, but not on ¢. Further,

W1, v2)(?) is either zero for all ¢ in I (if C = 0) or else is never zero in 7 (if
C#0).
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Exercises B-1.2:

1. Previously, we have found that the equation y” —y = 0 has a general

solution y=C,e'+ C, e . (a) Construct another general solution by first

t+eft et _eft

and Y, = sinh ¢ =

e
verifying that y, = cosh ¢ = also form a pair

of fundamental solutions. Conclude that a general solution is not unique for
this equation. (b) For each of the two general solutions, find the solution
corresponding to the initial conditions y(0) =1 and y'(0) = 2. Show that the
two particular solutions are identical.

2. Suppose y; and y, are two solutions of the equation
£y"+26y' —t72y=0. Find Wy, »,)(0).

3. Suppose y; and y, are two solutions of the equation
ty" —(t+4)y +e'y=0, such that W(y, y,)(1) = 10. Find W(y,, y»)().

4. Suppose y; =t and y, = te* are both solutions of a certain equation

V' +p)y' +q()y=0. (a) Compute W(y,, y,)(¢). (b) What is a general
solution of this equation? (c) Does there exist a unique solution satisfying
the initial conditions y(0) =0, y'(0) = 0? (Use part b in your computation, is
there a unique pair of coefficients C; and C,?) (d) Find the solution
satisfying the initial conditions y(1) =1, y'(1) = 5. (e) What is the largest
interval on which the solution from part d is guaranteed to exist uniquely?

5. Suppose y; =2+ 3e "and y, =3 — 2 e " are both solutions of a certain
equation y" + p(¢)y' + q(¢)y = 0. (a) Compute W(yy, 1,)(¢). (b) Whatis a
general solution of this equation? (c) Find the solution satisfying the initial
conditions y(0) =2, y'(0) = 3. (d) What is the largest interval on which the
solution from part d is guaranteed to exist uniquely?
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Answers B-1.2:
1. (a) Another general solution is y = C; cosh ¢ + C, sinh ¢.

2. Wn, pa)(t) == Ce”'

3. W, yo)(@) =10f e

4. (a) WO, »a)(0) =4’ e", (b) y=C 1+ Cyte”, (c) Since W(y1,2)(0) =0,
there is no existence or uniqueness guarantee for a particular solution. As it
turns out, there are infinitely many solutions satisfying the given initial
conditions: any function of the form y = C, t + C, te*, where C, = —C,.
(d)yy=e"te”, (e) (0, x).

5. (@) Wy, m) () =13e”, b)) y=Ci(2+3e )+ C, (3—2¢ "), which can
be simplifiedto y =K, + Kre ', (¢)y=5-3e ", (d) (—oo, o).
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Case2  Two complex conjugate roots

When b* — 4 ac < 0, the characteristic polynomial has two complex roots,
which are conjugates, ry =A+uiand r, =4 —ui (4, u are real numbers,

u>0). As before they give two linearly independent solutions y, = e"" and
rat ) .. "t rat

Vv, =e " . Consequently the linear combination V = Ce' +Ce” will be

a general solution. At this juncture you might have this question: “but aren’t

r, and r, complex numbers; what would become of the exponential function
with a complex number exponent?” The answer to that question is given by

the Euler’s formula.

Euler’s formula For any real number 6,

0i 5 o
e’ =cos@+isind.

Hence, when 7 is a complex number 4 + ui, the exponential function e”

becomes
4 At ui At ¢ At . e
el =TI = g ol = o4 (cos ut + i sin uf)

Similarly, when » =1 — ui , " becomes

eI = g Mo T = oM (cos(—ut) + i sin(—ut))
_ i o
=e" (cos ut — i sin ut)

Hence, the general solution found above is then

y=C e™'(cos ut +isin ut) + C, e™'(cos ut — i sin ut)
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However, this general solution is a complex-valued function (meaning that,
given a real number ¢, the value of the function y(¢) could be complex). It
represents the general form of all particular solutions with either real or
complex number coefficients. What we seek here, instead, is a real-valued
expression that gives only the set of all particular solutions with real number
coefficients only. In other words, we would like to “filter out” all functions
containing coefficients with an imaginary part, that satisfy the given

differential equation, keeping only those whose coefficients are real numbers.

Define u(t) =e"'cos put
v(f)=e'sin ut

It is easy to verify that both u and v satisfy the differential equation (one way
to see this is to observe that u can be obtain from the complex-valued
general solution by setting C; = C, = 1/2; and v can be obtained similarly by
setting C; = 1/2i and C, = —1/2i). [Their Wronskian is W(u, v) = e "is
never zero, Therefore, the functions u and v are linearly independent
solutions of the equation. They form a pair of real-valued fundamental

solutions and the linear combination is a desired real-valued general solution:

y=C,e*'cos ut + Coe’'sin ut.

When r =1 % i, u > 0, are two complex roots of the characteristic
polynomial.
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Example: y'+4y=0

Answer: y = Cycos2t+ C, sin2t

Example: y'+2y'+5y=0, y(0)=4, y'(0)=6

The characteristic equation is > + 2r + 5 = 0, which has solutions
r=—1=x2i. SoA=-1and u = 2. Therefore, the general solution is

y=Ce 'cos2t+ Cye 'sin2t
Apply the initial conditions to find that C; =4 and C, = 5. Hence,

y=4e ‘cos2t+5e 'sin2t.

Question: What would the solution be if the initial conditions are
¥(25000) = 4, and »'(25000) = 6 instead?

Answer: y=4e "7 co52(1 — 25000) + 5e ¢~ 5in 2(r — 25000)

©2008,2016 Zachary S Tseng B-1-25



Case 3 One repeated real root

When b° — 4 ac = 0, the characteristic polynomial has a single repeated real

root, r = 2 This causes a problem, because unlike the previous two cases
a

the roots of characteristic polynomial presently only give us one distinct
solution y; = e”. It is not enough to give us a general solution. We would
need to come up with a second solution, linearly independent with y;, on our
own. How do we find a second solution?

Take what we have: a solution y, = ", where r = 2 Let y, be another
a
solution of the same equation ay” + by’ + cy =0. The standard form of this
. . " b ! c b .
equationis y  + ;y + - ¥y =0, where p(f) =—. Compute the Wronskian
a
two different ways:
rt

e , b
W(y,y,) =detf =€y -re"y, r=—=
re’ y, ’ 2a

and

By the Abel’s Theorem, the fact C # 0 guarantees that y, and y, are going to
be linearly independent. Now, we have two expressions for the Wronskian
of the same pair of solutions. The two expressions must be equal:

b
z+562"y2=C6“ C #0.

This is a first order linear differential equation with y, as the unknown!
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Put it into its standard form and solve by the integrating factor method.

b 2
Vot—y,=Ce*
2a
ba Ly
The integrating factoris £ =e€” > =e?** |
Hence,
| b, b .y =,
YV, =— jez" Ce?* dt = e** det =e? (Ct+ ()
ezt
b b

—t —t
=Cte?® +Cie* =Cte" +Cie"

Any such a function would be a second, linearly independent solution of the
differential equation. We just need one instance of such a function. The
only condition for the coefficients in the above expression is C # 0. Pick,
say, C=1, and C, = 0 would work nicely. Thus y, =te".

Therefore, the general solution in the case of a repeated real root 7 is

y=Cie"+ Cyte”.
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Example: y'—4y'+4y =0, y0)=4, »'(0)=5

The characteristic equation is > — 4r + 4 = (r — 2)* = 0, which has
solution » = 2 (repeated). Thus, the general solution is
y=Cre* + Cyte”
Differentiate,
y'=2C e+ G, (2tezt + ezt).

Apply the initial conditions to find that C; =4 and C, = —3:

y=4¢* —3te”
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Summary
Given a second order linear equation with constant coefficients
ay"+by +cy=0, a#0.

Solve its characteristic equation a ¥ +br+c=0. The general solution
depends on the type of roots obtained (use the quadratic formula to find the
roots if you are unable to factor the polynomial!):

1. When »* — 4 ac > 0, there are two distinct real roots ry, 7.
7"1 t 7"2 t
y=Ce' +Ce"

2. When b° — 4 ac < 0, there are two complex conjugate roots r = A + ui.
Then

y=Cie*'cos ut + C,e*'sin pt.

3. When b” — 4 ac = 0, there is one repeated real root 7. Then

y=Cie"+ Cyte”.

Since p(t) = b/a and ¢(t) = c/a, being constants, are continuous for every real
number, therefore, according to the Existence and Uniqueness Theorem, in
each case above there is always a unique solution valid on (-, o) for any
pair of initial conditions y(#) = yo and y'(¢p) = »".
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Exercises B-1.3:

1. Verify that y=te"”, r = ;—b , is a solution of the equation
a

ay"+by' +cy=0if b*> — 4ac = 0; and it is not a solution if b* — 4 ac # 0.
2 — 10 For each of the following equations (a) find its general solution, (b)
find the particular solution satisfying the initial conditions y(0) =2, y'(0) =
—1, and (¢) find the limit, as t — oo, of the solution found in (b).

2. Y'+9+8y=0

3. Yy'—=6y'+25y=0

4, y"—6y'+8y=0

5. 2y"+5y"=3y=0

6. 2y" = 16y'+32y=0

7. y'+4'+13y=0

8. 2y"—=y"'=0

9. 2" +5y'+2y=0

10. 16" —8'+y=0

11— 15 Solve each initial value problem.
1. y"+9'+14y=0, y(5t)=4, y'(Sn)=2

12. 2" —16y'+32y=0, 1(-2)=2, ¥(-2)=-1

13. 9" +y=0, W0)=-2, »y'(0)=2
14. 3" +6y' +34y=0, wW10)=5, '(10)=-5
15, 10" =7y +y =0, »0)=-8, »y'(0)=-1
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16 — 21 Find a second order linear equation with constant coefficients that
has the indicated solution. (The answer is not unique.)

16.

17.

18.

19.

20.

21.

22.

The general solutionis y=Cje’'+ C,te’.

The general solutionis y=Cie”+ C, e >

The general solution is y = C,cos 10z + C,sin 10z.

A particular solutionis y=7e> — e .

A particular solution is y=12e” 'sin2t.
5t

A particular solutionis y= —2zwte .

Consider all the nonzero solutions of the equation y" + 12y’ + 36y = 0,

determine their behavior as 1 — oo.

23.

Consider all the nonzero solutions of the equation y" — 2"+ 10y =0,

determine their behavior as 1 — oo.
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Answers B-1.3:

2.

W

10.

11.
12.

13.

14.

15.
16.
17.
18.
19.
20.
21.
22.

solution (i.e. when C; = C, = 0) approaches 0, all the nonzero solutions

) ] 15 1

y=Ce ' +C,e™, y=7et—;e ‘0
7 )
y=C, e cos 4t+C, e sindt y=2¢" cos 4t —Ze” sin4t |
y=C e +C,e", yzae’—ge’, — 0
10 4
y=Ce*+C,e™, y=7e”2 +;e_3t, "
y=C " +C,te", y=2e"-9te", -
y=C,e*cos3t+Cye'sin3t, y=2e " cos3t+e " sin3t,
y:C1et/2+C2, y:_zel‘/2+4, — o
y:CIe*l‘/z_'_Cze*Zl‘, yzze*l‘/z, O
3

y:Clet/4+C2tet/4, yzzet/4 __tet/4, —w
)= 6e 200 _ 0TG5
y — 284(t+2) _9(t+2)e4(t+2) — _16e4t+8 _9te4t+8

y=-2c0s £+6sin£
3 3

y=5e 2" 1Wcos5(t—10)+2¢ > Psin5( - 10)
y:281/2 _ler/S

V' =2y +y=0
y'=3y'=10y=0
y"+100y=0
Y=y —6y=0

Y2y +5y=0
y'+10y"+25y=0

none

0

The solutions are of the form y = Cye * + Cyte ™, they all approach 0
as t — oo,

23. The solutions are of the form y = C; e cos 3t + C, e'sin3t. The zero

oscillate with an increasing amplitude and do not reach a limit.
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Reduction of Order

Problem: Given a second order, homogeneous, linear differential equation
(with non-constant coefficients) and a known nonzero solution y;, find the
general solution of the given equation.

To start, assume that there exists a second solution in the form of
v, = y1 W(t), for some differentiable function v(%).

First we want to make sure the equation is written in the standard form with
leading coefficient 1:

y'+p@)y +q()y=0.

Next, we will compute the Wronskian W(y,, y,)(¢) two different ways, using
the two methods that we know. By the definition of Wronskian:

M yv(2)

W(y,y)zdetL, ’ ’
vl ooy + V(@)

j = yyv() + 3, V'(6) — yy(t) = 3,V (t)

By the Abel’s Theorem:

-\ p(t)d
W,y, =Ce Ipt t, where C # 0.

The fact that C # 0 is important, because it guarantees the linear
independence of y; and y».
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The two expressions computed above are the Wronskian of the same two
functions, therefore, the two expressions must be the same. Equate them:

ylz\/(t) _C e—f p(t)dt‘

e—jp(z)dz
V() =C—F5—

y2 o C#0.

Therefore,

Integrate the right-hand side to find v(¢). Choose any convenient nonzero
value for C. Letting C = 1 would work nicely, although it may not be the
most convenient choice. Then find y, = y; v(2).

The general solution is still, of course, in the form y = C; y; + C, y».
Therefore,

y=Ciy1+ Cyr =Ciyr + Gy w(d).

Note: 1t is actually not necessary to assume that y, = y; v(¢). Although

doing so makes the resulting first order differential equation easier to solve.
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Example: If it is known that y; = 7 is a solution of
£y —tt+2)y +(t+2)y=0, t>0.

Find its general solution.

Rewrite the equation into the standard form
, +2 , t+2

S P
t+2
Identify P(£) = T Letya = yiv(0)= ().

t tv(t)

Wn:7.) = de{l W(£) + 1v/(2)

and,

j = tv(t) + V() = tv(t) = 17V'(0)

t+2

dt )
W(,y,)=Ce ! =Cej( J =Ce™") =Ct?e

where C # 0.
Equating both parts: v =Cte
V' =Ce' — V:C€t+C1

Choose C=1and C; =0 — v=e". Therefore, y, = y; W(t)=te'.
The general solution is

y=Ciy+Coyy=Cit+ Cyte.
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Example: Find the general solution of the equation below, given that
V1= £ cos(In ¢) is a known solution.

£y" =3ty +5y=0, t>0.

Rewrite the equation into the standard form
" _ E ! + i _ 0
y p y 22 y
3 2
Identify P(f) = ~ - Lety =y v(£)= " cos(In £) v(¢).

W(y,,y,) =t* cos’(Int)v'(r),

and,

3
2d ;
W(ylayz) — C eJ.l t _ Ce3ln(t) — Celn(t) — Ct3, C;éO

Equating both parts: t* cos’(Int)v' =C¢°
Y- C _ Csec’(Inr)
tcos’(In t) t

sin(In¢)

—CIL(mt)dt—Ctan(lntHC - D )
coS(In

+C,

Choose C=1and C;=0 — v =tan(In¥).
Vo =y V(t)= ¢ cos(In?)tan(In 7) = # sin(In?).
The general solution is

y=Ciy+Cy=C ' cos(In¢) + C, 7 sin(In 7).
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Exercises B-1.4:

1 —7 For each equation below, a known solution is given. Find a second,
linearly independent solution of the equation, and find the general solution.

1. £y"=2ty'+2y=0, >0, =1t

2. £y"—ty' —3y=0, t>0, =t

3.0+ =0, >0, y=1.

4. y" =5ty +8y=0, t>0, yr=t".

5.8y" =1y +10y=0, t>0, y1 =t sin(31n 7).

6. (t—5)°y"=2(t—5)y' +2y=0, t>5, i =(t—95).
7. (t+2°y"+3(+2)y' +y=0, t>-2, n=0+2)"

8. Solve the initial value problem
£y =3ty +4y=0. (>0,  y)=-2, y()=1L

Given that y; = ¢’In¢ is a known solution.

9. (a) Find the general solution of /)" —2y =0, ¢>0, given y, = t".

(b) Find the particular solution satisfying y(1) = 6 and »'(1) = 9.

(c) Show that the initial value problem #°y" — 2y =0, (0) = 0 and y'(0) =0,
do not have a unique solution by verifying that any of the infinitely many
functions of the form y = C¢* is a solution, regardless of the value of C.
Does this fact violate the Existence and Uniqueness Theorem?
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Answers B-1.4:
y:C1f2+C2t
y:C1f71+C2t3
y=C +Clnt
y:C1t4+C2t2
y=Citsin(31In¢)+ Cyt cos(31n ¢)
y=Ci(t= 5+ C(1-5)
1 In(z+2)
4 Clt+2+C2 142
y=51nt-2¢
@)y=Ct*+Ct ", (b) y=52+¢"

WX N bk wb =
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(Optional topic) Euler Equations

A second order Euler equation (also known as an Euler-Cauchy equation) is
a second order homogeneous linear equation of the form

£y"+aty +By=0, (%)

or, in standard form

ﬂ+%ﬂ+§y=0

In a course at this level, variations of the Euler equation most frequently
appear as examples and exercises in lectures about reduction of order. In
this context we have seen a few of them in the previous section. This type of
equations, however, is very interesting in its own right. Despite the non-
constant nature of their coefficients, Euler equations can be easily solved in

a way that is analogous to the characteristic equation method of solving
constant coefficient homogeneous linear equations. We shall develop this
solution technique for Euler equations in this section.

By visual inspection (or by peeking back at the exercises previously
encountered in the section about reduction of order technique) we might
deduce that a function of the form y = ¢” could be a solution of (**), ¢ # 0.
Therefore, similar to how we have previously derived the characteristic
equation method, we will assume that, for some power, 7, yet to be
determined, there exists a solution y = ¢". We then substitute it into (**) to
get a better idea about what » should be.

For the time being, let us consider only the case of # > 0. Start with the trial

solution y = ¢, then y' = rt’ ! and y" = r(r — l)tr_2. Plug them into (**):
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rr— 1)t 2 a1 B =0,
F—r+ar+pB)t =0,
P+ (- Dr+p)t"=0.

Since 1" # 0, it follows that ¥ + (& — 1)r+ 8 = 0. This quadratic

equation is the “characteristic equation” of (**). Whatever value of r, real or
complex, that satisfies the characteristic equation will yield a nontrivial

solution of (**) in the formy =t .

As you might have suspected, depending on the number and type of roots r
of the characteristic equation, the equation (**) will have different forms of
(real-valued) general solution. We will look at each case in turn.

Case I: There are two distinct real roots r; and r;.

In this case ¥, =t and ¥, =t are two solutions linearly independent
everywhere on the interval (0, o). (Exercise: check that their Wronskian is
nonzero for ¢t # 0.) Therefore, a general solution of (**) is

y=Cn+GCy,=¢ t" +C, £

Case II: There are two complex conjugate roots r =4+ ui, u>0.

In this case )y, =1 " and V, =t " remain two solutions linearly independent

everywhere on the interval (0, «). They are complex-valued functions,
however:

y, =t"H =4 =1 "™ =t* (cos(ulnt) +isin(uInt))
y, =t =t =" e M =1 (cos(ulnt)—isin(uInt))
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In the same fashion as we have done for the constant coefficients second
order linear equation earlier, we can produce the following pair of real-
valued, linearly independent solutions using linear combinations.

u=0,+y)/2= tlcos(,ulnt)

v=( —)/2i =t"sin(ulnt)

Therefore, a real-valued general solution is

y=C;t"cos(ulnt ) + Ct* sin(uIn?).

Case III: There is a repeated real root 7.

Initially, we have only ¥, =¢" as a solution. The second solution can be

readily found by the method of reduction of order to be y, =t In?.

To wit: If r = k is a repeated root, then the characteristic equation have

-2k +1
coefficients o — 1 = =2k, i.e., p(t) = % = and f=k*. Now,

lety, =t* and y, =t"v.

It follows that W(yl, yz) = ylzv'(t) = l‘zk\/(l‘) , and by Abel’s theorem, it is

2k-1
dt
also W(y,,»,) =C ej (eI _ 2k , C+0

e
Hence, V() =Cr*" . V(== C=zo0

Integrate to obtain W(f) = Clnt + C|, thenset C =1 and C; = 0.

We have v(¢) =Int.
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Y S r .
Consequently, ¥} =1 =1  and ¥, = »Int=1¢"In? are the two required
fundamental solutions.

Therefore, a general solution is

y=Ct +C,t Int.

For ¢ <0, the general solution will take the same forms described above,
except each formula will be in terms of | 7.

Example: Find the general solution of
£y" =3ty +20y=0, t>0.

The characteristic equation is > — 4r + 20 = 0, which has roots
r =2t 4i. Therefore, the general solution is

y=Cit2cos(4Int) + C, > sin(4In ).

Example: Find the general solution of

tzy"+7ty'+9y=0, t<0.

The characteristic equation is > + 67 + 9 = (r + 3)* = 0, which has a
repeated root » = —3. Therefore, with ¢ <0, the general solution is

y=C |t + Gt In|1].
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Solution by substitution

Alternatively, the Euler equation can also be solved by a simple substitution.

This approach seeks to convert an Euler equation into one with constant
coefficients, thus establish a direct relation between their characteristic
equations discussed previously.

Define = €', thus x = In ¢, for t> 0. (Similarly, let | | = €', thus
x=In|t|, forz<0.)

dy dy dt —dye’“—ﬂt
It follows that dc  dt de  dt dt , and

2 2 2
d’y d(dytj_dydtt_i_dy dt—dytz+d—yt.

d>  dx\dt ) d* dx  dt dx df’ dt
That 1s,
(b _dy
di dx

pdy _d'y dy _d’y dy
dt®  dx* dt dx*  dx-

Therefore, in terms of x, equation (**) becomes

d’y dy dy
—— |+a—+ =0
(a’x2 dxj dx Py '
Or,
2
TV a-Y i py=o.
X dx

The equation now has constant coefficients, which can be solved using its
characteristic equation 7> + (a — 1)r + 8 =0.
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Depending on the number and type of the roots of the characteristic equation,
we have:

Case I: There are two distinct real roots r; and r;.

1
y=Ce" +Ce” =C """ +C,e"™ =Ct" +C, 1"

Case II: There are two complex conjugate roots r =4+ ui, u>0.

y=C e™cos ux + Cye™sin ux
= Cre™cos(uln 1) + Coe"™ sin(uln £)
= C,t" cos(ulnt ) + C,t" sin(u In?).

Case III: There is a repeated real root 7.

y=Ce*+Cxé*=Ct +C,t Int.

As can be seen, the two methods arrive at the identical results.
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Summary
Given a second order Euler equation
2 "

ty"+aty'+py=0, t>0.

Solve its characteristic equation #* + (o — 1)r + f=0. The general
solution depends on the type of roots obtained:

1. When there are two distinct real roots r, 7.
v r
y=Ct'+C,t"

2. When there are two complex conjugate roots r» = A £ ui.

y=Ct" cos(ulnt ) + C¢" sin(uIn?).

3. When there is one repeated real root 7.

y=Cit"+ Gt Int.

With ¢ = 0 being the only discontinuity of p(¢) and ¢(¢), when # > 0, in each
case above there is always a unique solution valid everywhere on (0, «) for
any pair of initial conditions y(zy) = yo and y'(fy) =y'. When ¢, <0, replace
every ¢ in each formula above by | # |, and a unique solution valid everywhere

on (—o, 0) can always be found.
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