We continue here with the discussion on
stability of a (pt1) stage schene
(#)
$$y_{n+1} = y_n + \sum_{j=0}^{p} a_j y_{n-j} + h \sum_{j=1}^{p} b_j f(x_{n-j}, y_{n-j})$$

let $P(r) \equiv r P^{+1} - \sum_{j=0}^{p} a_j r P^{-j}$
Ruck: set b.= 0, $p(r)$ is built upon the solution
 $y_n = rP$ of the homogeneous difference equation
 $p(r) = 0$ since $\sum_{j=0}^{p} a_j = 1$
Set $P(r) = 0$ (#*)
and compate the roots of (#*):
 r_0, r_1, \dots, r_p .

We set
$$G_{0} = 1$$
 (there must be a root = 1).
We say that (\ddagger) satisfies the root
and the if
 $Ir_{j}I \leq 1$ $j=0,1,...,p$
if any of the $Ir_{j}I = 1$ it must be a simple
root.
Then S'pse (‡) is consistent. Then (‡) is
stable iff the root condition is satisfied.
Pf (not shown).
Pso) We saw previously that
 $Y_{n+1} = 3y_n - 2y_{n-1} + \frac{1}{2} [f(x_n, y_n) - 3f(x_n, y_n)]$
is unstable.

This should be vollected in the Pour anditure nut being satisfied. $(\text{compute } p(r) = r^2 - 3r + 2 = 0)$ with roots ro=1 and r,=2 ... root anditue uxpleted How does the analysis proceed for the system of equations? $IVP \left\{ Y' = f(x, Y) \\ Y(0) = Y_0 \end{array} \right\}$ $Y \in \mathbb{C}^n \quad Y_0 \in \mathbb{C}^n$ We proceed (crudely) by livearizing. let Y(x) = Y(x) + SY(x), assume that 1 8711 <<1 Hen $\frac{d}{dx}(\tilde{Y}(x) + SY(x)) = f(x, \tilde{Y}(x) + \delta Y(x))$

$$\begin{split} \widehat{Y}(0) + \delta \widehat{Y}(0) &= \widehat{Y}_0 + \varepsilon \\ & \text{Lewell ||e||} \\ \text{added perturbation to } \widehat{Y}_0 \\ \text{If } \widehat{Y}(x) \text{ solves IVP} \\ & \text{Hen} \\ \left(\begin{array}{c} \frac{d}{d} \otimes \widehat{Y} &= \frac{\partial f}{\partial \widehat{Y}} \Big|_{\widehat{Y} = \widehat{Y}} \\ & \delta \widehat{Y}(0) &= \varepsilon \\ \text{is an equation for } \widehat{\nabla}\widehat{Y}(x) \text{ dynamics.} \\ \frac{\partial f}{\partial \widehat{Y}} \Big|_{\widehat{Y} = \widehat{Y}} &= \frac{\partial f_i}{\partial \widehat{Y}_i} \Big|_{\widehat{Y} = \widehat{Y}} \\ & \delta \widehat{Y}(0) &= \varepsilon \\ \text{(for } 1 \le i, j \le n) \\ & \left(\begin{array}{c} \frac{d}{d} \otimes \widehat{Y} &= A \otimes \widehat{X} \\ & \delta \widehat{Y} &= \widehat{X} \\ & \delta \widehat{Y} \\ & \delta \widehat{Y} &= \widehat{X} \\ & \delta \widehat{Y} &= \widehat{X} \\ & \delta \widehat{Y} \\$$

In what follows, let's work with
autonomous ODE

$$\frac{dY}{dx} = f(Y)$$

 $\frac{dY}{dx} = f(Y)$
to make what follows more straightformed
Then the resulting perturbed system
 $W \equiv SY(x)$ is, for $x \equiv O$
 $\int \frac{dW}{dx} = AW$, $A \in \mathbb{C}^{mxn}$
 $W \in \mathbb{C}^{n}$
 $W(0) = W 0$

Ruch: A quick aside, to reward you have

$$\frac{dW}{dx} = AW$$
, $W(0) = W_0$, $\chi \ge 0$.

let's assure that A has a district e'values {>i};=, and e'vectors ? V: ?;=, (other cases can be dealt with, but flut's amplication that obscures the presentation). Guess that W= Cq 15 a solution to w'= Aw (try if). Here eAx is a matrix exponential. The evalues & evectors of A are found by solurizy $(A - I_n \rightarrow i) V_i = O$ lsisn where riel since W= e^{Ax} e^{AInx} a^{Inx} g

Hen
$$W = e^{(\Delta - \lambda t_n)x} e^{\lambda t_n x} q$$

or $W = e^{\lambda t_n x} q$.
Ut $Wo = \sum_{i=1}^{n} C_i V_i$ be an expension
of V_0 es a lacer unbinettre of excedens.
Hen $W(0) = Wo = \sum_{i=1}^{n} C_i V_i$
is $W(x) = \sum_{i=1}^{n} C_i V_i e^{\lambda t_i x}$
So for $\frac{d_i W}{dx} = AW = V^{-1} M W$
 $W(0) = Wb$
All we need to do is to study
 $\frac{dV}{dx} = N V = N = \begin{bmatrix} n & n \\ 0 & m \end{bmatrix}$
 $\lambda_i \in \mathbb{C}$

V(0)=In (nmidelity We'll do so by focusag on $(\#) \begin{cases} dY = \lambda Y \\ Jx = 1 \end{cases}$ 220 let's get back to (7). The multi-stage schene will approximete solutions to (\$). We use (\$) as a proxy for how the more conflex IVP schere responds to perfirbations. Kurk: The perturbetions might be put in by hand", but on a finite precision machine flese perturbations can originate in He frite precision of

the quantities.
Using
$$(\ddagger)$$
 on (\oiint) :
 (\oiint) (\Uparrow) (\oiint) (\Uparrow) (\oiint) (\oiint) (\circlearrowright) (\circlearrowright)

 $S_0 \quad \rho(r) - 2G(r) = 0 \quad (*)$ (et r, (z), r, (z) ... rp(z) be the roots of cr) and they depend antinuously on Z. In particular let z=>0 then ro(o), r, (o)..., rp(o) ore the roots of p(r) = 0with ro(0)=]. Assuning the roots r: (2) ore district, the $y_n = \sum_{j=0}^{r} y_j [r_j(z)]^n \quad n \ge 0$ is the solution to (F), Si are constants.

Rule: when hi are not distant we use the nethod
of reduction of order" (ODES) to find
the other solutions for the root(s) with
hultiplicity > 1.
For exangle, if r; (z) is repeated 2>1
times, the solutions are of the
form

$$[r_{j}(\overline{r})]$$
, $n[r_{j}(\overline{r})]$, $n^{z}[r_{j}(\overline{r})]^{n}$
 $\dots n^{\nu-1}[r_{j}(\overline{r})]^{n}$.
Rule: Recall that the root and two required
 $0 \le j \le p : |r_{j}| \le 1$, but if any
 r_{i} was had multiplicity > 1
then the root and two is
 $|r_{i}| < 1$ strictly,
Norw you see why. These perts of the

salutren yn can grow algebraically x n, n²,... n^{v-1}.