NAME:

Instructions: You must include all the steps in your derivations/answers. Reduce answers as much as possible, but use *exact arithmetic*. Write neatly.

1. (25 %) Consider the force $\mathbf{F}(x,y) = -y\hat{\mathbf{i}} + x^2\hat{\mathbf{j}}$. Calculate the work done on a particle along the triangular path described below. The work done by this force on an particle is found by calculating $\oint \mathbf{F} \cdot d\mathbf{r}$. The path is clockwise in the x, y-plane and consists of straight lines. The starting point of the path is (0,0) then it is at a vertex (1,1), then (1,0) and finally back to the origin.

As a line integral $-\int y dx + \int x^2 dy = -7/6$, since:

a:
$$(0,0) \to (1,1)$$
:

$$\int_0^1 -x dx + \int_0^1 y^2 dy = -1/2 + 1/3$$
b: $(1,1) \to (1,0)$:

$$\int_1^0 1 dy = -1$$

c: $(1,0) \rightarrow (0,0)$:

$$\int_{1}^{0} 0 dx + \int_{0}^{0} x^{2} dy = 0$$

- 2. (25 %) For f(x, y, z) = 1 + 4xyz, the point P(-1, 1, 1), the vector $\hat{\mathbf{u}} = -\frac{1}{\sqrt{3}}(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$
 - Compute ∇f .
 - Evaluate ∇f at P.
 - Find the unit vector that gives the direction of steepest increase at *P*.
 - Find the directional derivate in the direction $\hat{\mathbf{u}}$ at P.

Answer:

 $\mathbf{p} := \nabla f = 4yz\mathbf{\hat{i}} + 4xz\mathbf{\hat{j}} + 4xy\mathbf{\hat{k}}$. Evaluated at P yields $\mathbf{p}(P) = 4(\mathbf{\hat{i}} - \mathbf{\hat{j}} - \mathbf{\hat{k}})$. The steepest ascent will be in the direction \mathbf{p} . At P, the unit normal pointing in the direction of steepest increase is $\mathbf{\hat{p}}(P) = \mathbf{p}/|\mathbf{p}|(P) = \frac{1}{\sqrt{3}}(\mathbf{\hat{i}} - \mathbf{\hat{j}} - \mathbf{\hat{k}})$. The directional derivative in the direction $\mathbf{\hat{u}}$ at P is the dot product $\mathbf{\hat{u}} \cdot \mathbf{p}(P) = \frac{4}{\sqrt{3}}$.

3. (25 %) Compute the following line integral:

$$\int_C \mathbf{F} \cdot \mathbf{\hat{T}} ds,$$

with $\mathbf{F}(x, y, z) = x\hat{\mathbf{i}} - y\hat{\mathbf{j}}$. The path *C* described by the displacement vector $\mathbf{r} = t\hat{\mathbf{i}} + t^2\hat{\mathbf{j}} + \hat{\mathbf{k}}$, for $0 \le t \le 1$. **Hint:** use the chain rule on the integrand.

Answer: $\int_C \mathbf{F} \cdot \hat{\mathbf{T}} ds = \int_0^1 \mathbf{F} \cdot \mathbf{v} dt, \, \mathbf{v} = \hat{\mathbf{i}} + 2t \hat{\mathbf{j}}, \, \mathbf{F} \cdot \mathbf{v} = t - 2t^3. \text{ The integral } \int_0^1 \mathbf{F} \cdot \mathbf{v} dt = \left(\frac{1}{2}t^2 - \frac{1}{2}t^4\right)_0^1 = 0$

- 4. (25 %) For $-\infty < t < \infty$, consider the displacement vector $\mathbf{r} = \hat{\mathbf{i}} + t^2 \hat{\mathbf{j}}$.
 - (a) Draw a picture of the path traced out by the displacement vector. Add to the figure a few representative realizations of the displacement vector for t > 0, t < 0, and t = 0.
 - (b) Find the unit tangent vector \mathbf{T}
 - (c) Find the unit normal vector **N**.

Hint: Consider separately t > 0, t < 0, and t = 0.

 $\mathbf{T} = \mathbf{r}'/|\mathbf{r}'| = \mathbf{\hat{j}}$. Also, $v = \frac{\partial s}{\partial t} = 2|t|$. Hence $\mathbf{T} = \operatorname{sgn}(t)\mathbf{\hat{j}}$. Note that it is undefined at t = 0.

The vector $\mathbf{N} = \frac{\partial \mathbf{T}}{\partial s} / |\frac{\partial \mathbf{T}}{\partial s}|$. But $\frac{\partial \mathbf{T}}{\partial s} = \frac{\partial \mathbf{T} / \partial t}{\partial t / \partial s} = \frac{1}{v} \frac{\partial \mathbf{T}}{\partial t}$. The derivative of sgn(t) is $2\delta(t)$. So $\mathbf{N} = \mathbf{0}$ for $t \neq 0$. At t = 0 it is undefined. We say either that \mathbf{N} is undefined for all time, or we say it is defined for all time except for at t = 0