LECTURE 24 ELGENVALUE PROBLEMS
Lef & E C^m is an engenector
if
$$\Delta x = \Im x$$
 (\ni)
 \Im is evelue. $\Im \in \mathbb{C}$
There are many specialized numerical nethods
For Andrig evectors & orches. They are allo
iterative:
Arnoldi
Lanczos
QR
Power Method, Rey leigh Method
Monte Carlo

SOME BACKGROUND:

X ave to be X found. Wate (3) M= A-XI $M \approx = 0$ if you know λ, find x in the null (M). To find λ: Require det (M)=0 for x = 0 in Mx=0 det (M) = p(5) = O The Characteristic Equation tle sis don't all have to be unique. Soure other facts: det $(A) = \frac{m}{1}\lambda_j$ $t_r(A) = \sum_{j=1}^{m}\lambda_j$ lef: Defective Matrix: if A e (man is defective, A has less than m (L1) ligenvectors. In fact A is non-defective iff $A = \chi \wedge \chi^{-1}$ X has m cols w/ eigenfunctions of A

and $\Lambda = \begin{bmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \ddots \\ \ddots & \lambda_m \end{bmatrix}$ def: Eigenspace EX is spanned by all of the eigenvectors associated with a porticular N: $\mathcal{E}_{\lambda} \subseteq \mathbb{C}^{m}$ The eigenspace is invariant: $A E_{\lambda} \subseteq E_{\lambda}$ dim (E) is the total number of evectors j.e. dim (null (A-AI)), for some &. The geometric nulliplicity of T is dim (Ex) The algebraic multiplicity of I is the multiplicity of the porticular root I in the Characteristic polynomial $p(\lambda) = O$. THREE SPECIAL SQUARE MATRICES: Unitary Matrix : A-1 = A*

Hernitian Matrix: A=A* Normal Matrix AD* = A* À Hermitian Matrices have meigenalues, they are recl, and m eigenvectors: if A is Hermitian $A = Q \wedge Q^*$ (His is also on SVD) i.e. LQ=QA Q L, with normalized evectors of A There's a family of matrices which melude Hermitian, circulant, unitary matrices that are said to be UNITARILY DIAGONALIZABLE (UD): that is BISUDIF B=QAQ*

An important class of UD matrices are Normal matrices.

[]

EIGENVALUE REVEALING PACTORIZATIONS These are factorizations that make the eigenvalues explicit: * Diagonalization: A=XXX-, applicable iff A is non-defective. ¥ UD 👔 $A = Q \wedge Q^{n}$ iff A is normal * SCHUR FACTORIZATION: A=QTQ* always exists! 7 is a triangular matrix with evalues of A along its diagonal. THE SCHUR FACTORIZATION Take AE Chin want to find $A = QTQ^*$ Tisasabove & Q L,

It's a reconnect factorization. Let's illustrack
the first step:
Suppose we know
$$(u, \lambda)$$
, the eigenpair-tor
singlicity, nomelize $u: i.e. ||u|| = 1$
Obviously, $Au = \lambda u$.
FIRST SUBEEP:
Construct a matrix $K \in \mathbb{C}^{m \times (m-1)}$ with
orthononuel columns s.t. $K^*u = 0$
Let
 $Q \neq [uK] = \begin{bmatrix} u \\ u \\ K \end{bmatrix} \begin{bmatrix} m \\ m \\ m \end{bmatrix}$
 Q is unitary. Compute
 $Q^*AQ = [uK]^*A[uK]$
 $= \begin{bmatrix} u^*Au \\ u^*AK \\ K^*Ak \end{bmatrix} = \begin{bmatrix} (1,1) \\ (1,2) \\ (1,1) \\ (1,2) \end{bmatrix}$

The (1,1) entry
$$u \times A u = u^{*} \wedge u = \int ||u||^{2} \wedge U = \int ||u|||^{2} \wedge U = \int ||u||^{2} \wedge U = \int ||u|||^{2} \wedge U = \int ||u|||||U||||||||||^{2} \wedge U = \int ||u|||^{2}$$

and so on till we get

$$A = Q \begin{bmatrix} \lambda & \lambda_{2} \\ \lambda_{2} & \lambda_{3} \end{bmatrix} Q^{*} = QTQ^{*}$$
by a recurrent process.
Bit let's examine further

$$A = [uk] \begin{bmatrix} \lambda & t_{1}^{*} \\ 0 & A_{1} \end{bmatrix} [uk]^{*}$$

$$kt A_{1} = QiT_{1}Q_{1}^{*} \in C^{(m-1)x(m-1)}$$

$$A = [uk] \begin{bmatrix} \lambda & t_{1}^{*} \\ 0 & Q_{1}T_{1}Q_{1}^{*} \end{bmatrix} [uk]^{*}$$
which can be written as

$$A = [uk] \begin{bmatrix} 1 & 0 \\ 0 & Q_{1} \end{bmatrix} \begin{bmatrix} \lambda & t_{1}^{*}Q_{1} \end{bmatrix} [uk]^{*}$$

$$A = [uk] \begin{bmatrix} 1 & 0 \\ 0 & Q_{1} \end{bmatrix} \begin{bmatrix} \lambda & t_{1}^{*}Q_{1} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & Q_{1}^{*} \end{bmatrix} \begin{bmatrix} u^{*} \\ k^{*} \end{bmatrix}$$

$$A = [ukQ_{1}] \begin{bmatrix} \lambda & t_{1}Q_{1} \end{bmatrix} [ukQ_{1}^{*}]$$

$$A = [ukQ_{1}] \begin{bmatrix} \lambda & t_{1}Q_{1} \end{bmatrix} [ukQ_{1}^{*}]$$

Rule: A Schur factorization will reveal
unitary or diagonal factorizations (the
latter if A is rean-defective)
Rule: The recurrent process does not overwrite"
previously found evalues.
And: if
$$A = QTQ^*$$
 in
 $(A - \lambda I)Q = 0$ we get
 $(QTQ^* - \lambda I)Q$
 $= QT - \lambda IQ = (T - \lambda I)Q = 0$
hence, A and Thrust have the same eigenvalues.