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Shortly before 1980, important developments in
frequency theory of inference were “in the air”.

Strictly, this was about new asymptotic methods, but
with the capacity leading to what has been called
“Neo-Fisherian” theory of inference.

A complement to the Neyman-Pearson theory,
emphasizing likelihood and conditioning for the
reduction of data for inference, rather than direct
focus on optimality, e.g. UMP tests
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A few years after that, this pathbreaking paper led the way
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* Salvan (Univ Padua) and Pace & Bellio (Univ Udine) made
it possible for me to visit 2-4 months/year from 2000 to
2014 to study Likelihood Asymptotics

* |n 2012 they arranged for me a Fellowship at Padua, work
under which led to the paper in progress discussed today

* Thisis based on the idea that the future of Likelihood
Asymptotics will depend on: (a) development of generic
computational tools and (b) concise and transparent
exposition amenable to statistical theory courses.



Starting point is a simple and accurate ‘likelihood ratio
approximation’ to the distribution of the (multidimensional)
maximum likelihood estimator

Next step is to transform & marginalize from this to the
distribution of the signed LR statistic (sqrt of usual #* statistic)
--- requiring only a Jacobian and Laplace approximation to the
Integration

This result is expressed as an adjustment to the first-order
N(0,1) distribution of the LR: “If that approximation is poor
but not terrible this mops up most of the error” (Rob Kass)

This is not hard to fathom---accessible to a graduate level
theory course---if one need not be distracted by arcane details



A central concept in what follows involves observed
and expected (Fisher) information.

The observed information is defined as minus the
second derivative of the loglikelihood at its maximum

j: —i.(ﬁ; y) |9:g

The expected information (more usual Fisher info) is
defined as

i(0) = E{-1(6;Y)}

And we will write | =i(6)



The MLE is sufficient if and only if I = j , and under
regularity this occurs only for exponential families without
restriction on the parameter (full rank case)

Inferentially it is unwise and not really necessary to use the
average information

With methods indicated here, it is feasible to condition on
an ancillary statistic such as

a=]/i (meaningactually 1])

This is key part of what is called Neo-Fisherian Inference



Remarks on ancillary conditioning: Neo-Fisherian
Inference

To Fisher, “optimality” of inference involved sufficiency,
more strongly than in the Neyman-Pearson theory

But generally the MLE is not a sufficient statistic
Thus to Fisher, and many others, the resolution of that

was conditioning on something like a= j/f to render
the MLE sufficient beyond 15t order.



* Indeed, Skovgaard (1985) showed that in general (6,a)
isto O,(1/n) sufficient, and conditioningon a= j/f
(among other choices) leads in that order to:

(a) no loss of “information”, (b) the MLE being sufficient

 The LR approximation to the distribution of the MLE (usually
but less usefully called the p formula, or the “magic
formula” as by Efron in his Fisher Lecture) is then

i) pr(y;0)
(27)*" pr(y;6)
= pr(@|a;0) {1+O(n‘1)}

pr(d]a;e) =




 Though this took some years to emerge, in
restrospect it becomes fairly simple:

Ao _ P(0]a;0)

p(6]a;0)= 210120

p(0]a;0)

- PLyl2:0) p(Olaid) hia:d) since the first term is nearly unity
n(yla;0) p(@]a;0)

- O((y;?) p(f|a;#)  and with Edgeworth expansion to the final term
LY

: <O\ (U2 A
= p((y’?) |(12((9))F|)]/12 this having relative error O(1/n) for all #=6 + O(n*?)
ply, a

=p’(0]a;0)

p(0|a;6)




* The Jacobian and marginalization to be applied to p*(é’)
involve rather arcane sample space derivatives
o°1(6,)

n ~ -1/2 _ A A . i 3 )
S oA 04 {l i W0 |} 0, =[0:(0,0,a)-1,(6,0,a)} /oy || ], | Ve

approximations™ to which are taken care of by the software we
provide.

 The resultis an inferential quantity that is standard normal to
2"d order
* -1 -1 ~ .
r=r,+1"log(C,)+r, log{l, /r,t=r, + NP+ INF
modifying the usual 1%t order standard normal LR quantity
r, =sign(y )2 (6:y) - 1(6: )}




It was almost prohibitively difficult to differentiate the
likelihood with respect to MLEs while holding fixed an
ancillary statistic

The approximations™ to sample space derivatives referred
to came in a breakthrough by Skovgaard, making the theory
practical

Skovgaard’s approximation uses projections involving
covariances of likelihood quantities computed without
holding fixed an ancillary

Our software uses simulation for these covariances, NOT
involving model fitting in simulation trials



To use the generic software, the user specifies an R-
function for computing the likelihood. The choices made
render the routines fairly generally applicable.

Since higher-order inference depends on more than the
likelihood function, one defines the extra-likelihood aspects
of the model by providing another R-function that
generates a dataset.

The interest parameter is defined by one further R-
function.

We illustrate this with a Weibull example, and interest
parameter the survival function at a given time and
covariate



loglik.Wbl <- function(theta, data)

{

logy <- log(datasy)

¥ <- dataS¥

loggam <- thetal[l]

beta <- thetal-1]

gam «<— exp(loggam)

H <— expl(gam * logy + X %*% beta)

out <— sum(¥ %*% beta + loggam + (gam-1) * logy — H)
return (out)

}

gendat.Wbl <- function(theta, data)

{

¥ <- datas¥

n <-— nrow(X)

beta <- thetal-1]

gam <- exp(thetalll)

dataSy <- (rexp(n) / exp(¥X %*% beta)) ~ (1 / gam)
return (data)

}

psifecn.Whl <- function(theta)
| {

beta <- thetal-1]

gam <— exp(thetall])

y0 <— 130
®x0 «<- 4
psi <— —(y0 ~ gam) * exp(betall] + x0 * betal[2])

return (psi)

}

18



For testing this ¥ at the Wald-based 95% lower confidence
limit, the results are

r,=1.66 (P=0.048)
r =2.10 (P =0.018)
Wald =1.95 (P = 0.025)

This is typical for settings with few nuisance parameters, when
there are several the adjustment can be much larger



