

We've familier with the problem Where A and b are given, us then seek a solution x. We know x can be found if DESpan (columns of A). let's think of @ as b=Ax which says that b is a linear combination of the columns of A, & represents the coefficients or coordinates. rows jols A is man matrix AE (man be C xe C A = (a, az ... an) the a; are a komusof A

(†)
$$b = \chi_1 a_1 + \chi_2 a_2 \dots + \chi_n a_n$$

Inclues $b = beer combination of column
vectors.
In index notation $b = \sum_{i=1}^{n} a_{ij} \chi_i \frac{i d_i d_i}{d_i d_i} + \chi_n a_{ij} \frac{i d_i}{d_i} \frac{i d_i}{d_i}$$

A vector space must have a "zero" element

$$\emptyset$$
. It must have an "additive inverse
 $V+W = \emptyset$ if $W = -V \in V//$

hineer Combination b = d1V1 + d2V2+...+dnVn is c lizer continuation, &i & C. & & Espen & Vi } is, A Transformation: T: V ~ W is a transformation from vector space V to W. IPT is a linear transformation T(U+V) = T(U) + T(V) T(aV) = o(TV) Yu & V & V & ad & C I' A lizer transformation can be carried out via

a matrix.

T:
$$x \rightarrow x^2$$
 $y=x^2=T(x)$
 $T(dx) = d^2 x^2$
 $T(gx) = \beta^2 x^2$
is $T(dx+\beta x) = T(dx) + T(\beta x)$?
if so, we would have a larger superposition
 $T(dx+\beta x) = d^2 x^2 + 2d\beta x^2 + \beta^2 x^2$
which is that $T(ax) + T(\beta x) = d^2 x^2 + \beta^2 x^2$
example of a larger transformation:
lef $B_3 = \frac{1}{2}d_0 x^2 + d_1 x^2 + d_2 x^3$ of eight
ich set of all phynomials of degree at most 3.
Were superposition $\frac{2}{2}a_1(x^1 + \frac{2}{2}\beta)x^1 = \frac{2}{2}(d_1^2+\beta_1)x^1$
Also, tabe that for $r \in TR$
 $r \sum_{i=1}^{2} d_i x^i = \frac{2}{2} rd_i x^i$
There's a sense in which we think of B_3 as
being the "same" as TR^4 : we say B_3 is
isomorphic to TR^4 (some vedor properties)
lef $d_0 e_0 + d_1e_1 + d_2e_2 + d_3e_3 = W$

Where
$$e_0 = x^\circ$$
, $e_1 = x^1$, $e_2 = x^2$, $e_3 = x^3$
 $50 \quad [-2x+Ox^2+1x^3]$
 $+ \quad 2+3x+7x^2+4x^3$
 $\overline{3+1x+7x^2+5x^3}$
 $isomorphic + 2$
 $W = \begin{pmatrix} 3\\1\\7\\5 \end{pmatrix} = \begin{pmatrix} 1\\-2\\0\\1 \end{pmatrix} + \begin{pmatrix} 2\\3\\7\\4 \end{pmatrix}$
Vanderhuonde Hetrix is an manimetrix

The Vandermonde Metrix is an man matrix
of constant entries.

$$A = \begin{bmatrix} x_{1}^{\circ} & x_{1}^{\circ} & x_{2}^{\circ} & x_{3}^{\circ} & \dots & x_{n-1}^{\circ} \\ x_{n}^{\circ} & x_{n}^{\circ} & x_{n}^{\circ} & x_{n}^{\circ} & x_{n-1}^{\circ} \\ \vdots & \vdots & \vdots \\ x_{n}^{\circ} & x_{n}^{\circ} & x_{n}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} \\ \vdots & \vdots & \vdots \\ x_{n}^{\circ} & x_{n}^{\circ} & x_{n}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} \\ \vdots & \vdots & \vdots \\ x_{n}^{\circ} & x_{n}^{\circ} & x_{n}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} \\ \vdots & \vdots & \vdots \\ x_{n}^{\circ} & x_{n}^{\circ} & x_{n}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} \\ \vdots & \vdots & \vdots \\ x_{n}^{\circ} & x_{n}^{\circ} & x_{n}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} \\ \vdots & \vdots & \vdots \\ x_{n}^{\circ} & x_{n}^{\circ} & x_{n}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} \\ \vdots & \vdots & \vdots \\ x_{n}^{\circ} & x_{n}^{\circ} & x_{n}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} \\ \vdots & \vdots & \vdots \\ x_{n}^{\circ} & x_{n}^{\circ} & x_{n}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} \\ \vdots & \vdots & \vdots \\ x_{n}^{\circ} & x_{n}^{\circ} & x_{n}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} \\ \vdots & \vdots & \vdots \\ x_{n}^{\circ} & x_{n}^{\circ} & x_{n}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} \\ \vdots & \vdots & \vdots \\ x_{n}^{\circ} & x_{n}^{\circ} & x_{n}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} \\ \vdots & \vdots & \vdots \\ x_{n}^{\circ} & x_{n}^{\circ} & x_{n}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} \\ \vdots & \vdots & \vdots \\ x_{n}^{\circ} & x_{n}^{\circ} & x_{n}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} \\ \vdots & \vdots & \vdots \\ x_{n}^{\circ} & x_{n}^{\circ} & x_{n}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} \\ \vdots & \vdots & \vdots \\ x_{n}^{\circ} & x_{n}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} \\ \vdots & \vdots & \vdots \\ x_{n}^{\circ} & x_{n}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} \\ \vdots & \vdots & \vdots \\ x_{n}^{\circ} & x_{n}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} \\ \vdots & \vdots & \vdots \\ x_{n}^{\circ} & x_{n}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} \\ \vdots & x_{n-1}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} \\ \vdots & x_{n-1}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} \\ \vdots & x_{n-1}^{\circ} \\ \vdots & x_{n-1}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} \\ \vdots & x_{n-1}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} & x_{n-1}^{\circ} & x_{n-1$$

$$P(x) \in \mathcal{O}^{n-1}(x)$$

$$P(x) = G + G x + G x^{2} + \dots + C_{n-1} x^{n-1}$$

$$P(x_{i}) = P(x) \Big|_{x = \chi_{1}^{i}} = (AC)_{i}$$

$$A = \left[\chi^{0} \ x^{1} \ x^{2} \ \dots \ \chi^{n-1} \right] \quad C = \begin{bmatrix} G_{0} \\ \vdots \\ G_{n-1} \end{bmatrix}$$

$$P(x_{i}) = G \chi_{i}^{0} + G \chi_{i}^{1} + C_{2} \chi_{i}^{2} + \dots + C_{n-1} \chi_{i}^{n-1}$$

Matrix the Metrix B=AC

 $B \in \mathbb{C}^{l \times n}$ $A \in \mathbb{C}^{l \times m}$ $C \in \mathbb{C}^{m \times n}$ $t_{ij} = \sum_{k=1}^{m} a_{ik} G_{kj}$ $\int_{1 \le i \le n}^{1 \le i \le n} f_{ik} f_{k}$ $f_{ik} = f_{k} = f_{ik} f_{k} = f_{ik} f_{k}$ $f_{ik} = f_{ik} = f_{ik} f_{k} = f_{ik} = f_$

$$\int \left[\frac{b_2}{b_2} \right] = \frac{1}{2} \left[\frac{A}{A} \right] \left[\frac{c_1}{b_1} \right]$$

$$Tehe He M column of B:$$

$$\left[\frac{b_1}{b_1} \right] = \left[\frac{A}{A} \right] \left[\frac{c_2}{b_1} \right]$$

$$for \quad j = 1, 2, ..., n.$$
So we think of B = AC as representing n
heat in vector products
$$\left[\frac{b_1 b_2 \cdots b_n}{b_1} \right] = \left[\frac{a_1}{a_1} \frac{a_2 \cdots a_m}{a_2} \right] \left[\frac{c_2 \cdots c_n}{b_1} \right] \prod_{i=1}^{n} \left[\frac{a_i}{a_1} \frac{a_2 \cdots a_m}{a_2} \right]$$
In index form:
$$b_i = A C_i = \sum_{k=1}^{m} C_{ki} a_k$$