APPROXIMATING EIGENVALUES/VECTORS NUMERICALLY:

The fundamental difficulty with computing eigenelie probleme on a finite precision nuchine:

Finding roots p(r) = 0, Ale characteristic polynomial.

For m35 finding roots cannot be due analytically. => All eigenbache Solvers are ITERATIVE

The Rayleigh Quotient: Suppose A is
real symmetric
$$A = A^{T} \in \mathbb{R}^{n \times n}$$

 $\Gamma(x) = \frac{\chi^{T} A \chi}{\chi^{T} \chi}$
Note: if $\lambda \chi = \lambda \chi$
 $\Gamma(\chi) = \frac{\chi^{T} A \chi}{\chi^{T} \chi} = \lambda$

$$\frac{\partial Y}{\partial x_{j}} = (\nabla r)_{j} = \frac{\partial^{2}}{\partial x_{j}} \left(\frac{\partial x \Delta x}{\partial x_{j}} - \frac{(\lambda^{T} \Delta x)}{(\lambda^{T} \chi)^{2}} - \frac{(\lambda^{T} \Delta x)}{(\chi^{T} \chi)^{2}} - \frac{2}{\chi^{T} \chi} \left(\frac{\partial x}{\partial x} - r \cos x \right) \right]$$

$$= \frac{2(\Delta t)_{j}}{\chi^{T} \chi} - \frac{(\chi^{T} \Delta x)}{(\chi^{T} \chi)^{2}} = \frac{2}{\chi^{T} \chi} \left(\frac{\partial x}{\partial x} - r \cos x \right)$$

$$If set \nabla r = 0$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if \chi = 0 \quad r(x) \text{ is evolution}$$

$$= if$$

Algorithma (finds the lorgest eigendue):
Start with
$$\chi^{\circ}$$
 initial guess
(A) $\lambda_{k+1}^{k+1} = \langle A_{\chi}k_{,\chi}k_{,\chi} \rangle$ $k_{\chi}g_{1...}$
Where $\langle u, v \rangle \equiv u^{T}v$
Note: if $\chi^{\circ} \equiv \sum_{j=1}^{m} \alpha_{j} q_{j}$
 q_{j} are evectors of A, then
 $\chi k \equiv A^{k}\chi^{\circ}$ \therefore substituting in (A):
 $\lambda_{k+1}^{k+1} \equiv \langle A^{k+1}\chi_{,\chi} A^{k}\chi_{,\chi} \rangle$
 $\equiv \langle A^{k}\chi_{,\chi} A^{k}\chi_{,\chi} \rangle$
 $\equiv \langle A^{k}\chi_{,\chi} A^{k}\chi_{,\chi} \rangle$
 $\equiv \sum_{j=1}^{m} |\alpha_{j}|^{2} \lambda_{j}^{2k}$

$$\begin{split} & S_{2} \\ & \lambda_{k+1} \\ & \lambda_{j} \\ & \lambda_{j} \\ & \lambda_{j} \\ & \sum_{i=1}^{m} |\omega_{i}|^{2} \left(\begin{array}{c} \lambda_{i} \\ \lambda_{j} \\ \lambda_{j} \end{array} \right)^{2k+1} \\ & \lambda_{j} \\$$
 $\lambda^{(k+1)} = \lambda_1 \left[1 + \left(\frac{\lambda_2}{\lambda_1} \right)^{2k} \right]$ Gives the largest evalue. Also gues tle largest evector (see later) The Power Hollind Used to estimate fle lorgest eigenvalue & its corresponding eigenvertor. Regense $|\lambda_1| > |\lambda_2| > |\lambda_3| = |\lambda_m|$ To introduce the method we'll presure that A is non-defective.