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The solution of f is found by computing
the 2 eigenvectors ad associatedeigenvalues
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It lookslike th abovespiral but arrows are
reverse Thesolutionoscillates as it grows
exponentially
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The dopefield is lessuseful in the case
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To investigate stability of both c p
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This is a local linearstability Analysis
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Back to stability
1 want to examine whether EXperturbations

about remain closeto x as t es
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Wealsorequire that JEX p
i e that abeer approximate

exist

we already assumed that3 becontinuous

near x

wealsorequirethat xI be isolated
i e F a ball around If antainy
and noothercritical x I

RETURN TOPENDULUMPROBLEM

Ease fool I
da.si f b sissy

defCA XI so il V d two

I trot w s O

ki z I I I tiWd
Sy E

t
c y e

iwdt c y e
i wdt



if 8 0 hi ziti w

flesdutia 8 is oscillatory

then 8 is a CENTER stable
x8 2 y component

i
I s s

I i j i l i

f i t u u
SX X unpret

r
n

These are curves of constant energyPerturbations

oscillateforever

if 8 0 the solitonhas afine

dependence e Etfsaggy
where wd ifwe

Hedampedfrequency

So solutions decay as toes butalso

oscillate if we MY STABLE SPIRAL

or simpledecay if we B
2

STABLENODE

Thereare 2 cases 4W P and 4are82



if 82 45 is 2
Sy cyeitl.cz w ytJeit
since Iso tle SI decoyto 0 as toes

Improperstable

i i no

G W B A

if 4m82
If i
I y l D e r

fA Is VZ

yHI isr r
I

81 Civ et't te v etat

di z f IFS where Sal

hi za O

case if tf

fSI ly sy
issIdetlArD O rf8 i w so



hips I's THAT
oneofthe eigenvectors will has exponential growth

the otherhas exponentialdecay

A SADDLE UNSTABLE

sy.e.ttzfc.yetFtTwTttg.yetrF4wItJ

clearly as toes Hey contribution
becomessmallangered toy component

So for toes

SIze
HkgyetFEEtsft.li

1
c vse

where 0

Lm SX diverges unlessHedipenemics

toes areexactlyalignedwith
i i i
l K s 8 r il B v g iz

SADDLE
9 j r i
v r i't i e UNSTABLE
g i ng d de

v go y i e
r i g n

s r i i



THEPHASEPLANE
These are plots of theposition momentum

or velocity variables of the dynamics
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Ruhi There are serious6mitakes to locallinear
stability In what follows we consider

one such situation We focus on it
because ra it's easy Ib common possibly

easily identified G Here are a fewtheoretical
aesthetes that allow us to discernwhether

they are relevant to our analysis of a
systemfor which little is known
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PERIODIC SOLUTIONS LIMIT CYCLES

keenstability analysis has rtler United

dynamics in the things grow decay exponentially
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It is asymptotically stable sua es t es

all orbits tend to r I
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THREETHEOREMSFOR 2D PROBLEMS
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partials in some domain G y ED of

tee x y plane A
closedtrajectoryof

mustnecessarily enclose at least 1 critical
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there's no closed trajectory of lying
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