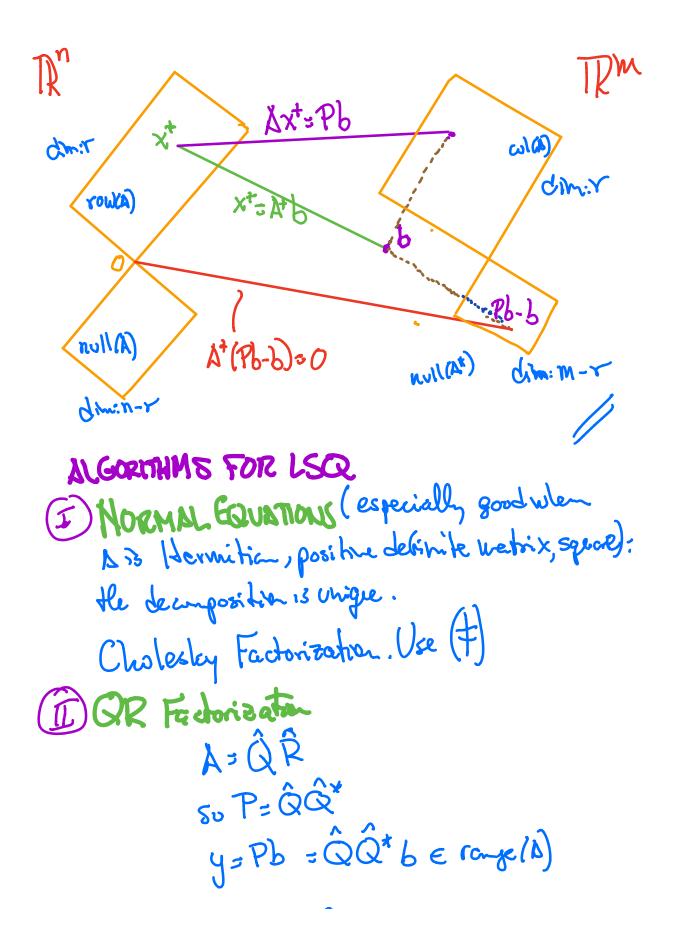
Fitting un points with an N-1 degree polynomicl is nu niertcall junsteble, for he lorge. Instead, Use LSQ and a low order polynomial: Start with 27:3:=, 34:3:=, but use materd a low-order golynsmiel $P(x) = G + G(x + \cdots C_{n-1}x^{n-1})$ h<< m. Let $r_i = y_i - p(x_i)$, GAC-YOT AETRMXM As before $A^*r = 0$

:. Ay= 0 => A is rank deficient. Conversely if by= C and y= O the y*BAY=O implies that N*A is full renk. The Pseudo Inverse of $\Lambda \equiv A^+$ At antains wherever pert of Asis invertible, i.e. the now space of A): It knows out the Null (1 *), by sending it to Ø, and knocks out null(A) by droosing Xt = Xr in the row space of A: Hence, For Ax=b becm RECENXN $(f) \begin{bmatrix} x^{+} = A^{+}b & A^{+}e \ C^{n}x^{m} \\ A^{+} = (A^{*}A)^{-1}A^{+} \end{bmatrix}$



T SUD:
$$\lambda = \hat{U} \hat{\Sigma} V^{x}$$

 $y = Pb = \hat{U} \hat{U}^{x} \hat{J}$
 t point Line
 $\hat{U} \hat{\Sigma} V^{x} \hat{X} = \hat{U} \hat{U}^{x} \hat{b}$
 $=) \hat{\Sigma} V^{x} \hat{X} = \hat{U}^{x} \hat{b}$
 $wulltight both sides by $V \hat{\Sigma}^{-1}$
 $\hat{X} = \hat{A}^{+} \hat{b}$
 $\hat{A}^{+} = \hat{V} \hat{\Sigma}^{-1} \hat{U}^{x}$
ALGORITHM: (ast $O(mn^{2}, n^{3})$
O SVD $A = \hat{U} \hat{\Sigma} V^{x}$
E (ungette $U^{x} \hat{b}$.
3 $\hat{\Sigma} w = U^{x} \hat{b}$ solve for W .
4 $\hat{X} = Vw$ to get \hat{X} .
 $Mast stable at the 3 algorithes
(especially vertil when rank deficient)$$

PART II GNDITIONING

CONDITIONING: medlematical problem STDBILITY: algorithe used to approximate methematical problem

Model : input /output problem $\chi \in \mathbb{C}^m$ y = f(x)Linput Loutput

Moke a snell change 1/-> X+ 5x of the mpit ISX <<) want to estimate how lorge a fluctuetie we get in the output? y-> y+ sy? It depends on f(x) as well as on X: f(x)

$$y_{1}\xi_{y} = \frac{f(x)}{x \pi + 5x}$$
For $f(x)$ endimuous Jacobien Matrix
 $y_{1} S_{y} = f(x + 5x) \approx f(x) + \frac{\partial f}{\partial x} \int S_{x}$
 $+ \frac{1}{2} \int S_{x} \int \frac{\partial f}{\partial x^{2}} \int S_{x} \Big|_{x} + \cdots$
 $+ \frac{1}{2} \int S_{x} \int \frac{\partial f}{\partial x^{2}} \int S_{x} \Big|_{x} + \cdots$
Hessian
Take $||S_{x}|| < 1$ so that
 $y_{1} S_{y} \approx f(x) + J(x) \delta x$
 $J(x)$ is the Jacobian
 e_{x} $y_{2} = \begin{pmatrix} \cos x_{1} \\ x_{1} e^{x_{2}} \\ y_{3} \end{pmatrix} = f(x) = \begin{pmatrix} f_{1} \\ f_{2} \\ f_{3} \end{pmatrix}$

-

THE RELATIVE RATES OF INPUT TO OUTPUT:

$$J(x) = \begin{pmatrix} 2f_1 & 2f_1 & 2f_1 \\ 3x_1 & 3x_2 & 3x_3 \\ 2f_2 & 2f_2 & 2f_2 \\ 3x_3 & 2f_3 & 2f_3 \\ 2f_3 2f_3$$

