What is a differential equation?

A differential equation is any equation containing one or more derivatives.

The simplest differential equation, therefore, is just a usual integration

problem
V=1 .

Comment: The solution of the above is, of course, the indefinite integral of
f(8), y = F(¢t) + C, where F(z) 1s any antiderivative of f(¢) and C is an
arbitrary constant. Such a solution is called a general solution of the
differential equation. It is a general form of a set of infinitely many
functions, each differs from others by one (or more) constant term and/or
constant coefficients, which all satisfy the differential equation in question.
Every differential equation, if it does have a solution, always has infinitely
many functions satisfying it. All of these solutions, differing from one
another by one, or more, arbitrary constant / coefficient(s), are given by the
formula of the general solution. Additional auxiliary condition(s), which
might appear as a problem demands, will be required to narrow down the
solution set to one or a few specific functions from the formula of the
general solution.
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Classification of Differential Equations

Ordinary vs. partial differential equations

An ordinary differential equation (ODE) is a differential equation
with a single independent variable, so the derivative(s) it contains are

all ordinary derivatives.

A partial differential equation (PDE) is a differential equation with
two or more independent variables, so the derivative(s) it contains are

partial derivatives.

Order of a differential equation

The order of a differential equation is equal to the order of the highest

derivative it contains.

Examples:
1) yt+y=re’
(2) cos(?)y’ — sin(z) y = 3tcos(t)
3) Y'-3+2y= eztcos(St)
@ y+0)"=0
5)  un=4%u,+u

© ¥ ="y +2y=4e"
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(first order ODE)
(second order ODE)
(fourth order ODE)
(second order PDE)

(fifth order ODE)
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Linear vs. nonlinear differential equations:

An n-th order ordinary differential equation is called /inear if it can be
written in the form:

Y =a, 0P+ 4Oy + L+ ai Dy + ao(t)y + (D).

Where the functions a’s and g are any functions of the independent
variable, ¢ in this instance. Note that the independent variable could
appear in any shape or form in the equation, but the dependent
variable, y, and its derivatives can only appear alone, in the first
power, not in a denominator or inside another (transcendental)
function. In other words, the right-hand side of the equation above
must be a linear function of the dependent variable y and its
derivatives. Otherwise, the equation said to be nonlinear.

In the examples above, (2) and (3) are linear equations, while (1), (4) and (6)
are nonlinear. (5) is a linear partial differential equation, as each of the
partial derivatives appears alone in the first power. The next example looks
similar to (3), but it is a (second order) nonlinear equation, instead. Why?

(7 y" =3y +2y=e"cos(5y)
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Exercises A-1.1:

1 — 10 Determine the order of each equation below. Also determine
whether each is a linear or nonlinear equation.

l.

2.

3.

10.

11.

V' + t3y = cos( tz)

Y"1y =y + e_6ty =2yInt
=1

5y’ =1ty

v+ sec(t) =)y

y' 5y +dy=—¢"y

o) -y=1

y"cos(y) = t3sin(t) y(s)

ey +3y" — cot(e) y =21+

4

8t
=5

For what value(s) of n will the following equation be linear?
y' = 9y" =" sin(3nt)

Answers A-1.1:

1. Ist order, linear; 2. 3rd order, linear; 3. 2nd order, nonlinear;
4. 1st order, linear; 5. 6th order, nonlinear; 6. 2nd order, linear;

7. 1st order, nonlinear; 8. 5th order, nonlinear; 9. 4th order, linear;

10. 5th order, linear; 11. When n =0 or 1, the equation is linear.
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Direction Field (a.k.a. Slope Field)

Direction field is a simple visualization tool that could be used to study the
approximated behavior of the solutions of a first order differential equation

Y =1 ),

without having to solve it first.

What is it? First draw a grid on the #y-plane. Then for each point (¢, ) on
the grid compute the value f(¢y, o). Note that f(#y, yo) ="' is actually the
instantaneous rate of change of a solution, y = ¢(¢), of the given equation at
the point (%, o). It, therefore, represents the slope of the line tangent to the
solution whose curve passes through (¢, 1), at the exact point. Draw a short
arrow at each such point (¢, 1) that is pointing in the direction given by the
slope of the tangent line. After an arrow 1s drawn for every point of the grid,
we can do “connecting-the-dots” and trace curves by connecting one arrow
to the next arrow in the grid where the first is pointing at. Those curves
traced this way are called integral curves (so called because, in effect, they
each approximates an antiderivative of the function f(z, y)). Each integral
curve approximates the behavior of a particular function that satisfies the
given differential equation. The collection of all integral curves
approximates the behaviors of the general solution of the equation.

Example: V' =2t

What we are doing is constructing the graphs of some functions that satisfy
the given differential equation by first approximating each solution
function’s local behavior at a point (%, )) using its linearization (i.e. the
tangent line approximation). Then we obtain the longer-term behavior by
connecting those local approximations, point-by-point moving among the
grid, into curves that are fairly accurately resemble the actual graphs of those
functions. We will look at this tool in more details in a later section, when
we study Autonomous Equations.
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The direction field of )" = 2¢

Figure 1.
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The direction field of )" = 2¢ (with a few integral curves
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Comment: Each integral curve, representing a specific function that satisfies
the given differential equation — colloquially, such function is called a
particular solution of the equation — is analogously a certain antiderivative.
(In this present example, it is actually an antiderivative, that of (¢, y) = 2¢.)
The entire direction field shows the different behaviors of a collection of
those particular solutions. In other words, it gives us a rough idea about the
general solution of the differential equation. The direction field, in its
entirety, is thus analogous to the indefinite integral of 1(z, y).

Next, let us examine a slightly more interesting direction field of another
simple first order differential equation, y' = ¢# —y. Even without knowing
what its general solution is (yet), we can nevertheless readily deduce from its
direction field the long-term behavior of its solutions, which all seem to
behave like the line y =7 — 1.

© 2008, 2012 Zachary S Tseng
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¥y =t-y

Another example: the direction field of y'=¢—y

Figure 3.
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Comment: We will learn shortly how to solve this equation. The exact

solutions are functions of the formy=¢—1+ Ce'. When C

0, the

solution is just the line y = ¢ — 1, which appears as the slant asymptote of all

other solutions in the above graph.
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First Order Linear Differential Equations

A first order ordinary differential equation is /inear if it can be written in the

form

Y +p(@)y=g(®)

where p and g are arbitrary functions of z.

This is called the standard form or canonical form of the first order linear

equation.

We’ll start by attempting to solve a couple of very simple equations of such

type.

© 2008, 2012 Zachary S Tseng
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Example: Find the general solution of the equation
y'—2y=0.

First let’s rewrite the equation as dt

Then, assuming y # 0, divide both sides by y:

1d
ldy _,
vy dt
Multiply both sides by dr:
d
=2
Y

Now what we have here are two derivatives which are equal. It
implies (as a consequence of the Mean Value Theorem) that the anti-
derivatives of the two sides must differ only by a constant of
integration. Integrate both sides:

In|y|=2t+C

2+ C C 2 2
or, PE J=eCe? =Ce

Where C; = e is an arbitrary, but always positive constant.
To simplify one step farther, we can drop the absolute value sign and

relax the restriction on C,. C; can now be any positive or negative
(but not zero) constant. Hence

Wt)=Cre”, C1 #0. (1)
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Lastly, what happens if our eariler assumption that y # 0 is false?
Well, if y = 0 (that is, when y is the constant function zero), then ' =0
and the equation is reduced to

0-0=0
which is an expression that is always true. Therefore, the constant
zero function is also a solution of the given equation. Not exactly by

a coincident, it corresponds to the missing case of C; =0 in (1).

As a result, the general solution is in the form

w)y=C e’ for any constant C.

That is, any function of this form, regardless of the value of C, will
satisfy the equation y’' — 2y = 0. While there are infinitely many such
functions, no other type of functions could satisty the equation.

The similar technique could also be used to solve this next example.
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Example: For arbitrary constants » and k, » # 0, solve the equation

v -ry=k.

We will proceed as before to rewrite the equation into equality of two
derivatives. Then integrate both sides.

Assuming ry + k # 0:

Y _gp jdy = [ar

ry+k - ry+k
1
Therefore, ;ln‘ ry+k ‘ =t+C
C
Simplifying: In|ry+k|l=rn+C, — \ry+k\:e”+1
rt C
— ‘ ry+k ‘ =e"e” , where e“ is an arbitrary positive constant.

Dropping the absolute value sign:

t G .
rv+k=C,e" C,=xe" s any nonzero constant.

1 ; Cc, ., k
Thatis,y:_(czet_k):_ze -
r r r
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Lastly, it can be easily checked that if y + k£ = 0, implying that y is
the constant function —, the given differential equation is again
r

satisfied. This constant solution corresponds to the above general
solution for the case C; =0. Hence, the general solution now
includes all possible values of the unknown arbitrary constant:

y=—¢e - PE C is any constant.

© 2008, 2012 Zachary S Tseng
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The Integrating Factor Method

In the previous examples of simple first order ODEs, we found the solutions
by algebraically separate the dependent variable- and the independent
variable- terms, and write the two sides of a given equation as derivatives,
each with respect to one of the two variables. Then just integrate both sides
and simplify to find the solution y. However, this process was feasible only
because the equations in question were a special type, namely that they were
both separable, in addition to being first order linear equations. They do,
however, illustrated the main goal of solving a first order ODE, namely to
use integration to removed the y'-term.

Most first order linear ordinary differential equations are, however, not
separable. So the previous method will not work because we will be unable
to rewrite the equation to equate two derivatives. In such instances, a more

elaborate technique must be applied. How do we, then, integrate both sides?

Let’s look again at the first order linear differential equation we are
attempting to solve, in its standard form:

Y +p(0)y=g®).

What we will do is to multiply the equation through by a suitably chosen
function u(?), such that the resulting equation

u(@) y' +uw@Op(t) y = u()g(?) (*)

would have integrate-able expressions on both sides. Such a function p(?) is
called an integrating factor.

© 2008, 2012 Zachary S Tseng
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Comment: The idea of integrating factor is not really new. Recall how you
have integrated sec(x) in Math 141. The integral as given could not be
integrated. However, after the integrand has been multiplied by a suitable
from of 1, in this case (tan(x) + sec(x))/ (tan(x) + sec(x)), the integration
could then proceed quite easily.

Isecxdx _ jsecx tan x +secx di = J- sec xtan x +sec” x di = @
tan x +secx secx +tanx u
:ln‘u‘+C:In‘secx+tanx‘+C
Now back to the equation
w(@) Yy + u@p(t) y = i(0)g(?) (*)

On the right side there is explicitly a function of . So it could always, in
theory at least, be integrated with respect to . The left hand side is the more

interesting part. Take another look of the left side of (*) and compare it with
this following expression listed side-by-side:

w(@) y' + u(@p(t) y o u@)y +u'@)y

The second expression is, by the product rule of differentiation, nothing
more than (u(?)y)". Notice the similarity between the two expressions.

Suppose the simple differential equation w(f)p(t) = t'(t) could be satisfied,
we would then have

u@O) Y +u@Op)y = w@) y' + @' (@0) y = @) y)

Trivially, then, the left side of (*) could be integrated with respect to z.

J o) y' + u(p(0) yydi = ] () y)' dt = u(t) y

© 2008, 2012 Zachary S Tseng
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Hence, to solve (*) we integrate both sides:
J () ' + (@) y) dt = | p(t)g () dt

—  u@®y= g dt (**)

Therefore, the general solution is found after we divide the last equation
through by the integrating factor (%).

But before we can solve for the general solution, we must take a step back
and find this (almost magical!) integrating factor x(¢). We have seen on the
last page that it must satisfies the equation u(t)p(t) = ¢'(¢). Thisis a

simpler equation that can be solved by our first method of separate the
variables then integrate:

PO="0
N Ip(®) dt =In|u(t)| + C
B ejp(r)dt _ )]
LM

© 2008, 2012 Zachary S Tseng
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This is the general solution, of course. We just need one instance of it.
Since any nonzero function of the above form can be used as the integrating
factor, we will just choose the simplest one, that of C; = 1. As a result

uy=e "

Once it is found, we can immediately divide both sides of the equation (**)
by u(?) to find y(¢), using the formula

[ug@adi (+C)
u(t)

(t) =

Note: In order to use this integrating factor method, the equation must be
put into the standard form first (i.e. y’-term must have coefficient 1). Else
our formulas won’t work.

Comment: As it turns out, what we have just discovered is a very powerful
tool. As long as we are able to integrate the two required integrals, this
integrating factor method can be used to solve any first order linear ordinary
differential equation.

© 2008, 2012 Zachary S Tseng
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Example: We will use our new found general purpose method to again
solve the equation

Vv —ry=k, r#0.

The equation is already in its standard form, with p(¢) = — r and
g(t) = k.

j—rdt rt
The integrating factor is ui)=e =-e |

The general solution is

e”(_—ke” + Cj _Zk +Ce"’
r

r

1 q »
=——\le ""kdt
y e—rt )

That 1s it!

(It looks slightly different, but this is indeed the same solution we
found a little earlier using a different method.)
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Example: We have previously seen the direction field showing the
approximated graph of the solutions of

Y =t—y.

Now let us apply the integrating factor method to solve it.

The equation has as its standard form,

y+y=t

Where p(t) = 1 and g(¢) = ¢.

) ) . I dt t
The integrating factor is uit)y=e =e',

The general solution is, therefore,
_ 1 t " t t ot t
y=—\|te' dt)=e"\te' —|e dt)=e"\te' —e +C
e

=t—1+Ce™".
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Summary: Solving a first order linear differential equation

yi+p()y =g
0. Make sure the equation is in the standard form above. If the leading
coefficient is not 1, divide the equation through by the coefficient of y'-term

first. (Remember to divide the right-hand side as well!)

1. Find the integrating factor:

u(ty ="

2. Find the solution:

[ug@de (+C)
y(t) =
u(t)

This is the general solution of the given equation. Always remember to
include the constant of integration, which is included in the formula above as
“(+ C)” at the end. Like an indefinite integral (which gives us the solution in
the first place), the general solution of a differential equation is a set of
infinitely many functions containing one or more arbitrary constant(s).

© 2008, 2012 Zachary S Tseng
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Initial Value Problems (I.V.P.)

Every time we solve a differential equation, we get a general solution that is
really a set of infinitely many functions that are all solutions of the given
equation. In practice, however, we are usually more interested in finding
some specific function that satisfies a given equation and also satisfies some
additional behavioral requirement(s), rather than just finding an arbitrary
function that is a solution. The behavioral requirements are usually given in
the form of initial conditions that say the specific solution (and its
derivatives) must take on certain given values (the initial values) at some
prescribed initial time #,. For a first order equation, the initial condition
comes simply as an additional statement in the form y(zy) = y,. That is to say,
once we have found the general solution, we will then proceed to substitute

t = t, into y(¢) and find the constant C in the general solution such that y(#) =
vo. The result, if it could be found, is a specific function (or functions) that
satisfies both the given differential equation, and the condition that the point
(t0, ¥o) 1s contained on its graph. Such a problem where both an equation
and one or more initial values are given is called an initial value problem
(abbreviated as [.V.P. in the textbook). The specific solution thusly found is
often called a particular solution of the differential equation.

Graphically, the general solution of a first order ordinary differential
equation is represented by the collection of all integral curves in a direction
field, while each particular solution is represented individually by one of the
integral curves.

To summarize, an initial value problem consists of two parts:
1. A differential equation, and
2. A set of initial condition(s).

We first solve the equation to find the general solution (which contains one
or more arbitrary constants or coefficients). Then we use the initial
condition(s) to determine the exact value(s) of those constant(s). The result
is a particular solution of the equation.
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Example: Solve the initial value problem
ty’—2y=t3ez—4, (1) =2.
First divide both sides by .

1_2 _tzet_ﬂ
4 l‘y 4

2 , 4
— p(f):—7,and g(t)y="r’e T

The integrating factor is

I_Tzdt

—ZIn‘ t‘ _ eln‘ 2 ‘

ui)=e =e

The general solution is

y =ti2ft2(t2e’ —é)dt = I(e’ —4t7 )dt =t (e’ +2t7% + C)

=t*e' +2+ Ct?

Apply the initial condition
y)=2=1°¢"+2+C1’=e+2+C
O0=e+C — C=—e

Therefore,
2t 2
y=te +2—et".

© 2008, 2012 Zachary S Tseng
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Example: Solve the initial value problem
cos(?)y' — sin(?) y = 3tcos(t), y(2r) = 0.
Divide through by cos(?): y' —tan(¢) y = 3t
p(t) = —tan(r) and g(¢) =3¢

—tan(t)dt
The integrating factor is ut)=e I . (What is this function?)

Use the u-substitution, let u = cos(#) then du = —sin(z)dt:

—sin(t) dt
cos(t)

J'—tan(t)dtzj =jdu=ln‘u‘+Czln‘cos(t)‘+C
u

Near ¢y = 2z, cos(¢) is positive, so we could drop the absolute value.

J’ —tan(¢)dt _ pn(eos(1)

Hence, ((f)=e =cos(?).

1 3 . .

V(1) = o j 3tcos(t)dt = — (t sin(?) - j sin( ) dt)

= (¢sin(£) +cos(#) + C) = 3t tan(¢) + 3 + C'sec(t)
cos(?)

v(2r)=0=6rtan(2r) + 3 + Csec(2r)=0+3+C=3+C
C=-3

Therefore,

y(¢) = 3ttan(z) + 3 — 3sec(?).

© 2008, 2012 Zachary S Tseng
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The Existence and Uniqueness Theorem (of the solution a first
order linear equation initial value problem)

Does an initial value problem always a solution? How many solutions are
there? The following theorem states a precise condition under which exactly
one solution would always exist for a given initial value problem.

Theorem: 1If the functions p and g are continuous on the interval I: a <t <f
containing the point ¢ = ¢,, then there exists a unique function y = ¢(¢) that
satisfies the differential equation

Y +p()y =g

for each ¢ in I, and that also satisfies the initial condition

W(to) = Yo,

where y, 1s an arbitrary prescribed initial value.

That is, the theorem guarantees that the given initial value problem will
always have (existence of) exactly one (uniqueness) solution, on any interval

containing ¢, as long as both p(¢) and g(¢) are continuous on the same interval.

The largest of such intervals is called the interval of validity of the given
initial value problem. In other words, the interval of validity is the largest
interval such that (1) it contains #,, and (2) it does not contain any
discontinuity of p(¢) nor g(#). Conversely, neither existence nor uniqueness
of a solution is guaranteed at a discontinuity of either p(¢) or g(7).

Note that, unless ¢, is actually a discontinuity of either p(¢) or g(¢), there
always exists a non-empty interval of validity. If, however, #; is indeed a
discontinuity of either p(¢) or g(¢), then the interval of validity will be empty.
Clearly, in such a case the conditions that the interval must contain #, and
that it must not contain a discontinuity of p(¢) or g(¢) will be contradicting.

© 2008, 2012 Zachary S Tseng
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If so, such an initial value problem is not guaranteed to have a unique
solution at all.

Example: Consider the initial value problem solved earlier

cos(?)y' — sin(z) y = 3tcos(?), v(27) = 0.

The standard form of the equation is
y' —tan(f)y = 3¢

with p(¢) = — tan(¢) and g(¢) = 3z. While g() is always continuous, p()
has discontinuities at ¢ = +7/2, +37/2, £57/2, £77/2, ... According to
the Existence and Uniqueness Theorem, therefore, a continuous and
differentiable solution of this initial value problem is guaranteed to
exist uniquely on any interval containing ¢, = 2z but not containing
any of the discontinuities. The largest such intervals is (37/2, 57/2).

It is the interval of validity of this problem. Indeed, the actual
solution y(¥) = 3¢tan(¢) + 3 — 3sec(?) is defined everywhere within
this interval, but not at either of its endpoints.
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How to find the interval of validity

For an initial value problem of a first order linear equation, the interval of
validity, if exists, can be found using this following simple procedure.

Given: y'+p(0)y =g, ¥(to) = Yo
1. Draw the number line (which is the f-axis).

2. Find all the discontinuities of p(¢), and the discontinuities of g(#). Mark
them off on the number line.

3. Locate on the number line the initial time #,. Look for the longest
interval that contains 7y, but contains no discontinuities.

Step 1: Draw the f-axis.

¢ +—FF
-0 9 8 7 6 -5-4-3-2-101 23 456 7 8 9 10

Step 2: Mark off the discontinuities.

D e e e e L A S e e e B B e e e I
-0 9 8 7 6 5 4 3 -2 101 2 3 4 5 6 7 8 9 10
Step 3: Locate ¢, and determine the interval of validity.

t.
L B . T e B —— T X——T—%X»
-0 9 8 -7 6 5 4 -3 -2 -1 1 2 3 5 6 7 8 9 10
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Example: Consider the initial value problems
@) (£ —81)y +5¢ey=sin(), (1) = 107
(b) (£ —81)y +5¢y =sin(?), y(107) = 1

The equation is first order linear, so the theorem applies. The standard form
of the equation is

V4 5e”™ y= sin(t)
=817 ¢ -8l
Se™ in(
with p() = e (i 21 and g(t) = tszui( 8)1 . Both have discontinuities at = +9.

Hence, any interval such that a solution is guaranteed to exist uniquely must
contain the initial time ¢, but not contain either of the points 9 and —9.

In (a), tp = 1, so the interval contains 1 but not £9. The largest such
interval 1s (-9, 9).

In (b), #t, = 10z, so the interval contains 10z but neither of £9. The
largest such interval is (9, ).

Remember that the value of y, does not matter at all, #, alone determines the
interval.

Suppose the initial condition is y(—100) = 5 instead. Then the largest
interval on which the initial value problem’s solution is guaranteed to exist
uniquely will be (-0, —9).

Lastly, suppose the initial condition is y(—9) = 88. Then we would not be

assured of a unique solution at all. Since #=—9 is both #, and a discontinuity
of p(¢) and g(¢). The interval of validity would be, therefore, empty.
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Depending on the problem, the interval of validity, if exists, could be as
large as the entire real line, or arbitrarily small in length. The following
example is an initial value problem that has a very short interval of validity
for its unique solution.

Example: Consider the initial value problems

(t2 _ 10—2oooooo)y, +iy=0, W0) = a.

With the standard form

1 t —_
Yy - £2 _ 12000000 Y _O,

+1071%9%° The initial time is z, = 0.

~1000000
0

the discontinuities (of p(?)) are ¢ =

Therefore, the interval of validity for its solution is the interval (—1
10719999 "an interval of length 2x 107" units!

>

However, the important thing is that somewhere on the #-axis a unique
solution to this initial value problem exists. Different initial value o will
give different particular solution. But the solution will each uniquely exist,

at a minimum, on the interval (—10'°%%_ 107'9999%),

Again, according to the theorem, the only time that a unique solution is not
guaranteed to exist anywhere i1s whenever the initial time ¢, just happens to
be a discontinuity of either p(¢) or g(¥).

Now suppose the initial condition is y(0) = 0. It should be fairly easy to see
that the constant zero function y(¢) = 0 is a solution of the initial value
problem. It is of course the unique solution of this initial value problem.
Notice that this solution exists for all values of 7, not just inside the interval
(—1071090000 171990990 " 1t exists even at discontinuities of p(¢). This
illustrates that, while outside of the interval of validity there is no guarantee
that a solution would exist or be unique, the theorem nevertheless does not
prevent a solution to exist, even uniquely, where the condition required by
the theorem is not met.
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Nonlinear Equations: Existence and Uniqueness of Solutions

A theorem analogous to the previous exists for general first order ODEs.

Theorem: Let the function f and Jf / 0y be continuous in some rectangle o <
t<p,y<y <9, containing the point (¢, o). Then, in some interval t, —h <t
<ty + h contained in o < ¢t < f3, there is a unique solution y = ¢(¢) of the initial
value problem

y’ :f(tay)’ y(tO) = )o-

This is a more general theorem than the previous that applies to all first
order ODEs. It is also less precise. It does not specify a precise region that
a given initial value problem would have a solution or that a solution, when
it exists, is unique. Rather, it states a region that somewhere within there has
to be part of it in which a unique solution of the initial value problem will
exist. (It does not preclude that a second solution exists outside of it.)

The bottom line is that a nonlinear equation might have multiple solutions
corresponding to the same initial condition. On the other hand it is also
possible that it might not have a solution defined on parts of the region

where f and Of / 0y are both continuous.

Example: Consider the (nonlinear) initial value problem

y=ry"”, 1(0)=0.

When t=0, Of / Oy is not continuous. Therefore, it would not necessarily
6

have a unique solution. Indeed, both V = 36 and y = 0 are functions that

satisfy the problem. (Verify this fact!)
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Exercises A-1.2:

1 —4 Find the general solution of each equation below.
1. V' = 7 y= 47
2. Yy +10y=~7
I, 5
3. Fy-ey=0

4. Yy —y=2e

5—16 Solve each initial value problem. What is the largest interval in
which a unique solution is guaranteed to exist?

5. Yy H+2y=te’, »(0)=2
6. v —1ly=4e”, »(0)=9
7.ty —y=r+t, »1)=5
8. (F+1)y —2y=r+i, »(0)=-4
9. Y+ Qt—6£)y=0, 1(0) =—8
10. ﬁf+4w=%, 1(=2)=0
11. (£ —49)) +4ty=4t, y(0)=1/7
12. Yy —y=r+t, 10)=3
13. y+y=e, (0) =1
14. ty' +4y=4, y(=2)=6
15.  tan()y’ — sec(f)tan’(f) y = 0, w0)=x
16. (F+1)y +2ty=0, y3)=-1
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17 — 20 Without solving the initial value problem, what is the largest interval
in which a unique solution is guaranteed to exist for each initial condition?

(a) y(m) =7, (b) ) =-9,  (c) y(-4) =e.

() (e \ I
17. (@+5)y + p— y 60D

18. £y + T3y = sec(t/3)

19. (A+4t-5)) +tan2h)y =7~ — 16
20 4-)y+In6—fHy=¢€"
21. Find the general solution of £y’ + 2ty =2. Then show that both the

initial conditions y(1) = 1 and y(—1) = —3 result in an identical particular
solution. Does this fact violate the Existence and Uniqueness Theorem?
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Answers A-1.2:

. y=—4+Ce""

ot 1 tor
=———+—+Ce
2.y 10 50 500

1
=Cexp| —e'
y p[3 ]

y=2te' + Ce'
y=te'—e'+3e”, (—o0, )
49 w4 .
5 5 7
y==¢+tlnt+4t, (0, o)
y=(t>+D)(In(t> +1)—4), (—o0, ©)
y=-8exp(2t — ), (—o, )

1 4
10. y=t—2—t—4, (-0, 0)

11 —981% +343
11. y= (497 =7,7)
12. y=6e'— £ —3t—3, (—o0, x)

y:

(o0, )

WX 24 bk W

1, 1
13.y=§e te =cosh(?), (o0, )

14. y=1+80:", (—o0, 0).
T sec(t) sec(t)-1

15. y= ;e = e , (—n/2, n/2)
-10

16 = t2 +1 ’ (—OO, OO)

17. (a) (3, 6); (b) (=1, 3); (c) (=5, ~1).

18. (a) (0, 37/2); (b) (0, 37/2); (c) (—3x/2,-3).

19. (a) (37/4, 57/4); (b) no such interval exists; (c) (—5, —57/4).
20. (a) (2, 6); (b) (=2, 2); (c) (—o0, 2).

2t+C 2t-1 . : .
21. y= JERN they both have y = 2 as the solution; no, different initial

conditions could nevertheless give the same unique solution.
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Separable Differential Equations

A first order differential equation is separable if it can be written in the form

M(x) + Ny)y'= 0,

where M(x) 1s a function of the independent variable x only, and N(y) is a
function of the dependent variable y only. It is called separable because the
independent and dependent variables could be moved to separate sides of the
equation:

d
NG =-M(x).
dx
Multiplying through by dx,
N(y)dy =—M (x)dx.

A general solution of the equation can then be found by simply integrating
both sides with respect to each respective variable:

jN(y)dy =— jM(x)dx +C

This is the implicit general solution of the equation, where y is defined
implicitly as a function of x by the above equation relating the
antiderivatives, with respect to their individual variables, of M(x) and N(y).

An explicit general solution, in the form of y = f(X), where y is explicitly
defined by a function f(x) which itself satisfies the original differential
equation, could be found (in theory, although not always in practice) by
simplifying the implicit solution and solve for y.
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dy

: el = —x—x"=0
Example: Solve x

First, separate the x- and y-terms.
d

LA —
dx

ey

Then multiply both sides by dx and integrate

Iey dyzj(x3 +x)dx

4 2
X X
Yy _
i C (implicit solution)
or,
x4 x2
y=In 1 + 5 +C (explicit solution)

Suppose there is, in addition, an initial condition of y(1) =2. We can solve
for the constant C by applying this initial condition:

o 3
2

Finally,

ey—x—4+x—2+e2—§ . . . )

4 2 4 (implicit solution)
or,
xtox? , 3
y =ln 4 * B3 te - 4 (explicit solution)
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Example: Solve the initial value problem

y'=4/1-y? cos(1), 1(0) = 0.

Separate the variables and integrate, we have

dy
————=cos(?) dt
VJ1=y7
dy
————=|cos(t) dt
N
arcsin(y) = sin(¢) + C.

Apply the initial condition to solve for C, the (implicit) particular
solution is

arcsin(0) = sin(0) + C
0=0+C — C=0

arcsin(y) = sin(¢).

The explicit particular solution can be found easily:

y = sin(sin(¢)).

Question: How would the solution differ if the initial condition is y(0) = 1?
(What happens when y, = 1?)
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Example: Solve the initial value problem

, 3P +4r-5
y 2y-10 y(1)=-2.

2y —10)y' =3+ 41— 5
2y — 10)dy = (3¢ + 4t — 5)dt

[y —10)dy = (3¢ + 4t — 5)dt

(Implicit) general solution is y2 — 10y = £+26—5t+C.

The initial condition says that when ¢ =1, y = —2, so substitute those
two values into the general solution:

(2> —10(-2)=1+2(1* -5+ C
24=-2+C — C=26

The (implicit) particular solution is y2 — 10y = £ +27 - 5¢+26.

What is the explicit solution? We will solve explicitly for y by first
using completing-the-square to simplify the left side:

12— 10y +25=¢ +27 - 5t+26 + 25

(y—5yY=7r+27-5:+51

y— 5=+ +27 =5t +51

W) =5 1P +212 =5 +51 (Which one?)
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It is necessary to determine which one of the two expressions above is
the actual solution of this problem. Both expressions are derived from
the same implicit solution of the given equation. Therefore, they
would both satisfy the equation. However, there is a unique solution
to this initial value problem, as we know. We do have a clue
regarding the true identity of the solution. The clue is in the form of
the initial condition, y(1) = —2. Let us check. Apply the initial
condition to both expressions:

2 =p(1) =5 £/ +2(1)> =5+51 =5 £/49 .

Since —2 =5 —+/49, the correct explicit solution must be the
expression with the minus sign.

W(t) =5 +27 =5t +51
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Summary: Solving a separable differential equation
M(x)+N@y)y'=0

1. Rearrange the equation into the form below, separating it into a
dependent variable part and an independent variable part:

N(y)y'=— M(x).

Then convert both sides into derivatives by multiplying through with dx.

Ny)dy =— M(x)dx.

2. Integrating both sides to find the implicit general solution:
j N(O)dy = — j M (x)dx +C

The constants of integration should be combined and put into only one side
(by convention, the independent variable side) of the equation.

3. If necessary/ feasible, an explicit general solution, y = f(x) can be found
by simplifying the implicit solution and solve for y.
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Exercises A-1.3:

1 — 6 Find the general solution of each system below.

1. y=ry"” 2. y'=%
sin ¢ sec y
3. = 4. =
Y cosy 7 x> +4
5. Y=y +4y 6. y'=coty

7—17 Solve the following initial value problem.

7.y =41-3"cos(?), y0)=1

8.  y= xzy-r W2)=1

0. s y(1) =3

10. y'—Fy=A4r, w1)=2

11. y'=6ry-2t, »(0)=-8

12. y'—)y*=4, »(0)=-2

13.  y'=(1+)")sec’x, (0)=-1

14.  y'=e?tsin(41), y(r)=—1

R L R NN ORGE

16.  yy'=2t(*+5), (a) ¥(0)=2, (b) y(-1)=—4.

17, = @ y@=1, () W2)=e
In(y)

18. Yy —y=y", @ ¥0)=-2,  (b) ¥(-2)=0.
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Answers A-1.3:

2. y=Ct
3. y=sin"'(—cos ¢+ C)

1 X
—sin™ —tan_l(—j+C
4. ) > 7

1 2
5. gh{yzy " 4J —t+C (in implicit form), and y = 0.

6. y=cos ‘(e %)

x—1
— =13
7. y=1 8.V il

9. y:W 10. y=6e%e"* —4

11. y=-8exp(2f — 1)
12. y=2tan(2x — n/4)
13. y=tan(tan(x) — 7/4)

14. v =—1In| —tcos(4t) — —sin(4t) + e* — =
y > (2 (41) 2 (4t)+e 2)

15. (a) y=—2+\/x4—4x2+2x+9, (b) y:—2—\/x4—4x2+2x+5

16. (a) ¥ =/9exp(2r’) -5, (b) ¥ =—2lexp(2t> —2)—5
17. () In* () =8, (b) In*(3)=-=1  (in implicit form).

A

18. (a) In Sl t+In(2) (in implicit form), (b) y=0
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Applications of First Order Equations

1. Mixing solution

A mixing tank initially contains Q, amount salt (solute) dissolved in S,
amount of water (solvent). Additional salt water (solution) of concentration
c; flows into the tank at a rate ;. Assume the content of the mixing tank is
stirred very rapidly such that the solution within is always of uniform
concentration. The mixed content is then pumped out of the tank for use
elsewhere at a rate r,. Find the amount (mass) or concentration
(mass/volume) of salt contained in the tank at any time ¢ > 0.

Denote: O(t) = amount of solute in tank at time ¢
S(#) = volume of solution in tank at time ¢

An expression for S(7) is simple to derive: Since there are initially S, amount
in the tank; and during each unit of time »; amount flows into and r, amount
flows out of the tank, for a net change of (7; — r,) per unit time. Therefore,

S(t)=So+ (ri— 1)t

Next, we want to come up with an equation that governs (J. The general
form of the differential equation that governs the amount of solute in the
mixing tank, Q(¢), at any time ¢ > 0 is:

Q' = (rate of solute flowing in) — (rate of solute flowing out)

The rate of solute in/out is equal to

(rate of solution in/out) x (concentration of solution in/out)
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Mixing Solution At¢ =0
CH0) =01, Initial amount of solute

) , S {0) =5, Initial amount of solution
£y Concentration of solute into tank

¥, Rate of solution into tank

« r,. Rate of solution
i, i out of tank

C)E) - Amount of solute in tank at time §

Sit) Wolume of solution in tank at time #

C)YE A 5ft) - Concentration of solute out of tank

Therefore, the necessary initial value problem is

| o
0 :rici_roS(t)’ 0(0)= Q0

The equation is a first order linear equation with the standard form
o
"'+ — 0O =7 c
Q S(f) Q Vi Ci.

Consequently, it can always be solved using the integrating factor method
we have already seen.
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The constant-volume mixing problem (w/ constant rates, ;= r, = r)

In this case, S(f) = S. The mixing problem becomes

r
0"+ g 0=re.  0(0)=0y

r
First identify p(t)= -, and glt)y=rc;

SU
SLdt SLt
The integrating factor is u)y=e e’
1 = st re, S, 5 i

e +Cl=c, S, +Ce™

o) = rt/S Ircieso dt |=e™
e 0

r

00)=0, =¢; S, +Ce" =¢,; S, +C — C=0¢-¢5

Therefore,

O@)=c¢; S, +(Q, —¢, So)egot.

The concentration as a function of time is Q(¢)/ S(¢) = Q(¢)/ S\.

. 0) _ % Sy

. « . . . lm — C .
The limiting concentration is [ S@0) S, i. That is, after a

very long time, the concentration of the content of the tank will
approach the concentration of the new inflow. (Since eventually
every last drop of the original content will be flushed out of the tank
and be replaced by the inflow solution.)
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Example: A swimming pool initially contains 1000 m’ of stale, un-
chlorinated water. Water containing 2 grams per m® of chlorine flows into
the pool at a rate of 4 m> per minute. The well-mixed content of the pool is
drained at the same rate. Find the time when the chlorine concentration in
the pool reaches 1 gram per m’.

In this problem, r; = r, = 4. Therefore, it is a constant volume
problem, and the initial volume S, = 1000 = S(¢). There is initially no
solute (chlorine, in this case) in the pool, hence Q(0) = 0. The inflow
concentration ¢; =2. We can then set up the following initial value
problem

4 1
0= 7500 =8 ~359 2 - Q0)=0.

1

In standard form: o'+ 250 0=8, 0(0)=0.

1
Where p(t) = 250 ° and g(¢) = 8.

La L
50 e 50 '

The integrating factor is ,U(t )=e
The general solution is, then,

t ¢ . »
Q= —t/lzso _[88250 dt =e*" (20006250 + CJ — 2000 + Ce 25
e .

Applying the initial condition Q(0) = 0,

0(0)=0=2000 + C N C =-2000.
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Consequently, the particular solution for this problem is

—t

O(1) = 2000 — 2000e 25

The concentration of chlorine in the pool is given by the expression

—t

O(f) 2000 —2000e2°
S(t) 1000

-t

=220

Set the expression to equal 1, and solve for #. The time (in minute) it

takes for the chlorine concentration in the pool to reach 1 gram per m’

1S:

Q(t) —2_ 2250 _ 9,250

1 250
S N | 2e
1 _ e2_5t0 ln(lj -~
- 2 - 2 250
1
—,  250In 57 —t — t=2501n(2).
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Non-constant-volume mixing problem (w/ constant rates, but 7; # r,)

Example (Exam 1, summer 2002): A 400-liter tank is initially filled with
100 liters of dye solution with a dye concentration of 5 grams/liter. Pure
water flows into the tank at a rate of 3 liters per minute. The well-stirred
solution is drained at a rate of 2 liters per minute. Find the concentration of
dye in the tank at the time that the tank is completely filled.

In this problem, r; = 3, r, = 2, and the initial volume is S, = 100. So
the solution’s volume is S(¢) = S, + (r; — r,)t = 100 + ¢. The initial
concentration of the solute is 5 grams per liter. Multiplying it by the
initial volume gives us the initial condition of Q(0) = 500 (grams of
dye). No number is given for the inflow concentration c;, but it can be
seen that ¢; = 0 (why?). At the start, the 400-liter tank still has 300
liters of spare capacity left. At the rate of 1 liter net gain of content
per minute, it can last 300 minutes until it is fully filled, so

Loverflow = 300. Therefore, we can set up the initial value problem, for
t <300 (beyond that time, the mixing process will be of a different

nature!):
' 2
Q +100+t Q:O s Q(O):SOO
2
Where p(t) = m ,and  g(©)=0.

The integrating factor is

2
dt
lLl(t) — e-[100+t _ e2ln\100+t\ — eln(100+t)2 — (100 + t)2 .

The general solution is

1 e
Q_(100+t)2-[0dt_(100+t)2 :
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Applying the initial condition O(0) = 500,

¢ cC
(100 +0)> 10000

0(0) =500 —  C=5000000.

5000000
Hence, the particular solution is o) = (100—+t)2 :

The problem asks for the concentration of dye at #,,¢,/10, = 300
minutes. Write down the formula for the solute’s concentration and
then set = 300 to obtain

O(300) _ 5000000/(100+300)*> _ 5000000 5000000 S
$(300) (100+300) 400° 64000000 64

=0.078125.
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Exercises A-1.4:

1. A tank is initially filled with 600 liters of a solution containing 100 grams
of sugar. Solution containing a concentration of 2 g/liter sugar enters the
tank at the rate 4 liters/minute and the well-stirred mixture leaves the tank at
the same rate. Find the amount of sugar in the tank at time #, and find the

limiting amount of sugar in the tank as t — oo.

2. A swimming pool holds 100 m’ of pure water. Solution containing 2
kg/m’ of chlorine enters the pool at a rate of 3 m’/min. A drain is opened at
the bottom of the pool so that the volume of solution in the pool remains
constant. Find : (i) the amount of chlorine in the pool at time ¢, (i1) the
amount of chlorine in the pool after one hour, and (ii1) find the maximum
amount of chlorine in the pool if the process is to continue indefinitely.

3. A 200-liter tank is filled to capacity with brine containing 1 g/liter of salt.
Additional brine containing 5 g/liter of salt enters the tank at the rate 2
liters/min and the well-stirred mixture leaves the tank at the rate of 4
liters/min. Find the amount of salt in the tank at any time #, until the tank is
completely drained (0 <¢<100). What is the maximum amount of salt
present in the tank during this period?

4. A 150-liter mixing vat is initially filled with 60 liters of water containing
2 g/liter of dissolved potassium chloride. Starting at # =0, 5 g/liter solution
of potassium chloride flows into the vat at a rate of 6 liters/minute. The
well-mixed solution leaves the vat at a rate of 3 liters/minute. (i) Set up an
initial value problem describing the amount of potassium chloride in the vat
at any time ¢ prior to overflow, 0 <¢<30. (i1) Solve this problem. (iii)

Find the amount and concentration of potassium chloride in the vat at the
time of overflow. (iv) Suppose the intake pipe continues to supply 6
liters/minute of solution past the time of overflow, and the excessive
solution spills over the open top of the vat. Therefore, the well-mixed
solution would leave at a rate of 6 liters/minute by means of both the output
pipe and spill-over. Set up an initial value problem describing the amount of
potassium chloride in the vat at any time ¢ from the time of overflow onward,
t>30. (v) Solve this second initial value problem. (vi) Find the limiting

concentration of potassium chloride in the vat as t — oo.
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5. A retention pond initially contains 2000 m’ of water having a pollutants
concentration of 0.5 kg/m’. Each hour, 10 m’ of water containing pollutants
of variable concentration 2 + sin(¢) kg/m’ flows into the pond. Thoroughly
mixed water flows out of the pond at the same rate. (i) Set up an initial
value problem modeling this process. (ii) Solve this problem.

Answers A-1.4:

1.
2.

3.
4.

O(t) = 1200 — 1100¢ ' "*°, 1200 grams

(i) O(f) =200 — 200e "', (ii) O(60) =200 — 200¢ °'° = 166.94 kg,
(111) Q.. approaches 200 kg, occurs as ¢ — 0.

O(t) = —0.08¢ + 61 + 200, Q0 =312.5 grams (at 1 = 37.5)

: ! 1 — —
()0'+55,,0=30,  00)=120

15¢% + 600¢ + 2400
. )=
(i) O() 20 +1

(i11)) Amount of KCI/ = 678 grams, concentration = 4.52 g/liter

(iv) Q" +% 0=30, ¢>30, 0(30) = 678

(v) O(t)=750— 72570/
(vi) 5 g/liter

.(i)Q'+L =20+ 10sin() , O(0) = 1000

200

(i) O(1) = 4000 + 119963000 0200

200
40001

40000 ( 1

sin(¢) —cos(¢t) |—
40001 \ 200 (?) ()j
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II. Air-resistance / Motion of an object in a resistive fluid medium

Freefall and Air-resistance

An object of mass m is freefalling near sea level (therefore, assume constant
gravity). Unlike in the calculus class earlier, we will include the effect of
air-resistance in our consideration. For the time being, we shall assume that
the resistive force (drag force) is proportional to the instantaneous speed of
the object in motion (e.g., when the resistance is due to friction only). Find
the velocity of the freefalling object as a function of time.

mE

Note: The textbook’s convention is that the downwards direction is positive.

Forces acting on the object undergoing freefall:

Gravitational force w=mg (always downwards)
Resistive force (drag)  |F.| = k| V| (against the direction of v)

The gravity/weight is always downward, so w is always positive. The drag
force always opposes the direction of the motion (given by the sign of
velocity function v(¢)). Therefore, F,. = —kv, which is always opposite of v
but whose magnitude equals k|v|. The proportionality constant £ is the drag
coefficient.

" Speed = the magnitude of velocity = | v |
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By Newton’s second law of motion
ma =) forces

That is ma=mv'=mg + (— kv).

Hence the required equation of motion governs the velocity of the object is

mv'=mg — kv.

It is a simple first order linear equation, with constant coefficients. Its
solution is

—k
wa:?§+cbm_

The position function of the motion can be found, as usual, by integration:

x(?) = [v(@) dt.

Limiting velocity:

y, = lim v(?)

t—0

The limiting velocity is the maximum velocity achievable by the object, in
this model, given infinite amount of time to accelerate. Take the limit of the

solution found above, we obtain v, = mg/ k.

More easily, it could also be found, without having to find v(¢) first, by
setting v' = 0 in the original motion equation and solve for v. (Since v, is the
maximum velocity, it occurs at a critical point of v(¢)! Hence, v' = 0.
Physically, this happens when the gravitational force and drag cancel each
other, leaving zero net force in the motion equation.)
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That is

0=mg—kv,
mg =kvy
: mg
Therefore, VL= tll_)Ig () = 7 .

Note that v, is independent of any initial condition.

What happens if the initial velocity, for whatever reason, is larger than v;?

In that case the right hand side of the motion equation, mg — kv, is negative.

The process modelled becomes a gradually decelerating motion whose

velocity would eventually slow down to v;, which would be the minimum
achievable velocity.
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Another (more realistic) air-resistance model

According to fluid dynamics, the drag force exerted on an object moving,
sub-sonically, in a fluid (liquid or gas) medium is actually proportional to
the square of its speed. Therefore, a more realistic equation that models the
sub-sonic motion of an object in a resistive fluid medium is

mv' = [propulsive force] — kv’, v>0

This equation is a nonlinear first order differential equation. Fortunately, it

is a separable equation. Therefore it is well within our capability to solve it.

Let p > 0 denotes the propulsive force (gravity, or the thrust of an

engine, for examples) andV # £/ p/k :

m '

mv'=p— kv’ — m\/:l

Integrate both sides (the left can be integrated by partial fractions) to
obtain the implicit solution:

JLZdv=t+C
p—kv

Even without an explicit function, the limiting velocity can nevertheless be
found easily by setting v' = 0 in the motion equation.

P
vV, = ;
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Example: A 100 kg Unmanned Aerial Vehicle (UAV) possesses propulsive
force of 10000 N and has drag coefficient k= 4. Find the velocity function
of its flight.

m =100, k=4, and take v(0) = 0 as the initial condition:

100V = 10000 — 4v7, v(0) =0

Simplify the equation, separate the variables, and integrate both sides.

(But first noting that v = = 50 are both also solutions of this equation.)

dv

r— — 2 Zdt
v'=100 - 0.04v7, 100 — 0.04v°

dv
| =]t
100 —-0.04v
The left-hand side could be simplified by partial fractions into:

1 ~1/20 s 1/20
100-0.04v* 10+02v 10—02v"

Hence,

N S P W S
209110+0.2v 10-0.2v

1 5[ 0.2dv —O.ZdV}:tJrC

2047110+02y 10-0.2v

i[ln‘10+0.2v‘—1n‘10—0.2v‘ |=t+C.
Now use the initial value v(0) = 0 to find ¢ = 0. Therefore,

10+0.2v
10-0.2v

z=l[1n\10+0.2v\—1n\10—0.2v\]:lln‘
4 4

The limiting velocity (forward) is v; = 50 m/sec, which is found by setting
v' =0 in the original equation and solve for v.
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With some algebra (and a little patient) we can also find the explicit solution
for this problem without much difficulty.

For reasons we shall see very shortly (in the section on autonomous
equations), and given the condition that v > 0, there are 3 families of
solutions, depending on the initial v-value. Since v, = 0 in this example, we
will only find the relevant solution, which exists on the interval 50 >v > 0.

From the implicit solution
10+0.2v

>
10-02v|’ 20=v=0.

tzlln‘
4

10+0.2v
10-0.2v

tzn‘

ot — 10+0.2v
10-0.2v

Since 50 > v > 0, we can drop the absolute value:
(10-0.2v)e* =10+0.2v
10e” =10=0.2¢*v+0.2v
10(e* —1)=0.2(e* +1)v
50(e” —=1)=(e* +1)v
L= 30(e" - 1)

e +1

Verify that v(0) = 0 and }Lrg v(t)=50=v;. The constant function v = 50, by

the way, is also a solution to the equation (verify this). It does not come
from the implicit general solution found earlier, but rather comes about by
merely setting v' = 0 and solve for v.
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III. Continuous compound interest with additional transactions

From calculus: Starting with a fixed principal amount 4, the balance of an
account garnering a fixed interest rate » (per year, usually) compounding at a
frequency of m (per year) is given by the formula

A(t) = Ao(l +1jm ,
m

If the interest is compounded continuously, i.e. as the frequency m — oo,
then

mt
A(f) = lim A{Hi] = A,e"

m—>©

Indeed, Ay€” is the actual solution of the differential equation A’ = 4,
subject to the initial condition 4(0) = 4. (Exercise: verify this claim.)

Note: The simple equation above, A’ = rA4, means simply that the rate of
change of the account balance is (continuously) proportional to its present
size. The same equation (where the rate of change of some quantity is
directly proportional to the current size of the said quantity) also governs
exponential growth and radio-active decay (when r is negative) behaviors.

Now, instead just let the principal sit untouched and allowed to grow
exponentially during the lifetime of the deposit (as in a bank CD), we will
consider the effect of further deposit/withdraw transactions after the initial
deposit. One caveat: since we do not have the necessary tool (the Laplace
Transform, chapter 6) to deal with discrete (one-time) events, we have to
assume that the transactions occur continuously, or at least occur regularly
and frequently enough that they can be thought of as to be occurring
continuously. While such an assumption does not model well the account
balance of a typical checking account, it does give a good approximation of
accounts with fixed installment payments such as annuities, mortgage or
student loan repayment, etc.
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Hence, assume an account starts with a principal of 4, that gains interest at
a rate of » per unit time compounded continuously. In addition, transactions
occurring continuously and netting £ amount per unit time (k> 0 means a net
deposit into the account; £ < 0 means a net withdraw from it) are applied to
the account. Then, the account balance is described by the following initial
value problem:

Y =ry*tk, ¥(0) = A,.

Comment: The above equation says that at any moment in time the
account balance y is increased by an amount proportional to its current
size times the interest rate, and the rate of change is further modified
(up or down, depending on the sign of k) by the net transactional
amount.

We have solved this equation earlier in the semester. The general solution is
C k
y . ert _
r r

Apply the initial condition we get:

y(0) = d, = et - E 2 E2K
r r

r
I’AO:C_k — C:I"Ao+k
Therefore,

y= (AO + Eje” _k_ A,e” +E(e” —1)_
r

r r
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Example (final exam, fall 2007): A college student borrows $5000 to buy a
car. The lender charges interest at an annual rate of 10%. Assume the
interest is compounded continuously and that the student makes payments
continuously at a constant annual rate k. Determine the payment rate £ that
is required to pay off the loan in 5 years.

In this problem, the yearly interest rate » = 10% = 0.1, the principal
balance is 4y = 5000, the yearly payment (think it as a withdrawal,
since we are paying down the balance) & is the unknown. The loan
term is 5 years, 1.e. it needs to be paid off completely in 5 years. That
means besides the initial condition, y(0) = 5000, we also have a
second (terminal?) condition of y(5) = 0. We set up the required
initial value problem (note that & has a minus sign in front, denoting
repayment):

V=ry—k=0.1y—k ¥(0) = 5000.
It is a first order linear equation (it is also a separable equation),
Vv —=0.1ly=—k,
where p(f) =— 0.1, and g(r) = — k.
] 1_71”” _ ,-t/10

The integrating factor is, therefore, ,U(f ) =e €

The general solution is

1
y= 7 J’_ke—t/lo dt =e'' J‘_ke—mo dt = o' (IOke_mo 4 C)

=10k + Ce"'"

Apply the initial condition to find C = 5000 — 10k. The particular
solution is
y(£) = (5000 — 10k) e""* + 10k.

Lastly, apply the pay-off condition y(5) = 0, we find that

1/2
¢ _5004 20

61/2_1 81/2_1

k =500
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Example: The present value of a lottery jackpot — A lucky college student
has won the lottery’s ten million dollars jackpot. The winning is paid out
equally over 20 years. Assume the payout is made continuously and the
annual interest rate is constant 8% over the 20-year period. How much is the
jackpot worth in today’s dollar?

The problem is to find the present value (or discounted value) of this

jackpot, which is not paid out all at once, but over a period of 20 years.

That is, if the winning was, instead, made in a lump sum and was
immediately deposited in a bank to garner interest for 20 years, how
big a sum it must be to equal in value, at the end, to the 20-year of
steady cash stream? In accounting-speak, we are trying to discount
the future cash flow in order to find its present value, or how much
this future stream of cash payments is worth now.

There are 2 ways to tackle this problem. The more obvious (to us
non-accounts) is the indirect approach. First we compute the worth of
this jackpot at the end of 20 years by solving the compound interest
equation with the yearly interest rate » = 8%, the yearly payment £ is
$10,000,000/20 = $500,000, and (the initial condition) the principal
balance 4, = 0. Set ¢ = 20 in the result to obtain the terminal value
after 20 years. Then we solve a second problem of continuous
compound interest with an unknown initial principal balance 4, no
additional transactions, and a terminal condition »(20) equal to the
amount we have found previously. Solve this second problem to find
Ay, which is how much the jackpot would be worth presently.

There is another, more direct, way to find the present value. It is how
accountants will approach this problem — from the point-of-view of
the lottery administrator. For the administrator, the problem is to set
aside enough money to be deposited in a bank account such that a
yearly payout/withdraw of k£ = —$500,000 can be made for 20 years
(and the account balance becomes exactly zero at the end of the 20-th
year). In this approach, we will use » = 8%, the yearly withdraw

k =—3%500,000, the initial condition being the unknown principal
balance A4, plus the terminal condition »(20) = 0.
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Hence, we will solve the initial value problem:
y'=ry+k=0.08y—500000, (0)=A,,
and such that (20) = 0.
In its standard form,
y'—0.08y =— 500000,

with p(f) = —0.08, and g(¢) = — 500000.

: : : —0.08dr_ _0.08¢
The integrating factor is, therefore, () = e'[ =e :

The general solution is

Jy—— [-500000 7% dt =¢**** [-500000 ™" dt

T -0.08¢
e

— &% (6250000 ¢ ™ +C)= 6250000 + C e**

Apply the initial condition to find C = Ay — 6250000. The
particular solution is, consequently,

(£) = 6250000 + (4, — 6250000) e %"

Lastly, apply the terminal condition y(20) = 0, we find that the present
value of this nominally ten million dollars jackpot is actually less than
half of its stated amount:

Ay — 6250000 = — 6250000/ ¢ —  Ay=%4,988,147

This example explains why that, when a lottery winner chooses (as most of
them do, given the option) to take the winning in a single lump sum, rather
than in periodic payments over many years, the payout amount becomes
much smaller than the quoted jackpot, even before taxes are deducted...
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Exercises A-1.5:

1. A home-buyer is applying for a 30-year mortgage at a fixed rate of 6%
per year. Suppose the home-buyer can afford to repay no more than $1000
per month. What is the maximum amount of mortgage that the home-buyer
can borrow?

2. A mortgage of $250000 has a fixed interest rate of 6% per year
compounded continuously. (i) How much would the monthly payment be if
the mortgage is to be paid off in 15 years? How much interest would have
been paid? (i) How much would the monthly payment be if the mortgage is
to be paid off in 30 years? How much interest would have been paid?

3. A reservoir initially contains 15000 fish. The fish population grows
continuously at a rate of 10% per year. Suppose each year local anglers
harvest a fixed quota of 1000 fish from the reservoir. (i) Write an initial
value problem that models the reservoir’s fish population. (ii) Solve the
initial value problem. (ii1) How many fish will there be after 10 years?

4. The process of radioactive decay is described by the equation y'=—1ry,
where r is a positive constant, called the decay constant of the radioactive
material. (1) Find an explicit formula for the material’s half-life in term of »
by first solving the equation together with the conditions y(0) = £ and y(#;.)
= (/2. (ii) Given that the decay constant of uranium-235 is » = 9.84x10™"
per year, find its half-life.

Answers A-1.5:

1. $166940.22
2. (i) Repayment = $2106.4 per month ($25276.77 per year), total interest
paid is $129151.5. (ii) Repayment = $1497.54 per month ($17970.50 per
year), total interest paid is $289115.13.
3. (i) P'—0.1P=-1000, P(0) =15000

(i) P(¢) = 5000e" ' + 10000

(ii1) P(10) = 5000e + 10000 = 23591

4. (i) 1, = 1“72 (i) thuy = 7.04%10° years.
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