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• Shortly before 1980, important developments in 
frequency theory of inference were  “in the air”.

• Strictly, this was about new asymptotic methods, but 
with the capacity leading to what has been called 
“Neo-Fisherian” theory of inference.

• A complement to the Neyman-Pearson theory, 
emphasizing likelihood and conditioning for the 
reduction of data for inference, rather than direct 
focus on optimality, e.g. UMP tests
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A few years after that, this pathbreaking paper led the way 
to remarkable further development of MODERN 
LIKELIHOOD ASYMPTOTICS

That paper was difficult, so Dawn Peters and I had some success 
interpreting it in an invited RSS discussion paper
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• Salvan (Univ Padua) and Pace & Bellio (Univ Udine) made 
it possible for me to visit 2-4 months/year from 2000 to 
2014 to study Likelihood Asymptotics

• In 2012 they arranged for me a Fellowship at Padua, work 
under which led to the paper in progress discussed today

• This is based on the idea that the future of Likelihood 
Asymptotics will depend on: (a) development of generic 
computational tools and (b) concise and transparent 
exposition amenable to statistical theory courses.
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• Starting point is a simple and accurate ‘likelihood ratio 
approximation’ to the distribution of the (multidimensional) 
maximum likelihood estimator

• Next step is to transform & marginalize from this to the 
distribution of the signed LR statistic (sqrt of usual      statistic) 
--- requiring only a Jacobian and Laplace approximation to the 
integration

• This result is expressed as an adjustment to the first-order 
N(0,1) distribution of the LR: “If that approximation is poor 
but not terrible this mops up most of the error” (Rob Kass)

• This is not hard to fathom---accessible to a graduate level
theory course---if one need not be distracted by arcane details
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• A central concept in what follows involves observed 
and expected (Fisher) information.

• The observed information is defined as minus the 
second derivative of the loglikelihood at its maximum

• The expected information (more usual Fisher info) is 
defined as  

• And we will write  
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• The MLE is sufficient if and only if             , and under 
regularity this occurs only for exponential families without 
restriction on the parameter (full rank case)

• Inferentially it is unwise and not really necessary to use the 
average information 

• With methods indicated here, it is feasible to condition on 
an ancillary statistic  such as 

• This is key part of what is called Neo-Fisherian Inference
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• Remarks on ancillary conditioning: Neo-Fisherian 
Inference

• To Fisher, “optimality” of inference involved sufficiency, 
more  strongly than in the Neyman-Pearson theory

• But generally the MLE is not a sufficient statistic

• Thus to Fisher, and many others, the resolution of that 
was conditioning on something like                      to render 
the MLE sufficient beyond 1st order.

ˆ ˆ/a j i
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• Indeed, Skovgaard (1985) showed that in general 
is to                   sufficient, and  conditioning on                 
(among other choices) leads in that order to:
(a) no loss of “information”, (b) the MLE being sufficient

• The LR approximation to the distribution of the MLE (usually 
but less usefully called the        formula, or the “magic 
formula” as by Efron in his Fisher Lecture) is then
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• Though this took some years to emerge, in 
restrospect it becomes fairly simple: 



• The Jacobian and marginalization to be applied to               
involve rather arcane sample space derivatives

approximations* to which are taken care of by the software we 
provide. 

• The result is an inferential quantity that is standard normal to 
2nd order

modifying the usual 1st order standard normal LR quantity
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• It was almost prohibitively difficult  to differentiate the 
likelihood with respect to MLEs while holding fixed an 
ancillary statistic

• The approximations* to sample space derivatives referred 
to came in a breakthrough by Skovgaard, making the theory 
practical

• Skovgaard’s approximation uses projections involving 
covariances of likelihood quantities computed without 
holding fixed an ancillary

• Our software uses simulation for these covariances, NOT 
involving model fitting in simulation trials 
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• To use the generic software, the user specifies an R-
function for computing the likelihood.  The choices made 
render the routines fairly generally applicable.

• Since higher-order inference depends on more than the 
likelihood function, one defines the extra-likelihood aspects 
of the model by providing another R-function that 
generates a dataset. 

• The interest parameter is defined by one further R-
function.

• We illustrate this with a Weibull example, and interest 
parameter the survival function at a given time and 
covariate
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• For testing this        at the Wald-based 95% lower confidence 
limit, the results are

• This is typical for settings with few nuisance parameters, when 
there are several the adjustment can be much larger
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