STABILITY PROBLEMS WITH PARAMETERS: BIFURCATIONS Taken hustly from J.D. Logan's Book. Kunk: We'll foces on 1D Problems Consider $(\mathbf{A}) \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}\mathbf{t}} = f(\mathbf{u},\mathbf{u}) \quad t > 0$ je is a real peremeter If (*) her a C. p. (critical poort) $S(h^{\mathbf{x}},h) = 0$ Hen ut : ut (n), He c.p. is a 1-permetter family on p.

For a gren fixed le, a solution ut is stable if, for every u(t) Solution of (At) starting sublicity close to un at t=0, remains close to 1 for all t>0: So [u(f)-u*]<E 6>0 Whenever 14(0) - 4x 1 < 8 IF, in addition, lim [ult] - 4*] = 0 6~200 flen u* is asymptotically stable. (what anditres are required on (#) to leed to stable asymptotically stable solutions?

Let
$$u(t) = h^* + \delta u$$
 $h^* is c.p.$
replace $into(st)$
 $\frac{d}{dt} \delta u = \int (u^*, y_0) + \partial f(u^*, y_0) \delta u + G(\delta u^2)$
 $\frac{d \delta u}{dt} = \int (u^*, y_0) + \partial f(u^*, y_0) \delta u + G(\delta u^2)$
 $if | \delta u| <<1$
 $\frac{d \delta u}{dt} \approx \frac{\partial f(u^*, y_0)}{\delta u} \delta u$
 $\delta u \approx \frac{\partial f(u^*, y_0)}{\delta u} \delta u$
So $\delta u = Ce^{dt}$
 $u \delta u = d = \frac{\partial f(u^*, y_0)}{\delta u}$
 $if d < 0 \Rightarrow \delta u \Rightarrow 0 \text{ est} \Rightarrow \infty$
 $u > 0 \Rightarrow \delta u \Rightarrow 0 \text{ est} \Rightarrow \infty$
 $u > 0 \Rightarrow \delta u \Rightarrow 0 \text{ est} \Rightarrow \infty$
 $u > 0 \Rightarrow \delta u \Rightarrow 0 \text{ est} \Rightarrow \infty$
 $u > 0 \Rightarrow \delta u \Rightarrow 0 \text{ est} \Rightarrow \infty$
 $u > 0 \Rightarrow \delta u \Rightarrow 0 \text{ est} \Rightarrow \infty$
 $u > 0 \Rightarrow \delta u \Rightarrow 0 \text{ est} \Rightarrow \infty$
 $u > 0 \Rightarrow \delta u \Rightarrow 0 \text{ est} \Rightarrow \infty$
 $u > 0 \Rightarrow \delta u \Rightarrow 0 \text{ est} \Rightarrow \infty$
 $u > 0 \Rightarrow \delta u \Rightarrow 0 \text{ est} \Rightarrow \infty$
 $u > 0 \Rightarrow \delta u \Rightarrow 0 \text{ est} \Rightarrow \infty$
 $u > 0 \Rightarrow \delta u \Rightarrow 0 \text{ est} \Rightarrow \infty$
 $u = 0 \Rightarrow 0 \text{ est} \Rightarrow \infty$

lemma If u(4) one v(4) are cultures unnegative
functions on 05t5T and K is numbereditive cashed
then
(4) u(4)
$$\leq K_{+} \int_{v}^{t} v(s)u(s) ds$$
 05t5T
implies
u(4) $\leq K_{e} \int_{v}^{t} v(s) ds$
Pf: i(K>0 \Rightarrow (4) sage that
 $\frac{u(1)v(4)}{K_{+} \int_{v}^{t} v(s)u(s) ds}$
Integrating b.s.
 $lm[K_{+} \int_{v}^{t} v(s)u(s) ds] - lmK \leq \int_{v}^{t} v(s) ds$
 \therefore u(4) $\leq K_{+} \int_{v}^{t} v(s)u(s) ds \leq Kexp[\int_{v}^{t} v(s) ds]_{*}$
If $K = 0 \Rightarrow u(4)$ is idualically zero.

Thus: Let
$$u^{*}$$
 be a c.p. of (42). bssume
 $\int (u^{*}+\delta u_{2}\mu) = \frac{2f}{\delta u}(u^{*},\mu)\delta u + R(u^{*},\delta u)$
where $R(u^{*},\delta u) = G(\delta u^{2})$. That is,
 $[R(u^{*},\delta u)] \leq [K[\delta u]^{2}, \delta v + \delta u] <<1, K>R$
Then u^{*} is asymptotically stable if
 $d < O$ and unstable if $a > 0$, where
 $u^{*} = \frac{2f}{\delta u} |_{u > u^{*},\mu}$
 $Pf: \frac{d}{dt} \delta u = \frac{2f}{\delta u}(u^{*},\mu) \delta u + R(u^{*},\delta u)$ (4)
Hubliply b.s. of (4) by e^{-at} and integrals
 $nt:$
 $\delta u(t) - \delta u(b)e^{at} = \int R(u^{*},\delta u(b))e^{a(t+s)}ds$
 $\therefore | \delta u(t) - \delta ue^{at}| \leq \int [R(u^{*},\delta u(b))]e^{a(t+s)}ds$

 $= |\delta_u(t) - \delta_u(t)e^{at}| \leq K \int_{1}^{T} |\delta_u(s)|^2 e^{a(t-s)} ds$ $e^{-dt}|Su(t)| \leq |Su(t)| + k \int_{0}^{t} |Su(t)|^{2} e^{-ds} ds.$. . | Sult] | & | Sulo]] exp[et+K[+ Suls] ds] (\$)let 220 ad assure (3) Idul : 7 0:65T when gischwer sollet \$720, T>0. Them (\$) mplies (¥) [Su(4)] 5 [Subole (2+7)) + GSEST . if () holds then () follows for T>0. Brt (3) holds if 1646) is sufficiently shall. The above shows that for 200 & Sulos Sulfswartly suell, 1, "; 3 asymptotically stable.

The equilibrium is reached when the acceleration is zero. In $R\omega^2 \cos\theta \sin\theta = mg \sin\theta$ or $R\omega^2 m \sin\theta (\cos\theta - \frac{5}{R\omega^2}) = 0$

Hen Here's a mique curve u = u (m) passay through Po P_0 is Sincular if $f(P_0) = 0$ and $f_{\mu}(P_{0}) = f_{\mu}(P_{0}) = 0$ ad du is indeterminate at Po. Sipre that Sun, fuge, figer do not all vanish simultaneously ad fis adminus as are its first, seen it, thank derivatives. Then f(P) = f(Po) + fu (Po) Au + fu (Po) Au + 2 [fun (Po) Due + 2 fun (Po) Su On+ Jun An] $+ G(\Delta u^2) + G(\Delta \mu^2)$ Whe Dusu-us, Dusp-flo. It Po is snguler them $f(P_0) = f(P_0) + f_u(P_0) \Delta u$ + Sp (P.) Sp + { [fun du + 2 fup du dp + fap dr] +

6(su³) + 6(syn²)
Take Suro Spro
and
from Su² + 2 by Sus An + Jon Su² | Po = 0
gives a relationship between Su, Spi
let D = f² (Po) - from (Po) Jup (Po)
the discriminant
. du = - from
$$\pm \sqrt{\frac{D}{J_{un}}}$$

du = - from $\pm \sqrt{\frac{D}{J_{un}}}$
Gras shopes of the tangents to ble bihreater
corres near Po.
If D>0 => Po is a double point
with defined tangents

If
$$D < 0 \Rightarrow P_0$$
 is isolated point
with no real targets
IF $D = 0 \Rightarrow bt$ least 2 curves passing
through P_0 have consider tarjeeds
 $ex) f(u, \mu) = (\mu^2 + u^2)^2 - 2(\mu^2 - u^2) = 0$
He lemmiscate $\int_{1}^{1} \int_{1}^{1} \int_{1$

 $e_{x}) f(u,\mu) = u^{3} - \mu^{2} = 0 \text{ hes } (0,0) \text{ cs a}$ snycher poart with D=0. The 2 branches have consident tayents. He $u^{3} = \mu^{2}$

ex)
$$f(u, \mu) : u^{2} + \mu^{2} : 0$$
 (9,0) is an
isolated point with $D < 0$.

(enne: left Po be a double point of $f(u, \mu) : 0$
the either
(i) $f_{\mu,\mu}(P_{0}) \neq 0$ and the 2 tangents
are given by
 $\frac{d\mu}{du} := -\frac{du\mu}{d\mu} \neq \int \frac{D}{f_{\mu}^{2}}$
or
(ii) $f_{\mu,\mu}(P_{0}) : 0$ and the 2 tangents are given
by
 $\frac{d\mu}{d\mu} : 0$ and the 2 tangents are given
by
 $\frac{d\mu}{d\mu} : 0$ and $\frac{d\mu}{du} : -\frac{d\mu}{2f_{\mu\mu}}$ at $P:P_{0}$
.

the are 2 browles with dished tangents
pess through a double point Po and no nume
the 2 browches press through a double point.

The following theorem states that if Po
is a regular point the stability must
change at a terminy point.
Them: let Po be a regular point at flaghted.
Then equilibrit solutions on one side
are strable and the other instable:
Since
$$\int_{u} = -\frac{d\mu}{du} \int_{u} f_{u}$$
, the
 $d(u) = -\frac{d\mu}{du} \int_{u} \int_{u = u^{2}}$
EXCHANCE OF STABILITY
2 branches woos dubble points. The question
is whether the stability changes. But stability
wight also change at regular points of $f(u, \mu) = 0$.
If $\frac{\partial f}{\partial \mu} (F_{0}) \neq 0$ and $\frac{d\mu}{du}$ changes sign
at Po, then Fo is a regular terminy point

On the other side of a timy punt the epenilibrin is stable & on He other, instable. -ex) f(u, u) = (1+u2 - m)/ m2-25 u2) hes c. p. Ma=1+42, Ma=54, Ma=-54 All points on the branches on regular except at b, B, G, E, F. The point Disregular, since du chages sign at D. The posts A, B, GE, F cre double because they are singular growth out which the are 2 district tayents.

EXCHANGE OF STABILITY AT DOUBLE POINT

$$\int \mu n \neq 0 \quad ct \quad Po \quad The \quad D=1.$$
By lemme 2 district targets
are given by $\frac{d\mu}{d\mu} = 0 \quad \frac{d\mu}{d\mu} = -\frac{f_{\mu}n}{2f_{\mu}n} = 0$

$$\frac{d^{2}(\mu) \approx sgn(1) \forall T(\mu, \mu_{0}) = (\mu, \mu_{0})}{d^{2}(\mu) \approx sgn(1)} \quad \frac{d(\mu^{2} + \mu_{0}) \forall T(\mu, 0) = -2u^{2}}{du}$$
Since $\frac{d^{2}(\mu) < 0}{du} \quad for \quad \mu > \mu_{0} \quad is stable$

$$\frac{d^{2}(\mu) > 0}{dt} \quad for \quad \mu > \mu_{0} \quad u_{1} = 0.3$$

$$\frac{d^{2}(\mu) > 0}{dt} \quad for \quad \mu > \mu_{0} \quad u_{1} = 0.3$$